

US010702600B1

(12) United States Patent

Ciaramella et al.

(54) BETACORONAVIRUS MRNA VACCINE

- (71) Applicant: ModernaTX, Inc., Cambridge, MA (US)
- (72) Inventors: Giuseppe Ciaramella, Sudbury, MA (US); Sunny Himansu, Winchester, MA (US)
- (73) Assignee: ModernaTX, Inc., Cambridge, MA (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 16/805,587
- (22) Filed: Feb. 28, 2020

Related U.S. Application Data

- (63) Continuation of application No. 16/368,270, filed on Mar. 28, 2019, which is a continuation of application No. 16/040,981, filed on Jul. 20, 2018, now Pat. No. 10,272,150, which is a continuation of application No. 15/674,599, filed on Aug. 11, 2017, now Pat. No. 10,064,934, which is a continuation of application No. PCT/US2016/058327, filed on Oct. 21, 2016.
- (60) Provisional application No. 62/247,362, filed on Oct. 28, 2015, provisional application No. 62/247,394, filed on Oct. 28, 2015, provisional application No. 62/247,483, filed on Oct. 28, 2015, provisional application No. 62/247,297, filed on Oct. 28, 2015, provisional application No. 62/244,802, filed on Oct. 22, 2015, provisional application No. 62/244,946, filed on Oct. 22, 2015, provisional application No. 62/244,813, filed on Oct. 22, 2015, provisional application No. 62/244,837, filed on Oct. 22, 2015, provisional application No. 62/244,837, filed on Oct. 22, 2015, provisional application No. 62/245,031, filed on Oct. 22, 2015.

(2006.01)

(2006.01)

(2006.01)

(51) Int. Cl. *A61P 11/00 A61K 39/12 A61K 39/215 A61K 39/215*

	(2000.01)
A61K 39/155	(2006.01)
С07К 16/10	(2006.01)
A61K 39/00	(2006.01)

(10) Patent No.: US 10,702,600 B1

(45) **Date of Patent:** Jul. 7, 2020

(58) Field of Classification Search None See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,906,092 A	9/1975	Hilleman et al.
4,790,987 A	12/1988	Compans et al.
5,169,628 A	12/1992	Wathen
5,427,782 A	6/1995	Compans et al.
6,225,091 B1	5/2001	Klein et al.
6,500,419 B1	12/2002	Hone et al.
6,514,948 B1	2/2003	Raz et al.
7,001,890 B1	2/2006	Wagner et al.
7,208,161 B1	4/2007	Murphy et al.
7,449,324 B2	11/2008	Fouchier et al.
7,531,342 B2	5/2009	Fouchier et al.
7,671,186 B2	3/2010	Klein et al.
7,704,720 B2	4/2010	Tang et al.
8,217,016 B2	7/2012	Hoerr et al.
8,252,289 B2	8/2012	Eleouët et al.
8,710,200 B2	4/2014	Schrum et al.
8,722,341 B2	5/2014	Fouchier et al.
8,734,853 B2	5/2014	Sood et al.
8,754,062 B2	6/2014	De Fougerolles et al.
8,822,663 B2	9/2014	Schrum et al.
8,841,433 B2	9/2014	Fouchier et al.
8,889,146 B2	11/2014	Blais et al.
8,927,206 B2	1/2015	De Jong et al.
8,999,380 B2	4/2015	Bancel et al.
9,192,661 B2	11/2015	Jain et al.
9,221,891 B2	12/2015	Bancel et al.
9,283,287 B2	3/2016	Bancel et al.
9,303,079 B2	4/2016	Bancel et al.
9,376,726 B2	6/2016	Fouchier et al.
9,464,124 B2	10/2016	Bancel et al.
9,512,456 B2	12/2016	Wang et al.
9,567,653 B2	2/2017	Fouchier et al.
9,597,380 B2	3/2017	Chakraborty et al.
	(Con	tinued)
	,	

FOREIGN PATENT DOCUMENTS

CA	2473135	6/2003
EP	1026253	8/2000
	(Cor	ntinued)

OTHER PUBLICATIONS

U.S. Appl. No. 16/036,318, filed Jul. 16, 2018, Ciaramella et al. (Continued)

Primary Examiner — Nicole Kinsey White (74) Attorney, Agent, or Firm — Wolf, Greenfield & Sacks, P.C.

(57) ABSTRACT

The disclosure relates to respiratory virus ribonucleic acid (RNA) vaccines and combination vaccines, as well as methods of using the vaccines and compositions comprising the vaccines.

26 Claims, 24 Drawing Sheets

Specification includes a Sequence Listing.

(56) **References** Cited

U.S. PATENT DOCUMENTS

9,623,095	B2	4/2017	Kallen et al.
9,669,089	B2	6/2017	Thess et al.
9,790,531	B2	10/2017	Wang et al. Benerate et al
9,868,691 9,872,900	B2 B2	1/2018 1/2018	Benenato et al. Ciaramella et al.
9,937,196	B2	4/2018	Jain et al.
10,064,934	B2	9/2018	Ciaramella et al.
10,064,935	B2	9/2018	Ciaramella et al.
10,124,055	B2	11/2018	Ciaramella et al.
10,207,010	B2	2/2019	Besin et al.
10,273,269 10,449,244	B2 B2	4/2019 10/2019	Ciaramella Ciaramella et al.
	BI	11/2019	Chen et al.
10,493,143	B2	12/2019	Ciaramella et al.
10,526,629	B2	1/2020	Rabideau et al.
2003/0092653	A1	5/2003	Kisich et al.
2003/0232061	Al	12/2003	Fouchier et al.
2004/0005545	Al Al	1/2004 5/2004	Fouchier et al. Young et al.
2005/0032730	Al	2/2005	Von Der Mulbe et al.
2005/0059624	A1	3/2005	Hoerr et al.
2005/0250723	A1	11/2005	Hoerr et al.
2006/0002958	A1	1/2006	Naylor et al.
2006/0172003	Al	8/2006	Meers et al.
2006/0228367 2007/0280929	Al Al	10/2006	Ulbrandt et al. Hoerr et al.
2007/0280929	Al	1/2008	Hoerr et al.
2008/0171711	Al	7/2008	Hoerr et al.
2009/0123529	A1	5/2009	Xiaomao
2009/0162395	A1	6/2009	Crowe et al.
2010/0203076	Al	8/2010	Fotin-Mleczek et al.
2010/0239608	Al	9/2010 10/2010	Von Der Mulbe et al.
2010/0272747 2010/0291156	Al Al	11/2010	Chow et al. Barner et al.
2010/0305196	Al	12/2010	Probst et al.
2011/0135645	A1	6/2011	Williamson et al.
2011/0250225	A1	10/2011	Fotin-Mleczek et al.
2011/0269950	Al	11/2011	Von Der Mulbe et al.
2012/0009221	A1	1/2012	Hoerr et al.
2012/0045471 2012/0219573	Al Al	2/2012 8/2012	Haller et al. Baumhof et al.
2012/0219979	Al	1/2013	Rossi
2013/0078281	A1	3/2013	He et al.
2013/0102034	A1	4/2013	Schrum et al.
2013/0121988	Al	5/2013	Hoerr et al.
2013/0142818	A1 A1	6/2013 7/2013	Baumhof et al.
2013/0183355 2013/0195867	Al	8/2013	Jain et al. Hoerr et al.
2013/0195967	Al	8/2013	Guild et al.
2013/0195969	A1	8/2013	Geall et al.
2013/0202684	A1	8/2013	Geall et al.
2013/0243848	Al	9/2013	Lobovkina et al.
2013/0245103 2013/0259923	A1	9/2013 10/2013	de Fougerolles et al. Bancel et al
2013/0239923	AI Al	10/2013	Bancel et al. De Fougerolles et al.
2013/0295043	Al	11/2013	Kallen et al.
2013/0336998	A1	12/2013	Kallen et al.
2014/0024076	Al	1/2014	Tang et al.
2014/0037660	Al	2/2014	Folin-Mleczek et al.
2014/0147432 2014/0148502	A1 A1	5/2014 5/2014	Bancel et al. Bancel et al.
2014/0193482	Al	7/2014	Bancel et al.
2014/0206752	Al	7/2014	Afeyan et al.
2014/0271829	A1	9/2014	Lilja et al.
2014/0370497	A1	12/2014	Fouchier et al.
2014/0378538	A1	12/2014	Bancel Banaal et al
2015/0051268 2015/0093413	A1 A1	2/2015 4/2015	Bancel et al. Thess et al.
2015/0126589	Al	5/2015	Geiger et al.
2015/0141499	Al	5/2015	Bancel et al.
2015/0307542	A1	10/2015	Roy et al.
2015/0315541	A1	11/2015	Bancel et al.
2015/0335728	Al	11/2015	Wong et al.
2016/0024141	Al	1/2016	Issa et al.
2016/0032273	A1	2/2016	Shahrokh et al.

2016/0038612 A	AI 2/2016	Hoge et al.
2016/0039884 A	AI 2/2016	Li et al.
2016/0151474 A	AI 6/2016	Kallen et al.
2016/0271272 A	AI 9/2016	Bancel et al.
2016/0317647 A	A1 11/2016	Ciaramella et al.
2016/0331828 A	AI 11/2016	Ciaramella et al.
2017/0065675 A	AI 3/2017	Bancel et al.
2017/0130255 A	AI 5/2017	Wang et al.
2017/0202979 A	AI 7/2017	Chakraborty et al.
2017/0340724 A	AI 11/2017	Ciaramella et al.
2018/0000953 A	AI 1/2018	Almarsson et al.
2018/0002393 A	A1 1/2018	Bancel et al.
2018/0008694 A	AI 1/2018	Ciaramella et al.
2018/0028645 A	AI 2/2018	Ciaramella et al.
2018/0028664 A	AI 2/2018	Besin et al.
2018/0237849 A	A1 8/2018	Thompson
2018/0243225 A	A1 8/2018	Ciaramella
2018/0243230 A	AI 8/2018	Smith
2018/0271970 A	A1 9/2018	Ciaramella et al.
2018/0273977 A	A1 9/2018	Mousavi et al.
2018/0274009 A	A1 9/2018	Marquardt et al.
2018/0280496 A	AI 10/2018	Ciaramella et al.
2018/0289792 A	AI 10/2018	Ciaramella et al.
2018/0303929 A	A1 10/2018	Ciaramella et al.
2018/0311336 A	AI 11/2018	Ciaramella et al.
2018/0318409 A	A1 11/2018	Valiante et al.
2018/0363019 A	AI 12/2018	Hoge
2019/0002890 A	A1 1/2019	Martini et al.
2019/0008938 A	AI 1/2019	Ciaramella et al.
2019/0099481 A	4/2019	Ciaramella et al.
2019/0192646 A	AI 6/2019	Cohen et al.
2019/0192653 A	AI 6/2019	Hoge et al.
2019/0275170 A	A1 9/2019	Benenato et al.
2019/0314493 A	AI 10/2019	Ciaramella et al.
2019/0336595 A	AI 11/2019	Ciaramella
2019/0351040 A	AI 11/2019	Valiante et al.
2020/0030432 A	AI 1/2020	Ciaramella et al.
2020/0032274 A	AI 1/2020	Mauger et al.
	AI 2/2020	Narayanan et al.
	AI 2/2020	Ciaramella et al.
		Carrielle vi (41)

FOREIGN PATENT DOCUMENTS

EP	1083232	2/2005
EP	1905844 A2	2/2008
EP	2548960 A1	1/2013
WO	WO 1987/005326 A1	9/1987
WO	WO 1990/11092	10/1990
WO	WO 1993/14778	8/1993
WO	WO 1995/24485	9/1995
WO	WO 1995/26204	10/1995
WO	WO 1995/33835	12/1995
WO	WO 1998/058956	12/1998
WO	WO 1999/33982	7/1999
WO	WO 2003/072720 A2	9/2003
WO	WO 2004/076645 A1	9/2004
WO	WO 2005/009346	2/2005
WO	WO 2006/056027 A1	6/2006
WO	WO 2006/071903	7/2006
WO	WO 2006/095259	9/2006
WO	WO 2007/038862 A1	4/2007
WO	WO 2007/095976 A2	8/2007
WO	WO 2008/052770 A2	5/2008
WO	WO 2009/030254 A1	3/2009
WO	WO 2009/030481 A1	3/2009
WO	WO 2009/095226	8/2009
WO	WO 2009/127230 A1	10/2009
WO	WO 2010/037408 A1	4/2010
WO	WO 2010/037539 A1	4/2010
WO	WO 2010/042877 A1	4/2010
WO	WO 2010/054406 A1	5/2010
WO	WO 2010/088927 A1	8/2010
WO	WO 2010/149743 A2	12/2010
WO	WO 2011/005799 A2	1/2011
WO	WO 2011/026641 A9	3/2011
WO	WO 2011/068810 A1	6/2011
WO	WO 2011/069529 A1	6/2011
WO	WO 2011/069586 A1	6/2011
WO	WO 2011/144358 A1	11/2011

(56) References Cited

FOREIGN PATENT DOCUMENTS

WO	WO 2012/019630 A1	2/2012
WO	WO 2012/019780 A1	2/2012
WO	WO 2012/116714 A1	9/2012
WO	WO 2012/116715 A1	9/2012
WO	WO 2012/116810 A1	9/2012
wo		
	WO 2012/116811 A1	9/2012
WO	WO 2013/055905 A1	4/2013
WO	WO 2013/090186 A1	6/2013
WO	WO 2013/102203 A1	7/2013
WO	WO 2013/120628 A1	8/2013
WO		
WO	WO 2013/120629 A1	8/2013
WO	WO 2013/185069 A1	12/2013
WO	WO 2014/089486 A1	6/2014
WO	WO 2014/152027 A1	9/2014
WO	WO 2014/152774 A1	9/2014
WO	WO 2014/152940 A1	9/2014
WO	WO 2014/160243 A1	10/2014
WO	WO 2015/024669 42	2/2015
	WO 2015/024668 A2	
WO	WO 2015/101414 A2	7/2015
WO	WO 2015/101415 A1	7/2015
WO	WO 2015/130584 A2	9/2015
WO	WO 2016/103238	6/2016
WO	WO 2016/164762 A1	10/2016
WO	WO 2016/201377 A1	12/2016
WO	WO 2017/015457 A1	1/2017
WO	WO 2017/015463 A1	1/2017
WO	WO 2017/019935 A1	2/2017
WO	WO 2017/020026 A1	2/2017
WO	WO 2017/062513 A1	4/2017
WO	WO 2017/066789 A1	4/2017
wo		4/2017
wu	WO 2017/070601 A1	4/2017
WO	WO 2017/070616 A1	4/2017
WO	WO 2017/070618 A1	4/2017
WO	WO 2017/070620 A1	4/2017
	WO 2017/070020 A1	
WO	WO 2017/070622 A1	4/2017
WO	WO 2017/070623 A1	4/2017
WO	WO 2017/201340 A1	11/2017
WO	WO 2017/201342 A1	11/2017
WO	WO 2017/201347 A1	11/2017
WO	WO 2017/201349 A1	11/2017
WO	WO 2018/053209 A1	3/2018
WO	WO 2018/075980 A1	4/2018
WO	WO 2018/081459 A1	5/2018
WO	WO 2018/081462 A1	5/2018
WO	WO 2018/089851 A1	5/2018
WO	WO 2018/107088 A1	6/2018
WO	WO 2018/111967 A1	6/2018
WO	WO 2018/144082 A1	8/2018
WO	WO 2018/144778 A1	8/2018
WO	WO 2018/151816 A1	8/2018
WO	WO 2018/170245 A1	9/2018
WO	WO 2018/170256 A1	9/2018
WO		
WO		9/2018
WO	WO 2018/170270 A1	9/2018
WO	WO 2018/170347 A1	9/2018
WO	WO 2018/175783 A1	9/2018
WO	WO 2018/187590 A2	10/2018
WO	WO 2018/200737 A1	11/2018
WO	WO 2018/232355 A1	12/2018
WO	WO 2018/232357 A1	12/2018
WO	WO 2019/036670 A1	2/2019
WO	WO 2019/036682 A1	2/2019
WO	WO 2019/036683 A1	2/2019
WO	WO 2019/036685 A1	2/2019
WO	WO 2019/103993 A1	5/2019
WO	WO 2019/148101 A1	8/2019
WO	WO 2020/006242 A1	1/2020

OTHER PUBLICATIONS

U.S. Appl. No. 16/048,154, filed Jul. 27, 2018, Ciaramella et al. U.S. Appl. No. 16/144,394, filed Sep. 27, 2018, Ciaramella et al. U.S. Appl. No. 90/014,395, filed Oct. 24, 2019, Ciaramella et al. U.S. Appl. No. 15/748,773, filed Jan. 30, 2018, Ciaramella et al.

U.S. Appl. No. 15/753,293, filed Feb. 17, 2018, Smith.
U.S. Appl. No. 15/753,297, filed Feb. 17, 2018, Thompson.
U.S. Appl. No. 15/748,782, filed Jan. 30, 2018, Mousavi et al.
U.S. Appl. No. 15/767,587, filed Apr. 11, 2018, Ciaramella.
U.S. Appl. No. 16/450,882, filed Jun. 24, 2019, Ciaramella.
U.S. Appl. No. 15/767,600, filed Apr. 11, 2018, Ciaramella et al.
U.S. Appl. No. 15/769,710, filed Apr. 19, 2018, Ciaramella et al.
U.S. Appl. No. 15/767,609, filed Apr. 11, 2018, Ciaramella et al.
U.S. Appl. No. 15/767,613, filed Apr. 11, 2018, Ciaramella et al.
U.S. Appl. No. 15/767,618, filed Apr. 11, 2018, Ciaramella et al.
U.S. Appl. No. 16/136,503, filed Sep. 20, 2018, Ciaramella et al.
U.S. Appl. No. 15/746,286, filed Jan. 19, 2018, Ciaramella et al.
U.S. Appl. No. 16/009,880, filed Jun. 15, 2018, Ciaramella et al.
U.S. Appl. No. 15/981,762, filed May 16, 2018, Bancel et al.
U.S. Appl. No. 16/582,621, filed Sep. 25, 2019, Chen et al.
U.S. Appl. No. 16/599,661, filed Oct. 11, 2019, Besin et al.
U.S. Appl. No. 16/001,786, filed Jun. 6, 2018, Hoge et al.
U.S. Appl. No. 16/333,330, filed Mar. 14, 2019, Hoge et al.
U.S. Appl. No. 16/389,545, filed Apr. 19, 2019, Ciaramella et al.
U.S. Appl. No. 16/368,270, filed Mar. 28, 2019, Ciaramella et al.
U.S. Appl. No. 16/468,838, filed Jun. 12, 2019, Miracco.
U.S. Appl. No. 16/001,765, filed Jun. 6, 2018, Marquardt et al.
U.S. Appl. No. 16/348,943, filed May 10, 2019, Ciaramella.
U.S. Appl. No. 16/467,142, filed Jun. 6, 2019, Ciaramella et al.
U.S. Appl. No. 16/603,111, filed Oct. 4, 2019, Brito et al.
U.S. Appl. No. 16/482,844, filed Aug. 1, 2019, Valiante et al.
U.S. Appl. No. 16/496,135, filed Sep. 20, 2019, Narayanan et al.
U.S. Appl. No. 16/483,012, filed Aug. 1, 2019, Mauger et al.
U.S. Appl. No. 16/657,122, filed Oct. 18, 2019, Rabideau et al.
U.S. Appl. No. 16/362,366, filed Mar. 22, 2019, Ciaramella.
U.S. Appl. No. 16/493,986, filed Sep. 13, 2019, Ciaramella et al.
U.S. Appl. No. 16/494,130, filed Sep. 13, 2019, Ciaramella et al.
U.S. Appl. No. 16/494,103, filed Sep. 13, 2019, Ciaramella et al.
U.S. Appl. No. 16/494,162, filed Sep. 13, 2019, Ciaramella.
U.S. Appl. No. 16/494,988, filed Sep. 17, 2019, Ciaramella et al.
U.S. Appl. No. 16/639,265, filed Feb. 14, 2020, Issa et al.
U.S. Appl. No. 16/639,305, filed Feb. 14, 2020, Issa et al.
U.S. Appl. No. 16/302,607, filed Nov. 16, 2018, Benenato et al.
U.S. Appl. No. 16/623,069, filed Dec. 16, 2019, Hoge et al.
U.S. Appl. No. 16/639,403, filed Feb. 14, 2002, Hoge et al.
U.S. Appl. No. 16/131,793, filed Sep. 14, 2018, Ciaramella et al.
U.S. Appl. No. 16/608,451, filed Oct. 25, 2019, Ciaramella et al.
U.S. Appl. No. 16/788,182, filed Feb. 11, 2020, Panther et al.
U.S. Appl. No. 16/794,318, filed Feb. 19, 2020, Mauger et al.
PCT/U82016/058327, Jun. 29, 2017, International Search Report
and Written Opinion.
[No Author Listed], "Messenger RNA", Internet: Wikipedia. Jun.
19, 2013, XP002699196, Retrieved from the Internet: URL: http://
en.wikipedia.org/wiki/Messenger RNA.
Archer, S.J., Induction of a T-cell specific antigen on bone marrow
lymphocytes with thymus RNA. Immunology. Jan. 1978;34(1):123-
9.
Ashley, D.M. et al., Bone marrow-generated dendritic cells pulsed
with tumor extracts or tumor RNA induce antitumor immunity
against central nervous system tumors. J Exp Med. Oct. 6, 1997;
186(7): 1177-82. Battingan T atal Bartida modiated BNA delivery a neural error ach

Bettinger, T. et al., Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res. Sep. 15, 2001;29(18):3882-91.

Bogers et al., Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion.J Infect Dis. Mar. 15, 2015;211(6):947-55. doi: 10.1093/infdis/jiu522. Epub Sep. 18, 2014.

Bonehill, A., et al., Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res. May 2009; 15(10): 3366-3375.

Bose, S. et al., Role of nucleolin in human parainfluenza virus type 3 infection of human lung epithelial cells. J Viral. Aug. 2004;78(15):8146-58.

Conry, R.M. et al., Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. Apr. 1, 1995;55 (7):1397-1400.

(56) **References Cited**

OTHER PUBLICATIONS

Dahlman, James E. et al., In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight, Nature Nano-technology, 2014, No. vol. #, pp. 1-8.

Diken et al., Current Developments in Actively Personalized Cancer Vaccination with a Focus on RNA as the Drug Format. Prog Tumor Res. 2015;42:44-54. doi: 10.1159/000437184. Epub Sep. 4, 2015. Review.

Fleeton et al., Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J Infect Dis. May 1, 2001;183(9):1395-8. Epub Mar. 30, 2001.

Geall et al., Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A. Sep. 4, 2012;109(36):14604-9. doi:10. 1073/pnas.1209367109. Epub Aug. 20, 2012.

GenBank Accession No. AHX22069. First seen on NCBI on May 14, 2014.

Gilboa, E. et al., Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev. Jun. 2004;199:251-63.

Greer et al., Long-term protection in hamsters against human parainfluenza virus type 3 following mucosal or combinations of mucosal and systemic immunizations with chimeric alphavirusbased replicon particles. Scand J Immunol. Dec. 2007;66(6):645-53. Epub Oct. 17, 2007.

Hecker, J.G. et al., Non-Viral DNA and mRNA Gene Delivery to the CNS Pre-Operatively for Neuroprotection and Following Neurotrauma. Molecular Therapy. 2004; 9, S258-S258.

Heiser, A. et al., Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J Immunol. Mar. 1, 2001; 166(5):2953-60.

Heyes et al., Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release. Oct. 3, 2005;107(2):276-87.

Hoerr, I. et al., in vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. EurJ lmmunol. Jan. 2000;30(1):1-7.

Hoerr, I. et al., Stabilized Messenger RNA (RNActiveTM) as a Tool for Innovative Gene Delivery. Tissue Engineering. Apr. 2007; 13(4): 865-925.

Hoerr, More than a messenger: A new class of drugs-mRNA-based therapeutics. Genetic Engineering & Biotechnology News. Jun. 18, 2013. http://www.genengnews.com/gen-articles/more-than-a-messenger-a-new-class-of-drugs-mrna-based-therapeutics/4916/ [last accessed Mar. 25, 2016].

Holtkamp, S. et al., Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood. Dec. 15, 2006;108(13):4009-17.

Jirikowski, G.F., et al., Reversal of diabetes insipidus in Brattleboro Rats: Intrahypothalamic injection of vasopressin mRNA. Science. Feb. 1992; 255(5047): 996-998.

Kallen et al, A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther Adv Vaccines. Jan. 2014;2(1):10-31. doi: 10.1177/2051013613508729.

Kallen et al., A novel, disruptive vaccination technology: selfadjuvanted RNActive(®) vaccines. Hum Vaccin Immunother. Oct. 2013;9(10):2263-76. doi: 10.4161/hv.25181. Epub Jun. 4, 2013. Review.

Kalra et al., Virosomes: As a Drug Delivery Carrier. American Journal of Advanced Drug Delivery. 2013;1:29-35.

Kanapathipillai, et al., Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment, Adv. Drug Deliv. Rev. (2014), , pp. 1-12.

Kariko, K., et al., Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA, Nucleic Acids Research, Oxford University Press, GB, vol. 39, No. 21, Sep. 2, 2011 (Sep. 2, 2011), e142. doi: 10.1093/nar/gkr695. Epub Sep. 2, 2011.

Kauffman et al., Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Lett. Nov. 11, 2015;15(11):7300-6. doi: 10.1021/acs.nanolett.5b02497. Epub Oct. 20, 2015.

Kisich et al., Antimycobacterial agent based on mRNA encoding human beta-defensin 2 enables primary macrophages to restrict growth of *Mycobacterium tuberculosis*.Infect Immun. Apr. 2001;69(4):2692-9.

Kozielski et al., Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells. ACS Nano. Apr. 22, 2014;8(4):3232-41. doi: 10.1021/nn500704t. Epub Apr. 3, 2014.

Kreiter, S., et al., Intranodal vaccination with naked antigenencoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 2010; 70: 9031-9040.

Kreiter, S., et al., Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opinion in Immun. Jun. 2011; 23(3): 399-406.

Kuhn, A.N., et al., mRNA as a versatile tool for exogenous protein expression. Current Gene Therapy. Oct. 2012; 12 (5): 347-361.

Leitner, W.W. et al., DNA and RNA-based vaccines: principles, progress and prospects. Vaccine. Dec. 10, 1999;18 (9-10):765-77.

Li, L. et al., Overcoming obstacles to develop effective and safe siRNA therapeutics. Expert Opin Biol Ther. May 2009; 9(5): 609-19.

Lorenzi, J.C., et al., Intranasal vaccination with messenger RNA as a new approach in gene therapy: Use against tuberculosis. BMC Biotechnol. Oct. 2010; 10(77): 1-11.

Mockey et al., mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes, Cancer Gene Therapy, 2007, 14, pp. 802-814.

Magini et al., Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge. PLoS One. Aug. 15, 2016;11(8):e0161193. doi: 10.1371/journal.pone.0161193. eCollection 2016.

Martinon, F. et al., Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. EurJ lmmunol. Jul. 1993;23(7):1719-22.

Midoux et al., Lipid-based mRNA vaccine delivery systems. Expert Rev Vaccines. Feb. 2015;14(2):221-34. doi: 10.1586/14760584. 2015.986104. Epub Dec. 26, 2014. Review.

Mitchell, DA et al., RNA transfected dendritic cells as cancer vaccines. Curr Opin Mal Ther. Apr. 2000;2(2):176-81.

Mitchell, DA et al., RNA-transfected dendritic cells in cancer immunotherapy. J Clin Invest. Nov. 2000;106 (9):1065-9.

Muller, M.R. et al., Transfection of dendritic cells with RNA induces CD4- and COB-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes. J Immunol. Jun. 15, 2003;170(12):5892-6.

Narayanan et al., Interplay between viruses and host mRNA degradation. Biochim Biophys Acta. Jun.-Jul. 2013; 1829(6-7):732-41. doi: 10.1016/j.bbagrm.2012.12.003. Epub Dec. 26, 2012.

Petsch et al., Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. Dec. 2012;30(12):1210-6. doi: 10.1038/nbt.2436. Epub Nov. 25, 2012.

Phua et al., Mesenger RNA (mRNA) nanoparticle tumour vaccination. Nanoscale. Jul. 21, 2014;6(14):7715-29. dsoi: 10.1039/ c4nr01346h. Review.

Pulford, B., et al., Liposome-siRNA-peptide complexes cross the blood-brain barrier and significantly decrease PrP'C on neuronal cells and PrP'RES in infected cell cultures. PLoS One. 201 O; 5(6): e11085.

Rabinovich, P.M., et al., Synthetic messenger RNA as a tool for gene therapy. Hum. Gene Ther. Oct. 2006; 17: 1027-1035.

Rittig et al., Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther. May 2011;19(5):990-9. doi: 10.1038/mt.2010.289. Epub Dec. 28, 2010.

(56) References Cited

OTHER PUBLICATIONS

Sahin et al., mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov. Oct. 2014;13(10):759-80. doi: 10.1038/ nrd4278. Epub Sep. 19, 2014.

Schmitt, W.E. et al., In vitro induction of a bladder cancer-specific T-cell response by mRNA-transfected dendritic cells. J Cancer Res Clin Oncol. 2001;127(3):203-6.

Schott, J.W., et al., Viral and non-viral approaches for transient delivery of mRNA and proteins. Current Gene Ther. 2011; 11 (5): 382-398.

Segura, J., et al., Monitoring gene therapy by external imaging of mRNA: Pilot study on murine erythropoietin. Ther Drug Monit. Oct. 2007; 29(5): 612-8.

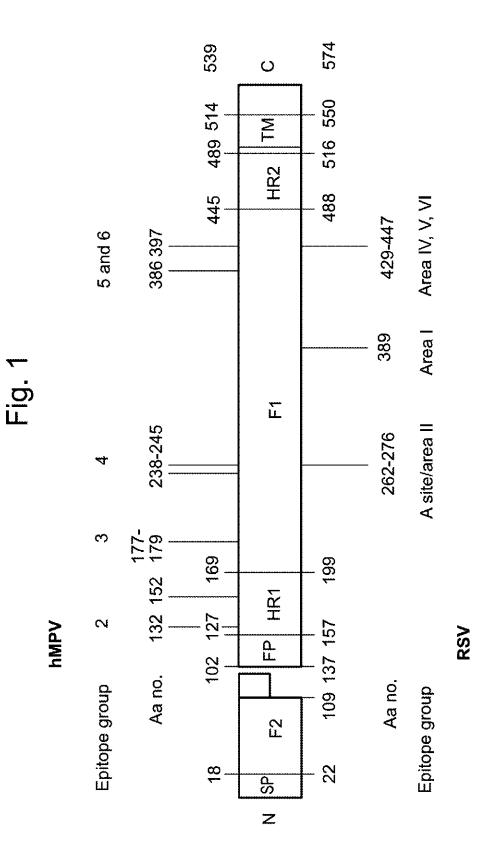
Smits, E., et al., RNA-based gene transfer for adult stem cells and T cells. Leukemia. 2004; 18: 1898-1902.

Sohn, R.L., et al., In-vivo particle mediated delivery of mRNA to mammalian tissues: ballistic and biological effects. Wound Rep and Regen. Jul.-Aug. 2001; 287-296.

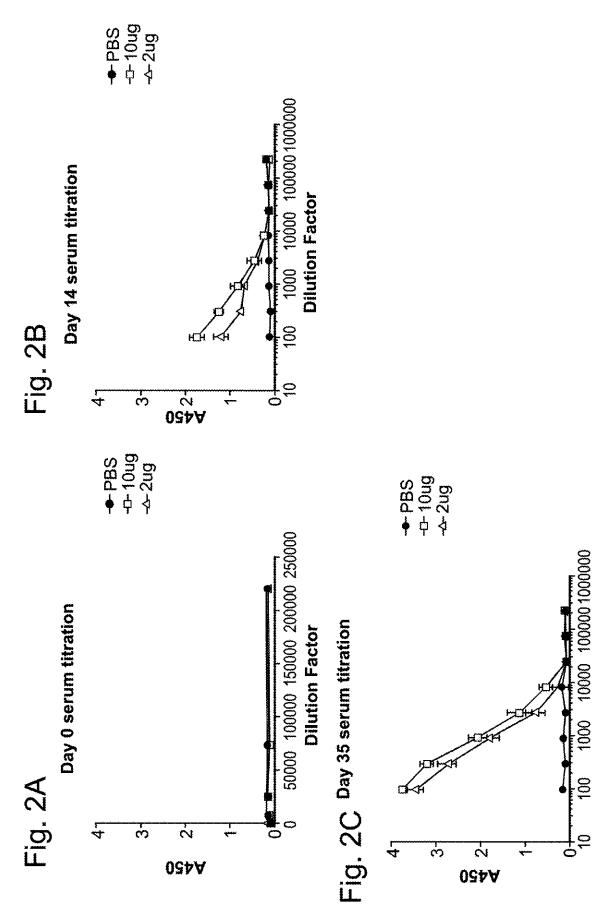
Strong, V.T. et al., Incorporation of beta-globin untranslated regions into a Sindbis virus vector for augmentation of heterologous mRNA expression. Gene Ther. Jun. 1997;4(6):624-7. Sullenger, BA et al., Emerging clinical applications of RNA. Nature. Jul. 11, 2002;418(6894):252-8.

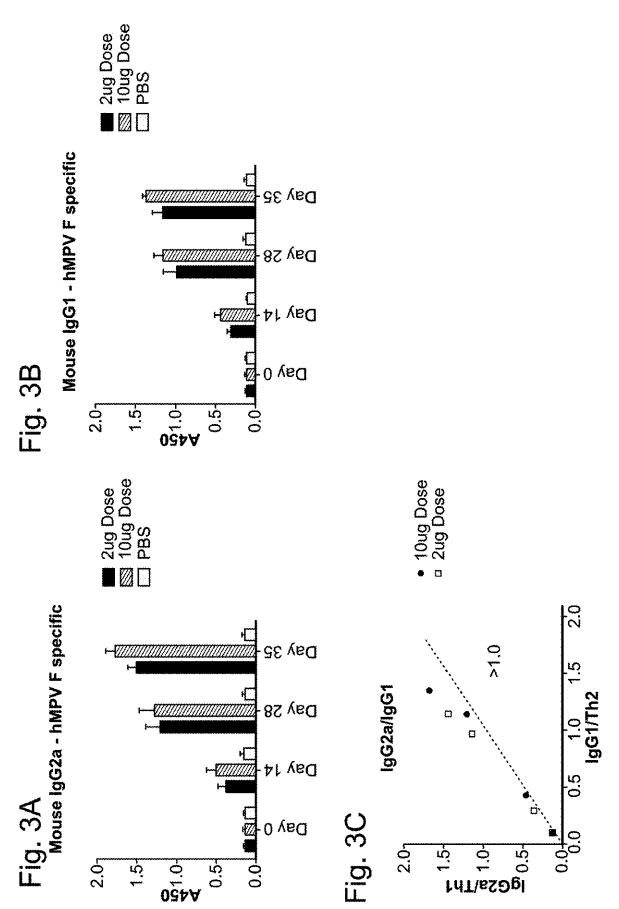
Tavernier, G., et al., mRNA as gene therapeutic: How to control protein expression. J. of Controlled Release. Mar. 2011; 150(3): 238-247.

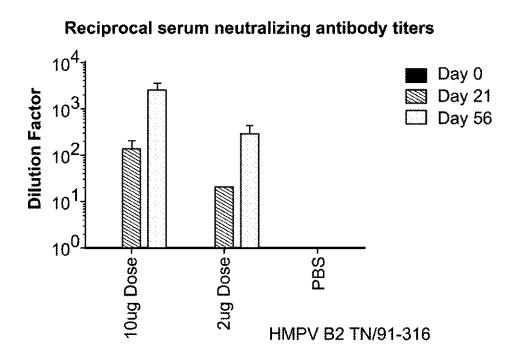
Teufel, R. et al., Human peripheral blood mononuclear cells transfected with messenger RNA stimulate antigen-specific cytotoxic T-lymphocytes in vitro. Cell Mol Life Sci. Aug. 2005;62(15):1755-62.

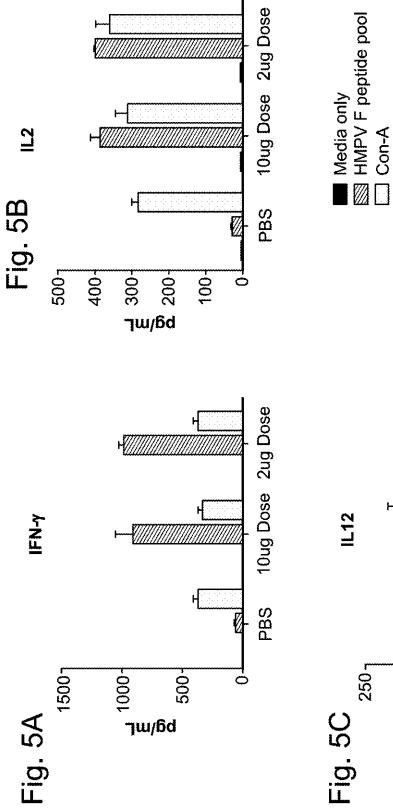

Thess et al., Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals. Mol Ther. Sep. 2015;23(9):1456-64. doi: 10.1038/mt.2015. 103. Epub Jun. 8, 2015.

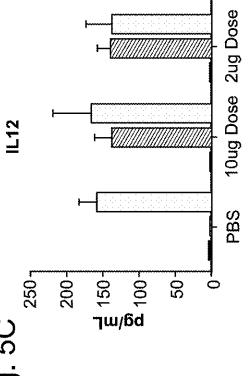
Wang et al., Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol Ther. Feb. 2013;21(2):358-67. doi: 10.1038/mt.2012.250. Epub Dec. 11, 2012.

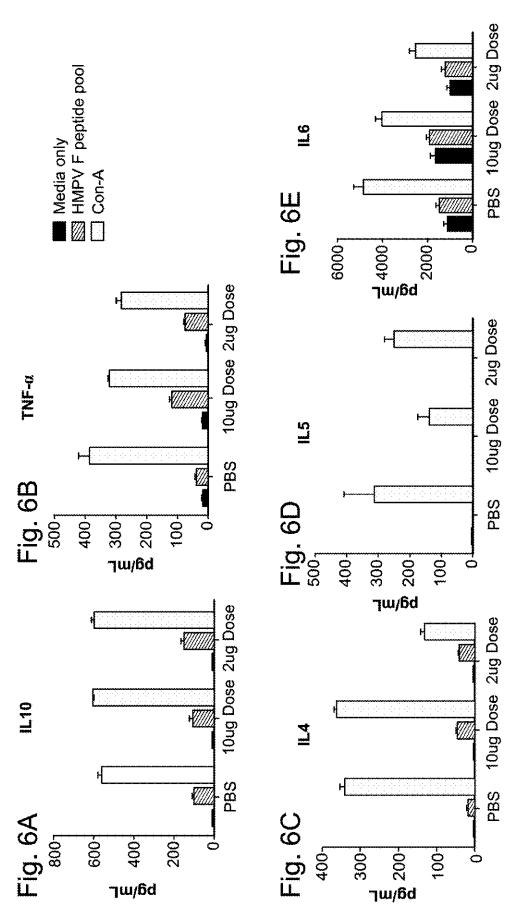

Wong et al., An mRNA vaccine for influenza. Nat Biotechnol. Dec. 2012;30(12):1202-4. doi: 10.1038/nbt.2439.

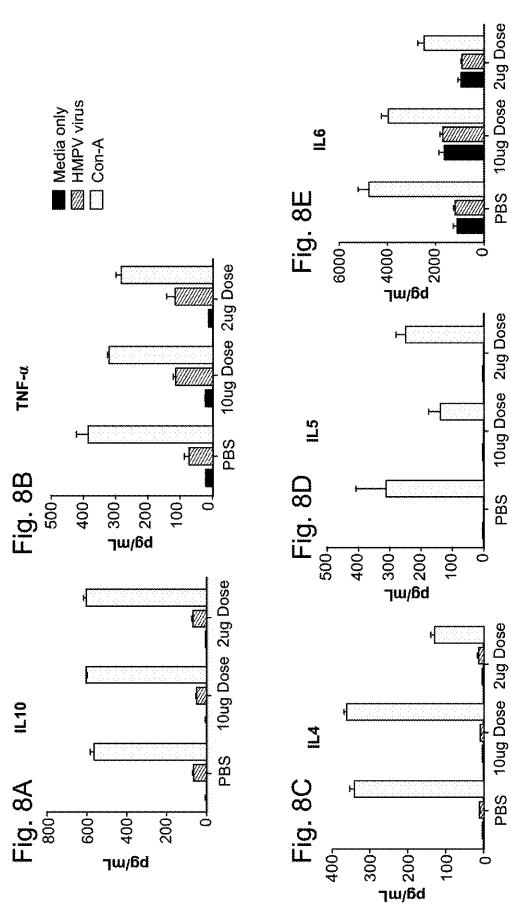

Yamamoto et al., Current prospects for mRNA gene delivery, European Journal of Pharmaceutics and Biopharmaceutics 71 (2009) 484-489.

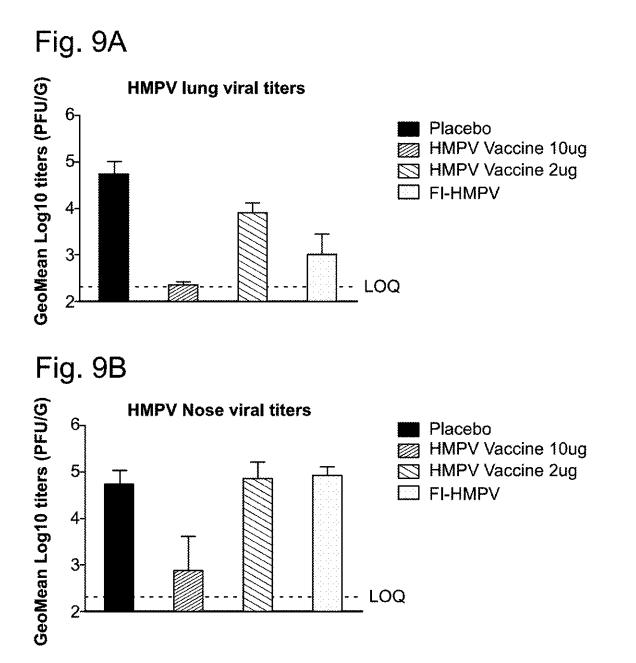

Zhou, W.Z. et al., RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum Gene Ther. Nov. 1, 1999;10(16):2719-24.

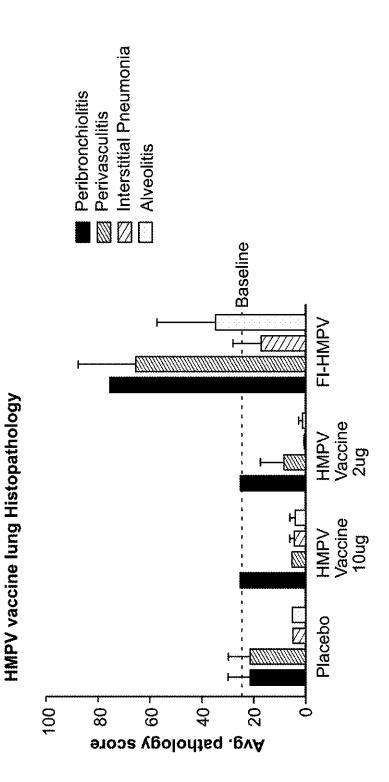


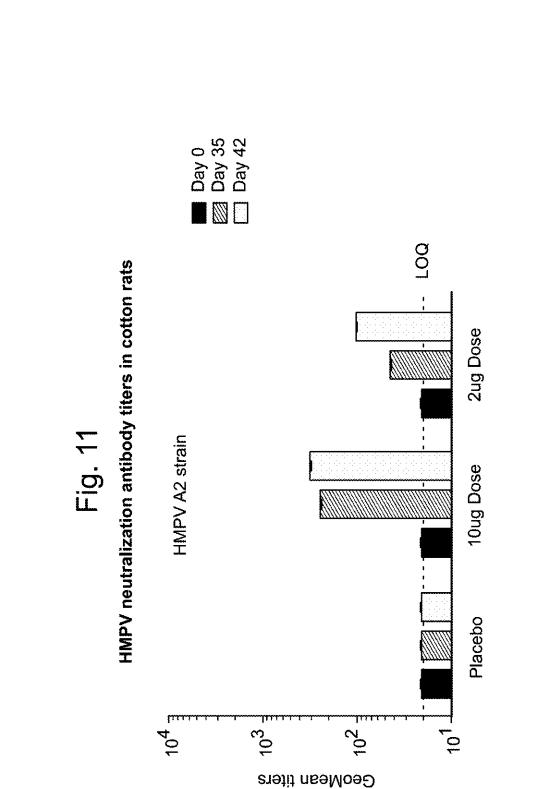

Dilution Factor

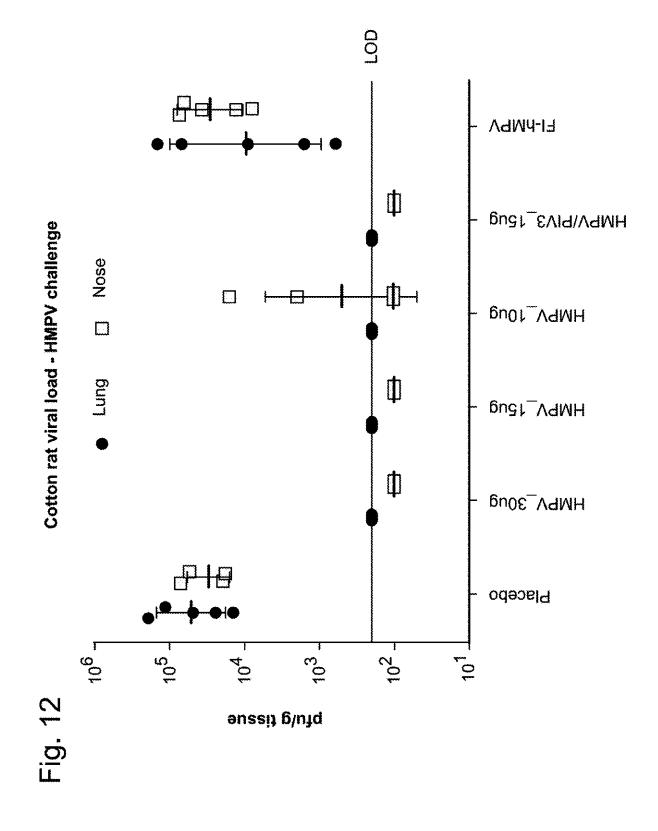


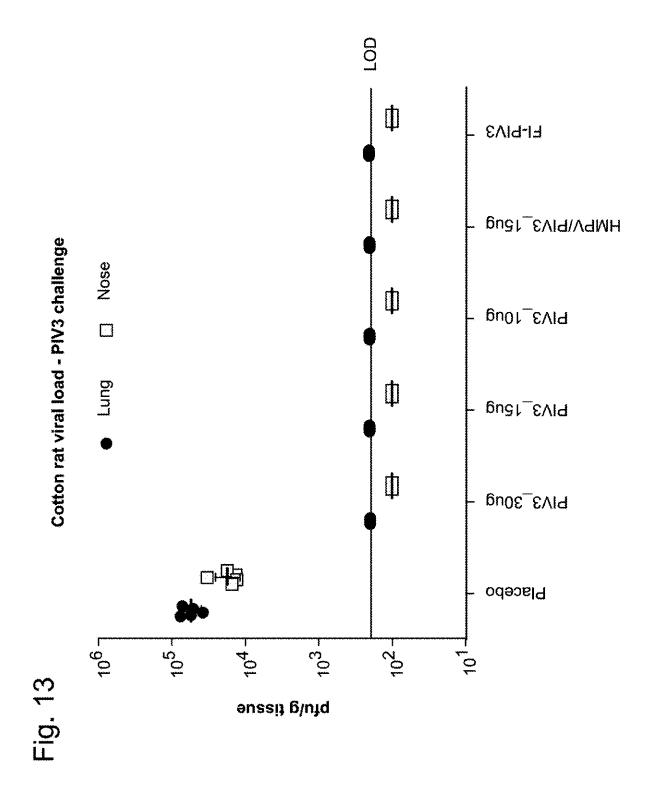


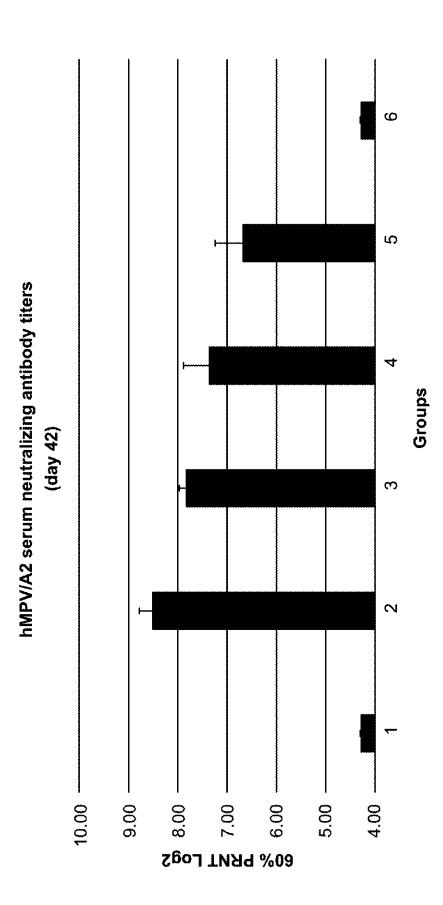


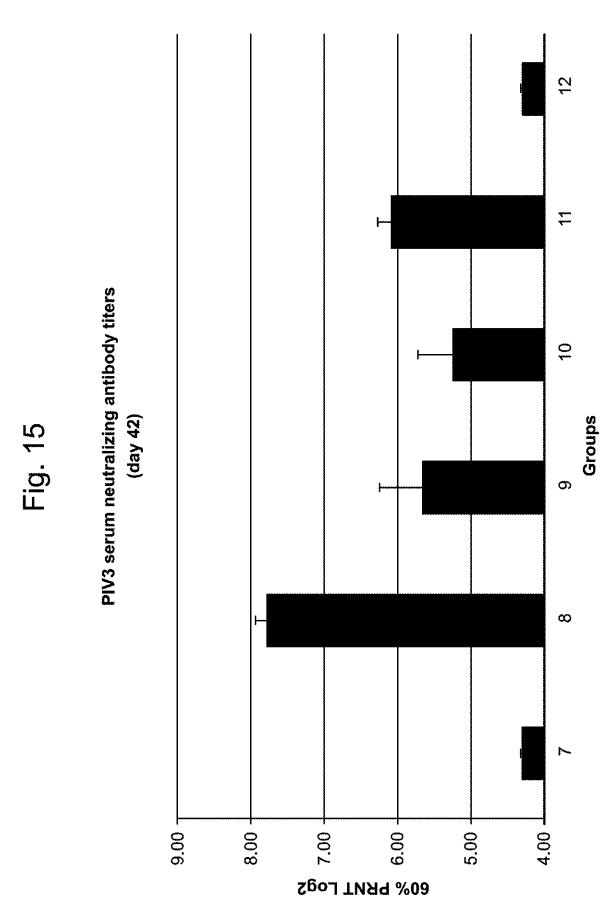


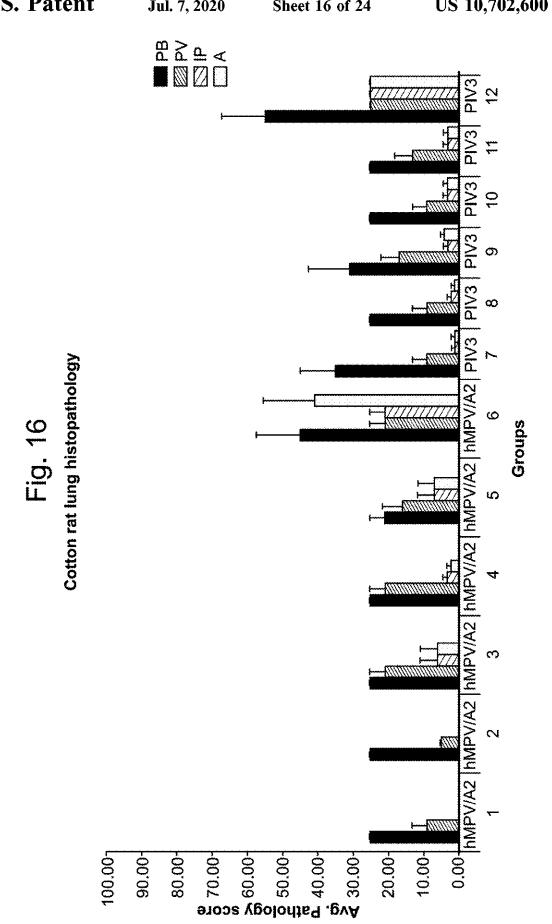


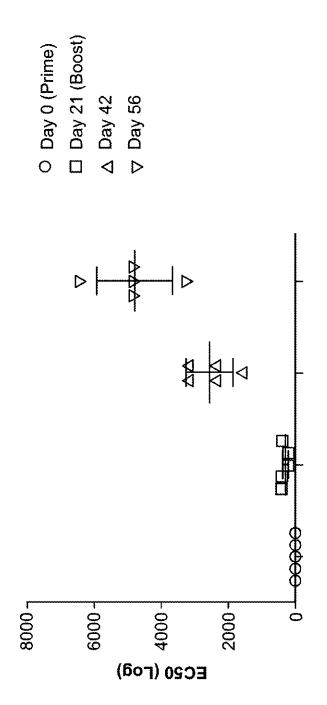


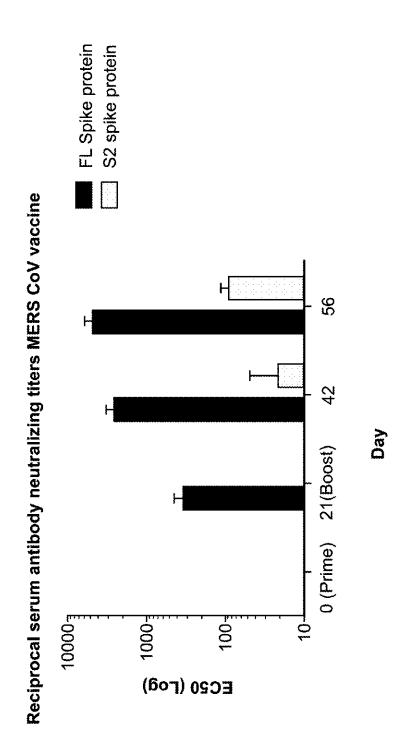









U.S. Patent



Reciprocal serum antibody neutralizing titers MERS CoV FL vaccine

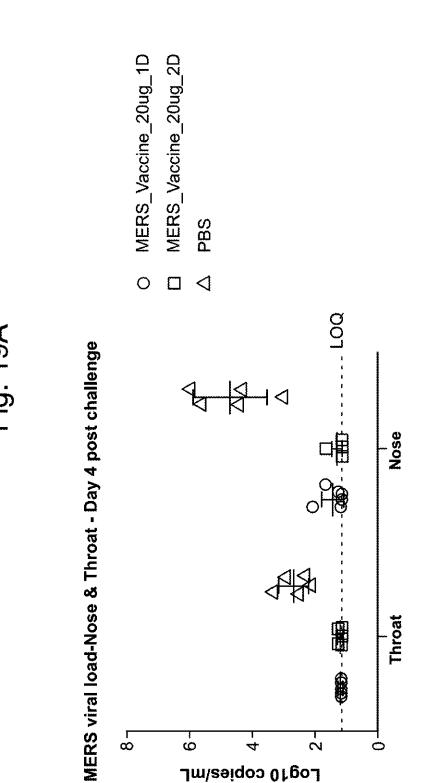
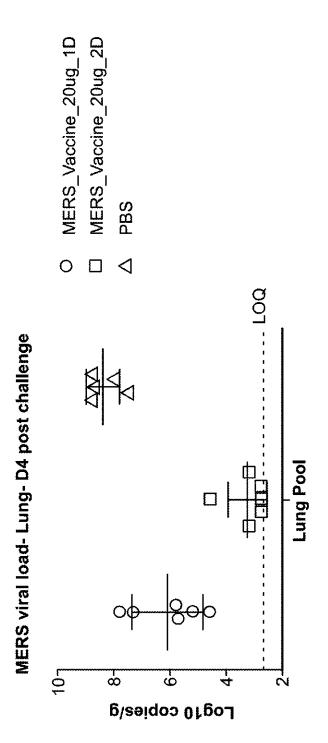
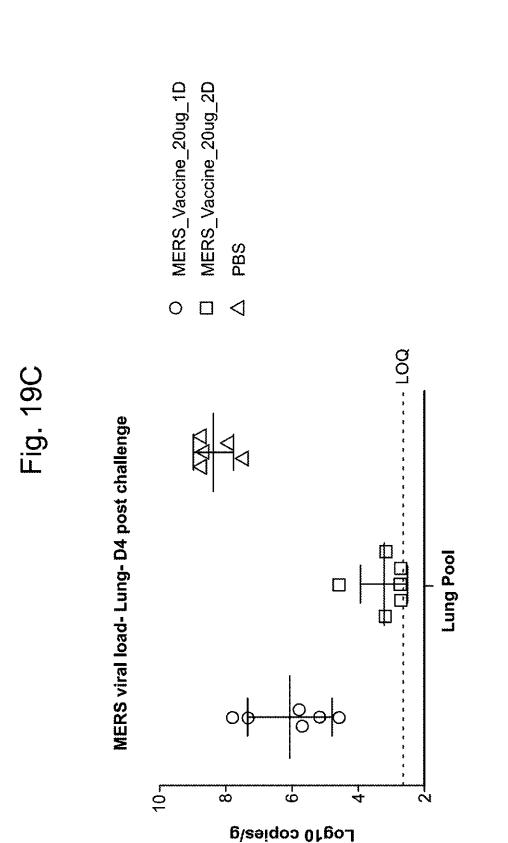
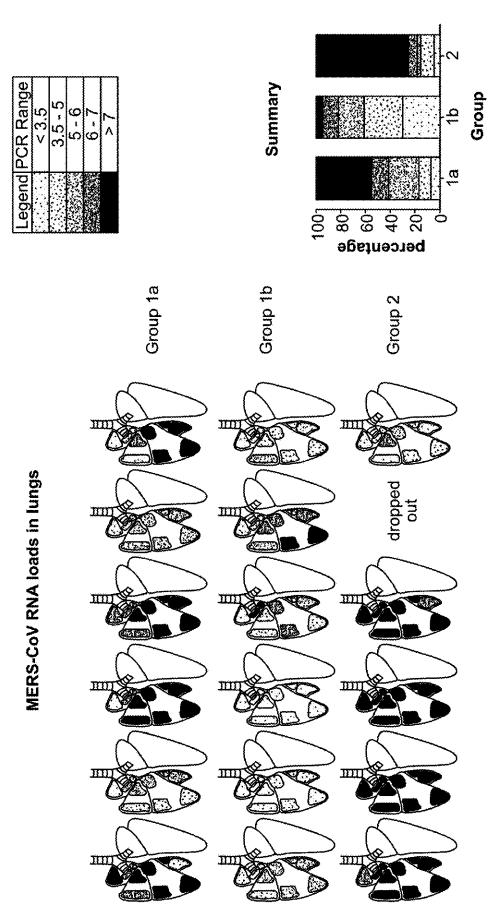
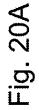
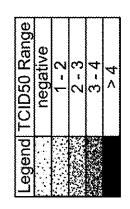
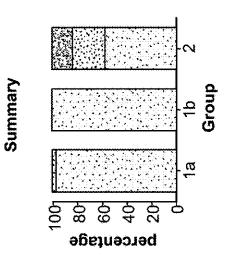


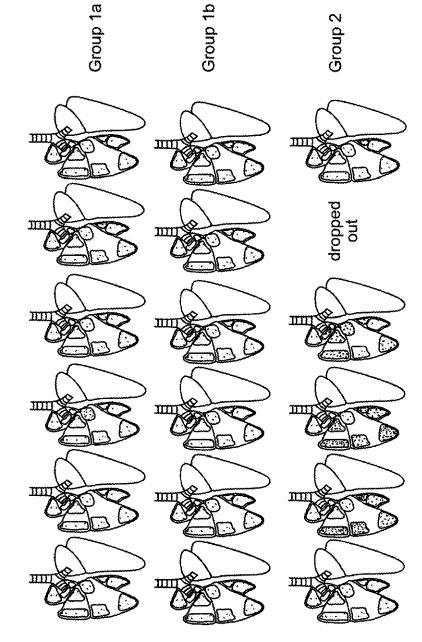
Fig. 19A

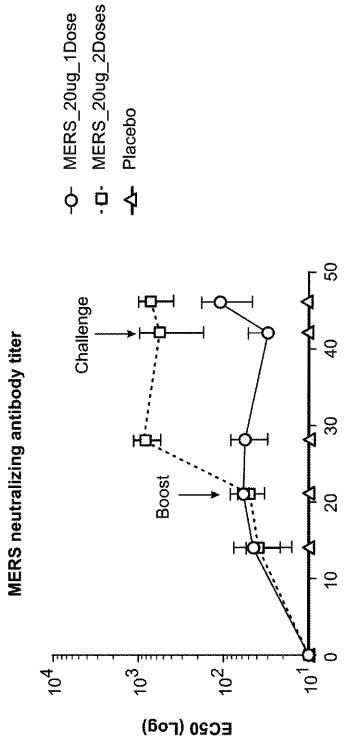






Fig. 19B



U.S. Patent





MERS-CoV replication in lungs

pre

25

BETACORONAVIRUS MRNA VACCINE

RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. 5 No. 16/368,270, filed Mar. 28, 2019, which is a continuation of Ser. No. 16/040,981, filed Jul. 20, 2018, now U.S. Pat. No. 10,272,150, which is a continuation of U.S. application Ser. No. 15/674,599, filed Aug. 11, 2017, now U.S. Pat. No. 10,064,934, which is a continuation of International appli-10 cation number PCT/US2016/058327, filed Oct. 21, 2016, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application No. 62/244,802, filed Oct. 22, 2015, U.S. provisional application No. 62/247,297, filed Oct. 28, 2015, U.S. provisional application No. 62/244,946, filed 15 Oct. 22, 2015, U.S. provisional application No. 62/247,362, filed Oct. 28, 2015, U.S. provisional application No. 62/244, 813, filed Oct. 22, 2015, U.S. provisional application No. 62/247,394, filed Oct. 28, 2015, U.S. provisional application No. 62/244,837, filed Oct. 22, 2015, U.S. provisional appli- 20 cation No. 62/247,483, filed Oct. 28, 2015, and U.S. provisional application No. 62/245,031, filed Oct. 22, 2015, each of which is incorporated by reference herein in its entirety.

BACKGROUND

Respiratory disease is a medical term that encompasses pathological conditions affecting the organs and tissues that make gas exchange possible in higher organisms, and includes conditions of the upper respiratory tract, trachea, 30 bronchi, bronchioles, alveoli, pleura and pleural cavity, and the nerves and muscles of breathing. Respiratory diseases range from mild and self-limiting, such as the common cold, to life-threatening entities like bacterial pneumonia, pulmonary embolism, acute asthma and lung cancer. Respiratory 35 disease is a common and significant cause of illness and death around the world. In the US, approximately 1 billion "common colds" occur each year. Respiratory conditions are among the most frequent reasons for hospital stays among children. 40

The human metapneumovirus (hMPV) is a negativesense, single-stranded RNA virus of the genus Pneumovirinae and of the family Paramyxoviridae and is closely related to the avian metapneumovirus (AMPV) subgroup C. It was isolated for the first time in 2001 in the Netherlands by using 45 the RAP-PCR (RNA arbitrarily primed PCR) technique for identification of unknown viruses growing in cultured cells. hPMV is second only to RSV as an important cause of viral lower respiratory tract illness (LRI) in young children. The seasonal epidemiology of hMPV appears to be similar to that 50 of RSV, but the incidence of infection and illness appears to be substantially lower.

Parainfluenza virus type 3 (PIV3), like hMPV, is also a negative-sense, single-stranded sense RNA virus of the genus Pneumovirinae and of the family Paramyxoviridae 55 and is a major cause of ubiquitous acute respiratory infections of infancy and early childhood. Its incidence peaks around 4-12 months of age, and the virus is responsible for 3-10% of hospitalizations, mainly for bronchiolitis and pneumonia. PIV3 can be fatal, and in some instances is 60 associated with neurologic diseases, such as febrile seizures. It can also result in airway remodeling, a significant cause of morbidity. In developing regions of the world, infants and young children are at the highest risk of mortality, either from primary PIV3 viral infection or a secondary conse-65 quences, such as bacterial infections. Human parainfluenza viruses (hPIV) types 1, 2 and 3 (hPIV1, hPIV2 and hPIV3,

respectively), also like hMPV, are second only to RSV as important causes of viral LRI in young children.

RSV, too, is a negative-sense, single-stranded RNA virus of the genus Pneumovirinae and of the family Paramyxoviridae. Symptoms in adults typically resemble a sinus infection or the common cold, although the infection may be asymptomatic. In older adults (e.g., >60 years), RSV infection may progress to bronchiolitis or pneumonia. Symptoms in children are often more severe, including bronchiolitis and pneumonia. It is estimated that in the United States, most children are infected with RSV by the age of three. The RSV virion consists of an internal nucleocapsid comprised of the viral RNA bound to nucleoprotein (N), phosphoprotein (P), and large polymerase protein (L). The nucleocapsid is surrounded by matrix protein (M) and is encapsulated by a lipid bilayer into which the viral fusion (F) and attachment (G) proteins as well as the small hydrophobic protein (SH) are incorporated. The viral genome also encodes two nonstructural proteins (NS1 and NS2), which inhibit type I interferon activity as well as the M-2 protein.

The continuing health problems associated with hMPV, PIV3 and RSV are of concern internationally, reinforcing the importance of developing effective and safe vaccine candidates against these virus.

Despite decades of research, no vaccines currently exist (Sato and Wright, *Pediatr: Infect. Dis. J.* 2008; 27(10 Suppl): S123-5). Recombinant technology, however, has been used to target the formation of vaccines for hPIV-1, 2 and 3 serotypes, for example, and has taken the form of several live-attenuated intranasal vaccines. Two vaccines in particular were found to be immunogenic and well tolerated against hPIV-3 in phase I trials. hPIV1 and hPIV2 vaccine candidates remain less advanced (Durbin and Karron, Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2003; 37(12):1668-77).

Measles virus (MeV), like hMPV, PIV3 and RSV, is a negative-sense, single-stranded RNA virus that is the cause of measles, an infection of the respiratory system. MeV is of the genus Morbillivirus within the family Paramyxoviridae. Humans are the natural hosts of the virus; no animal reservoirs are known to exist. Symptoms of measles include fever, cough, runny nose, red eyes and a generalized, maculopapular, erythematous rash. The virus is highly contagious and is spread by coughing

In additional to hMPV, PIV, RSV and MeV, betacoronaviruses are known to cause respiratory illnesses. Betacoronaviruses (BetaCoVs) are one of four genera of coronaviruses of the subfamily Coronavirinae in the family Coronaviridae, of the order Nidovirales. They are enveloped, positive-sense, single-stranded RNA viruses of zoonotic origin. The coronavirus genera are each composed of varying viral lineages, with the betacoronavirus genus containing four such lineages. The BetaCoVs of the greatest clinical importance concerning humans are OC43 and HKU1 of the A lineage, SARS-CoV of the B lineage, and MERS-CoV of the C lineage. MERS-CoV is the first betacoronavirus belonging to lineage C that is known to infect humans.

The Middle East respiratory syndrome coronavirus (MERS-CoV), or EMC/2012 (HCoV-EMC/2012), initially referred to as novel coronavirus 2012 or simply novel coronavirus, was first reported in 2012 after genome sequencing of a virus isolated from sputum samples from a person who fell ill during a 2012 outbreak of a new flu. As of July 2015, MERS-CoV cases have been reported in over 21 countries. The outbreaks of MERS-CoV have raised

10

serious concerns world-wide, reinforcing the importance of developing effective and safe vaccine candidates against MERS-CoV.

Severe acute respiratory syndrome (SARS) emerged in China in 2002 and spread to other countries before brought ⁵ under control. Because of a concern for reemergence or a deliberate release of the SARS coronavirus, vaccine development was initiated.

Deoxyribonucleic acid (DNA) vaccination is one technique used to stimulate humoral and cellular immune responses to foreign antigens, such as hMPV antigens and/or PIV antigens and/or RSV antigens. The direct injection of genetically engineered DNA (e.g., naked plasmid DNA) into a living host results in a small number of its cells directly producing an antigen, resulting in a protective immunological response. With this technique, however, comes potential problems, including the possibility of insertional mutagenesis, which could lead to the activation of oncogenes or the inhibition of tumor suppressor genes.

SUMMARY

Provided herein are ribonucleic acid (RNA) vaccines that build on the knowledge that RNA (e.g., messenger RNA 25 (mRNA)) can safely direct the body's cellular machinery to produce nearly any protein of interest, from native proteins to antibodies and other entirely novel protein constructs that can have therapeutic activity inside and outside of cells. The RNA (e.g., mRNA) vaccines of the present disclosure may 30 be used to induce a balanced immune response against hMPV, PIV, RSV, MeV, and/or BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1), or any combination of two or more of the foregoing viruses, comprising 35 both cellular and humoral immunity, without risking the possibility of insertional mutagenesis, for example, hMPV, PIV, RSV, MeV, BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1) and combinations thereof are 40 referred to herein as "respiratory viruses." Thus, the term "respiratory virus RNA vaccines" encompasses hMPV RNA vaccines, PIV RNA vaccines, RSV RNA vaccines, MeV RNA vaccines, BetaCoV RNA vaccines, and any combination of two or more of hMPV RNA vaccines, PIV RNA 45 vaccines, RSV RNA vaccines, MeV RNA vaccines, and BetaCoV RNA vaccines.

The RNA (e.g., mRNA) vaccines may be utilized in various settings depending on the prevalence of the infection or the degree or level of unmet medical need. The RNA (e.g. 50 mRNA) vaccines may be utilized to treat and/or prevent a hMPV, PIV, RSV, MeV, a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1), or any combination of two or more of the foregoing viruses, of various geno- 55 types, strains, and isolates. The RNA (e.g., mRNA) vaccines have superior properties in that they produce much larger antibody titers and produce responses earlier than commercially available anti-viral therapeutic treatments. While not wishing to be bound by theory, it is believed that the RNA 60 (e.g., mRNA) vaccines, as mRNA polynucleotides, are better designed to produce the appropriate protein conformation upon translation as the RNA (e.g., mRNA) vaccines co-opt natural cellular machinery. Unlike traditional vaccines, which are manufactured ex vivo and may trigger 65 unwanted cellular responses, RNA (e.g., mRNA) vaccines are presented to the cellular system in a more native fashion.

In some aspects the invention is a respiratory virus vaccine, comprising at least one RNA polynucleotide having an open reading frame encoding at least one respiratory virus antigenic polypeptide, formulated in a cationic lipid nanoparticle.

Surprisingly, in some aspects, it has also been shown that efficacy of mRNA vaccines can be significantly enhanced when combined with a flagellin adjuvant, in particular, when one or more antigen-encoding mRNAs is combined with an mRNA encoding flagellin.

RNA (e.g., mRNA) vaccines combined with the flagellin adjuvant (e.g., mRNA-encoded flagellin adjuvant) have superior properties in that they may produce much larger antibody titers and produce responses earlier than commer-15 cially available vaccine formulations. While not wishing to be bound by theory, it is believed that the RNA (e.g., mRNA) vaccines, for example, as mRNA polynucleotides, are better designed to produce the appropriate protein conformation upon translation, for both the antigen and the adjuvant, as the RNA (e.g., mRNA) vaccines co-opt natural cellular machinery. Unlike traditional vaccines, which are manufactured ex vivo and may trigger unwanted cellular responses, RNA (e.g., mRNA) vaccines are presented to the cellular system in a more native fashion.

Some embodiments of the present disclosure provide RNA (e.g., mRNA) vaccines that include at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one antigenic polypeptide or an immunogenic fragment thereof (e.g., an immunogenic fragment capable of inducing an immune response to the antigenic polypeptide) and at least one RNA (e.g., mRNA polynucleotide) having an open reading frame encoding a flagellin adjuvant.

In some embodiments, at least one flagellin polypeptide (e.g., encoded flagellin polypeptide) is a flagellin protein. In some embodiments, at least one flagellin polypeptide (e.g., encoded flagellin polypeptide) is an immunogenic flagellin fragment. In some embodiments, at least one flagellin polypeptide and at least one antigenic polypeptide are encoded by a single RNA (e.g., mRNA) polynucleotide. In other embodiments, at least one flagellin polypeptide and at least one antigenic polypeptide are each encoded by a different RNA polynucleotide.

In some embodiments at least one flagellin polypeptide has at least 80%, at least 85%, at least 90%, or at least 95% identity to a flagellin polypeptide having a sequence identified by any one of SEQ ID NO: 54-56.

Provided herein, in some embodiments, is a ribonucleic acid (RNA) (e.g., mRNA) vaccine, comprising at least one (e.g., at least 2, 3, 4 or 5) RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one (e.g., at least 2, 3, 4 or 5) hMPV, PIV, RSV, MeV, or a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1) antigenic polypeptide, or any combination of two or more of the foregoing antigenic polypeptides. Herein, use of the term "antigenic polypeptide" encompasses immunogenic fragments of the antigenic polypeptide (an immunogenic fragment that is induces (or is capable of inducing) an immune response to hMPV, PIV, RSV, MeV, or a BetaCoV), unless otherwise stated.

Also provided herein, in some embodiments, is a RNA (e.g., mRNA) vaccine comprising at least one (e.g., at least 2, 3, 4 or 5) RNA polynucleotide having an open reading frame encoding at least one (e.g., at least 2, 3, 4 or 5) hMPV, PIV, RSV, MeV, and/or a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63,

HCoV-NL, HCoV-NH, HCoV-HKU1) antigenic polypeptide or an immunogenic fragment thereof, linked to a signal peptide.

Further provided herein, in some embodiments, is a nucleic acid (e.g., DNA) encoding at least one (e.g., at least 5 2, 3, 4 or 5) hMPV, PIV, RSV, MeV, and/or a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1) RNA (e.g., mRNA) polynucleotide.

Further still, provided herein, in some embodiments, is a 10 method of inducing an immune response in a subject, the method comprising administering to the subject a vaccine comprising at least one (e.g., at least 2, 3, 4 or 5) RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one (e.g., at least 2, 3, 4 or 5) hMPV, PIV, 15 RSV, MeV, and/or a BetaCoV (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1) antigenic polypeptide, or any combination of two or more of the foregoing antigenic polypeptides. 20

hMPV/PIV3/RSV

In some embodiments, a RNA (e.g., mRNA) vaccine comprises at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV, PIV3 or RSV antigenic polypeptide. In some embodiments, 25 at least one antigenic polypeptide is a hMPV, PIV3 or RSV polyprotein. In some embodiments, at least one antigenic polypeptide is major surface glycoprotein G or an immunogenic fragment thereof. In some embodiments, at least one antigenic polypeptide is Fusion (F) glycoprotein (e.g., 30 Fusion glycoprotein F0, F1 or F2) or an immunogenic fragment thereof. In some embodiments, at least one antigenic polypeptide is major surface glycoprotein G or an immunogenic fragment thereof and F glycoprotein or an immunogenic fragment thereof. In some embodiments, the 35 antigenic polypeptide is nucleoprotein (N) or an immunogenic fragment thereof, phosphoprotein (P) or an immunogenic fragment thereof, large polymerase protein (L) or an immunogenic fragment thereof, matrix protein (M) or an immunogenic fragment thereof, small hydrophobic protein 40 (SH) or an immunogenic fragment thereof nonstructural protein1 (NS1) or an immunogenic fragment thereof, or nonstructural protein 2 (NS2) and an immunogenic fragment thereof.

In some embodiments, at least one hMPV antigenic 45 polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 (Table 3; see also amino acid sequences of Table 4). In some embodiments, the amino acid sequence of the hMPV antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% 50 (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 5-8 (Table 3; see also amino acid sequences of Table 4).

In some embodiments, at least one hMPV antigenic polypeptide is encoded by a nucleic acid sequence identified by any one of SEQ ID NO: 1-4 (Table 2). In some embodiments, at least one MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 4.4 (Table 2).

In some embodiments, at least one hMPV RNA (e.g., mRNA) polynucleotide is encoded by a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 1-4 (Table 2). In some embodi-60 ments, at least one hMPV RNA (e.g., mRNA) polynucle-otide comprises a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 57-60 (Table 2).

In some embodiments, at least one antigenic polypeptide 65 is obtained from hMPV strain CAN98-75 (CAN75) or the hMPV strain CAN97-83 (CAN83).

In some embodiments, at least one PIV3 antigenic polypeptide comprises hemagglutinin-neuraminidase, Fusion (F) glycoprotein, matrix protein (M), nucleocapsid protein (N), viral replicase (L), non-structural V protein, or an immunogenic fragment thereof.

In some embodiments, at least one PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 (Table 6; see also amino acid sequences of Table 7). In some embodiments, the amino acid sequence of the PIV3 antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 12-13 (Table 6; see also amino acid sequences of Table 7).

In some embodiments, at least one PIV3 antigenic polypeptide is encoded by a nucleic acid sequence identified by any one of SEQ ID NO: 9-12 (Table 5; see also nucleic acid sequences of Table 7).

In some embodiments, at least one PIV3 RNA (e.g., 20 mRNA) polynucleotide is encoded by a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 9-12 (Table 5; see also nucleic acid sequences of Table 7). In some embodiments, at least one PIV3 RNA (e.g., mRNA) polynucleotide comprises a 25 nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 61-64 (Table 5).

In some embodiments, at least one antigenic polypeptide is obtained from PIV3 strain HPIV3/Homo sapiens/PER/ FLA4815/2008.

In some embodiments, at least one RSV antigenic polypeptide comprises at least one antigenic polypeptide that comprises glycoprotein G, glycoprotein F, or an immunogenic fragment thereof. In some embodiments, at least one RSV antigenic polypeptide comprises at least one antigenic polypeptide that comprises glycoprotein F and at least one or at least two antigenic polypeptide selected from G, M, N, P, L, SH, M2, NS1 and NS2.

In some embodiments, a RNA (e.g., mRNA) vaccine comprises at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one MeV antigenic polypeptide. In some embodiments, at least one antigenic polypeptide is a hemagglutinin (HA) protein or an immunogenic fragment thereof. The HA protein may be from MeV strain D3 or B8, for example. In some embodiments, at least one antigenic polypeptide is a Fusion (F) protein or an immunogenic fragment thereof. The F protein may be from MeV strain D3 or B8, for example. In some embodiments, a MeV RNA (e.g., mRNA) vaccines comprises a least one RNA polynucleotide encoding a HA protein and a F protein. The HA and F proteins may be from MeV strain D3 or B8, for example.

In some embodiments, at least one MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 (Table 14). In some embodiments, the amino acid sequence of the MeV antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 47-50 (Table 14).

In some embodiments, at least one MeV antigenic polypeptide is encoded by a nucleic acid sequence of SEQ ID NO: 35-46 (Table 13).

In some embodiments, at least one MeV RNA (e.g., mRNA) polynucleotide is encoded by a nucleic acid sequence, or a fragment of a nucleotide sequence, identified

10

by any one of SEQ ID NO: 35-46 (Table 13). In some embodiments, at least one MeV RNA (e.g., mRNA) polynucleotide comprises a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 69-80 (Table 13).

In some embodiments, at least one antigenic polypeptide is obtained from MeV strain B3/B3.1, C2, D4, D6, D7, D8, G3, H1, Moraten, Rubeovax, MVi/New Jersey.USA/45.05, MVi/Texas.USA/4.07, AIK-C, MVi/New York.USA/26.09/ 3, MVi/California.USA/16.03, MVi/Virginia.USA/15.09, MVi/California.USA/8.04, or MVi/Pennsylvania.USA/ 20.09.

BetaCoV

In some embodiments, a RNA (e.g., mRNA) vaccine comprises at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one Beta-CoV antigenic polypeptide. In some embodiments, the Beta-CoV is MERS-CoV. In some embodiments, the BetaCoV is SARS-CoV. In some embodiments, the BetaCoV is HCoV- 20 OC43. In some embodiments, the BetaCoV is HCoV-229E. In some embodiments, the BetaCoV is HCoV-NL63. In some embodiments, the BetaCoV is HCoV-HKU1. In some embodiments, at least one antigenic polypeptide is a betacoronavirus structural protein. For example, a betacorona- 25 virus structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, a betacoronavirus structural protein is a spike protein (S). In some embodiments, a betacoronavirus structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof.

BetaCoV RNA (e.g., mRNA) polynucleotides of the vaccines provided herein may encode viral protein components 35 of betacoronaviruses, for example, accessory proteins, replicase proteins and the like are encompassed by the present disclosure. RNA (e.g., mRNA) vaccines may include RNA polynucleotides encoding at least one accessory protein (e.g., protein 3, protein 4a, protein 4b, protein 5), at least one 40 is a SARS-CoV structural protein. For example, a SARSreplicase protein (e.g., protein 1a, protein 1b), or a combination of at least one accessory protein and at least one replicase protein. The present disclosure also encompasses RNA (e.g., mRNA) vaccines comprising RNA (e.g., mRNA) polynucleotides encoding an accessory protein and/or a 45 replicase protein in combination with at least one structural protein. Due to their surface expression properties, vaccines featuring RNA polynucleotides encoding structural proteins are believed to have preferred immunogenic activity and, hence, may be most suitable for use in the vaccines of the 50 present disclosure.

Some embodiments of the present disclosure provide betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1 or a combination thereof) vaccines that 55 include at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH, HCoV-HKU1) antigenic polypeptide. Also provided herein are 60 pan-betacoronavirus vaccines. Thus, a betacoronavirus vaccine comprising a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding any one, two, three or four of MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1, for example, may be effec- 65 tive against any one of, any combination of, or all of, MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E,

HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1. Other betacoronaviruses are encompassed by the present disclosure.

In some embodiments, at least one antigenic polypeptide is a MERS-CoV structural protein. For example, a MERS-CoV structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, the MERS-CoV structural protein is a spike protein (S) (see, e.g., Coleman C M et al. Vaccine 2014; 32:3169-74, incorporated herein by reference). In some embodiments, the MERS-CoV structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof (Li J et al. Viral Immunol 2013; 26(2):126-32; He Y et al. Biochem Biophys Res Commun 2004; 324(2):773-81, each of which is incorporated herein by reference).

In some embodiments, at least one MERS-CoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-28 or 33 (Table 11). In some embodiments, the amino acid sequence of the MERS-CoV antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 24-28 or 33 (Table 11).

In some embodiments, at least one MERS-CoV antigenic polypeptide is encoded by a nucleic acid sequence identified by any one of SEQ ID NO: 20-23 (Table 10).

In some embodiments, at least one MERS-CoV RNA (e.g., mRNA) polynucleotide is encoded by a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 20-23 (Table 10). In some embodiments, at least one MERS-CoV RNA (e.g., mRNA) polynucleotide comprises a nucleic acid sequence, or a fragment of a nucleotide sequence, identified by any one of SEQ ID NO: 65-68 (Table 10).

In some embodiments, at least one antigenic polypeptide is obtained from MERS-CoV strain Rivadh 14 2013, 2cEMC/2012, or Hasa_1_2013.

In some embodiments, at least one antigenic polypeptide CoV structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, the SARS-CoV structural protein is a spike protein (S). In some embodiments, the SARS-CoV structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof.

In some embodiments, at least one SARS-CoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 29, 32 or 34 (Table 11). In some embodiments, the amino acid sequence of the SARS-CoV antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 29, 32 or 34 (Table 11).

In some embodiments, at least one antigenic polypeptide is a HCoV-OC43 structural protein. For example, a HCoV-OC43 structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodiments, the HCoV-OC43 structural protein is a spike protein (S). In some embodiments, the HCoV-OC43 structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof.

In some embodiments, at least one HCoV-OC43 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 30 (Table 11). In some embodiments, the amino acid sequence of the HCoV-OC43 antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 30 (Table 11).

In some embodiments, an antigenic polypeptide is a HCoV-HKU1 structural protein. For example, a HCoV-HKU1 structural protein may be spike protein (S), envelope protein (E), nucleocapsid protein (N), membrane protein (M) or an immunogenic fragment thereof. In some embodi-10 ments, the HCoV-HKU1 structural protein is a spike protein (S). In some embodiments, the HCoV-HKU1 structural protein is a S1 subunit or a S2 subunit of spike protein (S) or an immunogenic fragment thereof.

In some embodiments, at least one HCoV-HKU1 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 31 (Table 11). In some embodiments, the amino acid sequence of the HCoV-HKU1 antigenic polypeptide is, or is a fragment of, or is a homolog or variant having at least 80% (e.g., 85%, 90%, 95%, 98%, 20 99%) identity to, the amino acid sequence identified by any one of SEQ ID NO: 31 (Table 11).

In some embodiments, an open reading frame of a RNA (e.g., mRNA) vaccine is codon-optimized. In some embodiments, at least one RNA polynucleotide encodes at least one 25 antigenic polypeptide having an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and is codon optimized mRNA.

In some embodiments, a RNA (e.g., mRNA) vaccine 30 further comprising an adjuvant.

Tables 4, 7, 12 and 15 provide National Center for Biotechnology Information (NCBI) accession numbers of interest. It should be understood that the phrase "an amino acid sequence of Tables 4, 7, 12 and 15" refers to an amino 35 acid sequence identified by one or more NCBI accession numbers listed in Tables 4, 7, 12 and 15. Each of the amino acid sequences, and variants having greater than 95% identity or greater than 98% identity to each of the amino acid sequences encompassed by the accession numbers of Tables 40 4, 7, 12 and 15 are included within the constructs (polynucleotides/polypeptides) of the present disclosure.

In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 45 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than 80% identity to wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 50 35-46 (Tables 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than 75%, 85% or 95% identity to a wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence identified by any one of 55SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than 50-80%, 60-80%, 40-80%, 30-80%, 70-80%, 75-80% or 78-80% identity to wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is 60 encoded by a nucleic acid having a sequence identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than 40-85%, 50-85%, 60-85%, 30-85%, 70-85%, 75-85% or 80-85% identity to wild-type mRNA 65 sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence

identified by any one of SEQ ID NO: 1-4, 9-12, 20-23, or 35-46 (Tables 2, 5, 10 and 13; see also nucleic acid sequences of Table 7) and having less than 40-90%, 50-90%, 60-90%, 30-90%, 70-90%, 75-90%, 80-90%, or 85-90% identity to wild-type mRNA sequence.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and having at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) identity to wild-type mRNA sequence, but does not include wild-type mRNA sequence.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and has less than 95%, 90%, 85%, 80% or 75% identity to wild-type mRNA sequence.

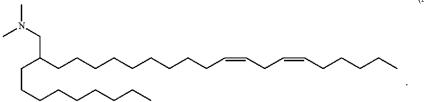
In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and has 30-80%, 40-80%, 50-80%, 60-80%, 70-80%, 75-80% or 78-80%, 30-85%, 40-85%, 50-805%, 60-85%, 70-85%, 75-85% or 78-85%, 30-90%, 40-90%, 50-90%, 60-90%, 70-90%, 75-90%, 80-90% or 85-90% identity to wild-type mRNA sequence.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15). In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having 95%-99% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15).

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide having 95%-99% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, or 47-50 (Tables 3, 6, 11 and 14; see also amino acid sequences of Tables 4, 7, 12 and 15) and having membrane fusion activity.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) that attaches to cell receptors.

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) that causes fusion of viral and cellular membranes.

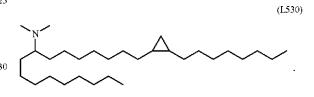

In some embodiments, at least one RNA polynucleotide encodes at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic

12

a cationic lipid is selected from the group consisting of 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), (12Z,15Z)—N,N-dimethyl-2-nonylhenicosa-12,15-dien-1amine (L608), and N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl]heptadecan-8-amine (L530).

In some embodiments, the lipid is (L608). In some embodiments, the lipid is

(L608)


polypeptide, at least one RSV antigenic polypeptide, at least ²⁵ one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) ³⁰ that is responsible for binding of the virus to a cell being infected.

Some embodiments of the present disclosure provide a vaccine that includes at least one ribonucleic acid (RNA) (e.g., mRNA) polynucleotide having an open reading frame 35 encoding at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, 40 SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides), at least one 5' terminal cap and at least one chemical modification, formulated within a lipid nanoparticle.

In some embodiments, a 5' terminal cap is 7mG(5')ppp (5')NlmpNp.

In some embodiments, at least one chemical modification is selected from pseudouridine, N1-methylpseudouridine, 2-thiouridine, N1-ethylpseudouridine, 4'-thiouridine, 50 5-methylcytosine, 5-methyluridine, 2-thio-1-methyl-1deaza-pseudouridine, 2-thio-1-methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thiodihydrouridine, 2-thio-pseudouridine, 4-methoxy-2-thiopseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl- 55 pseudouridine, 4-thio-pseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine and 2'-O-methyl uridine. In some embodiments, the chemical modification is in the 5-position of the uracil. In some embodiments, the chemical modification is a N1-methylpseudouridine. In 60 some embodiments, the chemical modification is a N1-ethylpseudouridine.

In some embodiments, a lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a noncationic lipid. In some embodiments, a cationic lipid is an 65 ionizable cationic lipid and the non-cationic lipid is a neutral lipid, and the sterol is a cholesterol. In some embodiments,

In some embodiments, a lipid nanoparticle comprises compounds of Formula (I) and/or Formula (II), discussed below.

In some embodiments, a repiratory virus RNA (e.g., mRNA) vaccine is formulated in a lipid nanoparticle that comprises a compound selected from Compounds 3, 18, 20, 25, 26, 29, 30, 60, 108-112 and 122, described below.

Some embodiments of the present disclosure provide a vaccine that includes at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides), wherein at least 80% (e.g., 85%, 90%, 95%, 98%, 99%) of the uracil in the open reading frame have a chemical modification, optionally wherein the vaccine is formulated in a lipid nanoparticle (e.g., a lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid).

In some embodiments, 100% of the uracil in the open reading frame have a chemical modification. In some embodiments, a chemical modification is in the 5-position of the uracil. In some embodiments, a chemical modification is a N1-methyl pseudouridine. In some embodiments, 100% of the uracil in the open reading frame have a N1-methyl pseudouridine in the 5-position of the uracil.

In some embodiments, an open reading frame of a RNA (e.g., mRNA) polynucleotide encodes at least two antigenic polypeptides (e.g., at least two hMPV antigenic polypeptides, at least two PIV3 antigenic polypeptides, at least two

RSV antigenic polypeptides, at least two MeV antigenic polypeptides, or at least two BetaCoV antigenic polypeptides, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the 5 foregoing antigenic polypeptides). In some embodiments, the open reading frame encodes at least five or at least ten antigenic polypeptides. In some embodiments, the open reading frame encodes at least 100 antigenic polypeptides. In some embodiments, the open reading frame encodes 10 2-100 antigenic polypeptides.

In some embodiments, a vaccine comprises at least two RNA (e.g., mRNA) polynucleotides, each having an open reading frame encoding at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one 15 PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or 20 any combination of two or more of the foregoing antigenic polypeptides). In some embodiments, the vaccine comprises at least five or at least ten RNA (e.g., mRNA) polynucleotides, each having an open reading frame encoding at least one antigenic polypeptide or an immunogenic fragment 25 thereof. In some embodiments, the vaccine comprises at least 100 RNA (e.g., mRNA) polynucleotides, each having an open reading frame encoding at least one antigenic polypeptide. In some embodiments, the vaccine comprises 2-100 RNA (e.g., mRNA) polynucleotides, each having an 30 open reading frame encoding at least one antigenic polypeptide.

In some embodiments, at least one antigenic polypeptide (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic 35 methods of inducing an antigen specific immune response in polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic 40 polypeptides) is fused to a signal peptide. In some embodiments, the signal peptide is selected from: a HulgGk signal peptide (METPAQLLFLLLWLPDTTG; SEQ ID NO: 15); IgE heavy chain epsilon-1 signal peptide (MDWTWIL-FLVAAATRVHS; SEQ ID NO: 16); Japanese encephalitis 45 PRM signal sequence (MLGSNSGQRVVFTILLLLVA-PAYS; SEQ ID NO: 17), VSVg protein signal sequence (MKCLLYLAFLFIGVNCA; SEQ ID NO: 18) and Japanese encephalitis JEV signal sequence (MWLVSLAIVTA-CAGA; SEQ ID NO: 19). 50

In some embodiments, the signal peptide is fused to the N-terminus of at least one antigenic polypeptide. In some embodiments, a signal peptide is fused to the C-terminus of at least one antigenic polypeptide.

In some embodiments, at least one antigenic polypeptide 55 (e.g., at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, or at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, 60 HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides) comprises a mutated N-linked glycosylation site.

Also provided herein is a RNA (e.g., mRNA) vaccine of 65 any one of the foregoing paragraphs (e.g., a hMPV vaccine, a PIV3 vaccine, a RSV vaccine, a MeV vaccine, or a

BetaCoV vaccine, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing vaccines), formulated in a nanoparticle (e.g., a lipid nanoparticle).

In some embodiments, the nanoparticle has a mean diameter of 50-200 nm. In some embodiments, the nanoparticle is a lipid nanoparticle. In some embodiments, the lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid. In some embodiments, the lipid nanoparticle comprises a molar ratio of about 20-60% cationic lipid, 0.5-15% PEG-modified lipid, 25-55% sterol, and 25% non-cationic lipid. In some embodiments, the cationic lipid is an ionizable cationic lipid and the non-cationic lipid is a neutral lipid, and the sterol is a cholesterol. In some embodiments, the cationic lipid is selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319).

In some embodiments, a lipid nanoparticle comprises compounds of Formula (I) and/or Formula (II), as discussed below.

In some embodiments, a lipid nanoparticle comprises Compounds 3, 18, 20, 25, 26, 29, 30, 60, 108-112, or 122, as discussed below.

In some embodiments, the nanoparticle has a polydispersity value of less than 0.4 (e.g., less than 0.3, 0.2 or 0.1).

In some embodiments, the nanoparticle has a net neutral charge at a neutral pH value.

In some embodiments, the respiratory virus vaccine is multivalent.

Some embodiments of the present disclosure provide a subject, comprising administering to the subject any of the RNA (e.g., mRNA) vaccine as provided herein in an amount effective to produce an antigen-specific immune response. In some embodiments, the RNA (e.g., mRNA) vaccine is a hMPV vaccine, a PIV3 vaccine, a RSV vaccine, a MeV vaccine, or a BetaCoV vaccine, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1 vaccines. In some embodiments, the RNA (e.g., mRNA) vaccine is a combination vaccine comprising a combination of any two or more of the foregoing vaccines.

In some embodiments, an antigen-specific immune response comprises a T cell response or a B cell response.

In some embodiments, a method of producing an antigenspecific immune response comprises administering to a subject a single dose (no booster dose) of a RNA (e.g., mRNA) vaccine of the present disclosure. In some embodiments, the RNA (e.g., mRNA) vaccine is a hMPV vaccine, a PIV3 vaccine, a RSV vaccine, a MeV vaccine, or a BetaCoV vaccine, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1 vaccines. In some embodiments, the RNA (e.g., mRNA) vaccine is a combination vaccine comprising a combination of any two or more of the foregoing vaccines.

In some embodiments, a method further comprises administering to the subject a second (booster) dose of a RNA (e.g., mRNA) vaccine. Additional doses of a RNA (e.g., mRNA) vaccine may be administered.

In some embodiments, the subjects exhibit a seroconversion rate of at least 80% (e.g., at least 85%, at least 90%, or at least 95%) following the first dose or the second (booster)

dose of the vaccine. Seroconversion is the time period during which a specific antibody develops and becomes detectable in the blood. After seroconversion has occurred, a virus can be detected in blood tests for the antibody. During an infection or immunization, antigens enter the 5 blood, and the immune system begins to produce antibodies in response. Before seroconversion, the antigen itself may or may not be detectable, but antibodies are considered absent. During seroconversion, antibodies are present but not yet detectable. Any time after seroconversion, the antibodies can 10 be detected in the blood, indicating a prior or current infection.

In some embodiments, a RNA (e.g., mRNA) vaccine is administered to a subject by intradermal or intramuscular injection.

Some embodiments, of the present disclosure provide methods of inducing an antigen specific immune response in a subject, including administering to a subject a RNA (e.g., mRNA) vaccine in an effective amount to produce an antigen specific immune response in a subject. Antigen- 20 PIV3, RSV, MeV and/or BetaCoV vaccine, or a hMPV, specific immune responses in a subject may be determined, in some embodiments, by assaying for antibody titer (for titer of an antibody that binds to a hMPV, PIV3, RSV, MeV and/or BetaCoV antigenic polypeptide) following administration to the subject of any of the RNA (e.g., mRNA) 25 vaccines of the present disclosure. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased by at least 1 log relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased by 1-3 log relative 30 to a control.

In some embodiments, the anti-antigenic polypeptide antibody titer produced in a subject is increased at least 2 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the 35 subject is increased at least 5 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased at least 10 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is 40 increased 2-10 times relative to a control.

In some embodiments, the control is an anti-antigenic polypeptide antibody titer produced in a subject who has not been administered a RNA (e.g., mRNA) vaccine of the present disclosure. In some embodiments, the control is an 45 anti-antigenic polypeptide antibody titer produced in a subject who has been administered a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine (see, e.g., Ren J. et al. J of Gen. Virol. 2015; 96: 1515-1520), or wherein the control is an anti-antigenic polypeptide 50 antibody titer produced in a subject who has been administered a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. In some embodiments, the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a hMPV, 55 PIV3, RSV, MeV and/or BetaCoV virus-like particle (VLP) vaccine (see, e.g., Cox R G et al., J Virol. 2014 June; 88(11): 6368-6379).

A RNA (e.g., mRNA) vaccine of the present disclosure is administered to a subject in an effective amount (an amount 60 effective to induce an immune response). In some embodiments, the effective amount is a dose equivalent to an at least 2-fold, at least 4-fold, at least 10-fold, at least 100-fold, at least 1000-fold reduction in the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV 65 protein vaccine, wherein the anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an

anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, a purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, a live attenuated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine, an inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine, or a hMPV, PIV3, RSV, MeV and/or BetaCoV VLP vaccine. In some embodiments, the effective amount is a dose equivalent to 2-1000-fold reduction in the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, wherein the anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, a purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, a live attenuated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine, an inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV VLP vaccine.

In some embodiments, the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a virus-like particle (VLP) vaccine comprising structural proteins of hMPV, PIV3, RSV, MeV and/or BetaCoV.

In some embodiments, the RNA (e.g., mRNA) vaccine is formulated in an effective amount to produce an antigen specific immune response in a subject.

In some embodiments, the effective amount is a total dose of 25 µg to 1000 µg, or 50 µg to 1000 µg. In some embodiments, the effective amount is a total dose of $100 \,\mu g$. In some embodiments, the effective amount is a dose of 25 µg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 100 µg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 400 µg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 500 µg administered to the subject a total of two times.

In some embodiments, the efficacy (or effectiveness) of a RNA (e.g., mRNA) vaccine is greater than 60%. In some embodiments, the RNA (e.g., mRNA) polynucleotide of the vaccine at least one hMPV antigenic polypeptide, at least one PIV3 antigenic polypeptide, at least one RSV antigenic polypeptide, at least one MeV antigenic polypeptide, at least one BetaCoV antigenic polypeptide, e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1, or any combination of two or more of the foregoing antigenic polypeptides.

Vaccine efficacy may be assessed using standard analyses (see, e.g., Weinberg et al., J Infect Dis. 2010 Jun. 1; 201(11):1607-10). For example, vaccine efficacy may be measured by double-blind, randomized, clinical controlled trials. Vaccine efficacy may be expressed as a proportionate reduction in disease attack rate (AR) between the unvaccinated (ARU) and vaccinated (ARV) study cohorts and can be calculated from the relative risk (RR) of disease among the vaccinated group with use of the following formulas:

Likewise, vaccine effectiveness may be assessed using standard analyses (see, e.g., Weinberg et al., J Infect Dis. 2010 Jun. 1; 201(11):1607-10). Vaccine effectiveness is an

Efficacy=(ARU-ARV)/ARU×100; and

Efficacy=(1-RR)×100.

assessment of how a vaccine (which may have already proven to have high vaccine efficacy) reduces disease in a population. This measure can assess the net balance of benefits and adverse effects of a vaccination program, not just the vaccine itself, under natural field conditions rather than in a controlled clinical trial. Vaccine effectiveness is proportional to vaccine efficacy (potency) but is also affected by how well target groups in the population are immunized, as well as by other non-vaccine-related factors that influence the 'real-world' outcomes of hospitalizations, ambulatory visits, or costs. For example, a retrospective case control analysis may be used, in which the rates of vaccination among a set of infected cases and appropriate controls are compared. Vaccine effectiveness may be expressed as a 15 rate difference, with use of the odds ratio (OR) for developing infection despite vaccination:

Effectiveness=(1-OR)×100.

In some embodiments, the efficacy (or effectiveness) of a 20 RNA (e.g., mRNA) vaccine is at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, or at least 90%.

In some embodiments, the vaccine immunizes the subject against hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses for up to 2 years. In some embodiments, the vaccine immunizes the subject against hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses for more than 2 years, more than 3 years, more than 4 years, or for 5-10 years. 35

In some embodiments, the subject is about 5 years old or younger. For example, the subject may be between the ages of about 1 year and about 5 years (e.g., about 1, 2, 3, 5 or 5 years), or between the ages of about 6 months and about 1 year (e.g., about 6, 7, 8, 9, 10, 11 or 12 months). In some 40 embodiments, the subject is about 12 months or younger (e.g., 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 months or 1 month). In some embodiments, the subject is about 6 months or younger.

In some embodiments, the subject was born full term 45 (e.g., about 37-42 weeks). In some embodiments, the subject was born prematurely, for example, at about 36 weeks of gestation or earlier (e.g., about 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26 or 25 weeks). For example, the subject may have been born at about 32 weeks of gestation or earlier. In some 50 embodiments, the subject was born prematurely between about 32 weeks and about 36 weeks of gestation. In such subjects, a RNA (e.g., mRNA) vaccine may be administered later in life, for example, at the age of about 6 months to about 5 years, or older. 55

In some embodiments, the subject is pregnant (e.g., in the first, second or third trimester) when administered an RNA (e.g., mRNA) vaccine. Viruses such as hMPV, PIV3 and RSV causes infections of the lower respiratory tract, mainly in infants and young children. One-third of RSV related 60 deaths, for example, occur in the first year of life, with 99 percent of these deaths occurring in low-resource countries. It's so widespread in the United States that nearly all children become infected with the virus before their second birthdays. Thus, the present disclosure provides RNA (e.g., 65 mRNA) vaccines for maternal immunization to improve mother-to-child transmission of protection against the virus.

In some embodiments, the subject is a young adult between the ages of about 20 years and about 50 years (e.g., about 20, 25, 30, 35, 40, 45 or 50 years old).

In some embodiments, the subject is an elderly subject about 60 years old, about 70 years old, or older (e.g., about 60, 65, 70, 75, 80, 85 or 90 years old).

In some embodiments, the subject is has a chronic pulmonary disease (e.g., chronic obstructive pulmonary disease (COPD) or asthma). Two forms of COPD include chronic bronchitis, which involves a long-term cough with mucus, and emphysema, which involves damage to the lungs over time. Thus, a subject administered a RNA (e.g., mRNA) vaccine may have chronic bronchitis or emphysema.

In some embodiments, the subject has been exposed to hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses; the subject is infected with hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses; or subject is at risk of infection by hMPV, PIV3, RSV, MeV, BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-NL63, HCoV-NL, HCoV-NL63, HCoV-229E, HCoV-NL63, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1), or any combination of two or more of the foregoing viruses.

In some embodiments, the subject is immunocompromised (has an impaired immune system, e.g., has an immune disorder or autoimmune disorder).

In some embodiments the nucleic acid vaccines described herein are chemically modified. In other embodiments the nucleic acid vaccines are unmodified.

Yet other aspects provide compositions for and methods of vaccinating a subject comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a first respiratory virus antigenic polypeptide, wherein the RNA polynucleotide does not include a stabilization ele-40 ment, and wherein an adjuvant is not coformulated or co-administered with the vaccine.

In other aspects the invention is a composition for or method of vaccinating a subject comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a first antigenic polypeptide wherein a dosage of between 10 µg/kg and 400 µg/kg of the nucleic acid vaccine is administered to the subject. In some embodiments the dosage of the RNA polynucleotide is 1-5 µg, 5-10 µg, 10-15 $\mu g,\,15\text{-}20\,\mu g,\,10\text{-}25\,\mu g,\,20\text{-}25\,\mu g,\,20\text{-}50\,\mu g,\,30\text{-}50\,\mu g,\,40\text{-}50$ $\mu g,\,40\text{-}60~\mu g,\,60\text{-}80~\mu g,\,60\text{-}100~\mu g,\,50\text{-}100~\mu g,\,80\text{-}120~\mu g,$ 40-120 µg, 40-150 µg, 50-150 µg, 50-200 µg, 80-200 µg, 100-200 µg, 120-250 µg, 150-250 µg, 180-280 µg, 200-300 μg, 50-300 μg, 80-300 μg, 100-300 μg, 40-300 μg, 50-350 55 µg, 100-350 µg, 200-350 µg, 300-350 µg, 320-400 µg, 40-380 µg, 40-100 µg, 100-400 µg, 200-400 µg, or 300-400 µg per dose. In some embodiments, the nucleic acid vaccine is administered to the subject by intradermal or intramuscular injection. In some embodiments, the nucleic acid vaccine is administered to the subject on day zero. In some embodiments, a second dose of the nucleic acid vaccine is administered to the subject on day twenty one.

In some embodiments, a dosage of 25 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage of 100 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some

embodiments, a dosage of 50 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage of 75 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some 5 embodiments, a dosage of 150 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, a dosage of 400 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some 10 embodiments, a dosage of 200 micrograms of the RNA polynucleotide is included in the nucleic acid vaccine administered to the subject. In some embodiments, the RNA polynucleotide accumulates at a 100 fold higher level in the local lymph node in comparison with the distal lymph node. 15 In other embodiments the nucleic acid vaccine is chemically modified and in other embodiments the nucleic acid vaccine is not chemically modified.

Aspects of the invention provide a nucleic acid vaccine comprising one or more RNA polynucleotides having an 20 open reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide does not include a stabilization element, and a pharmaceutically acceptable carrier or excipient, wherein an adjuvant is not included in the vaccine. In some embodiments, the stabilization element is 25 a histone stem-loop. In some embodiments, the stabilization element is a nucleic acid sequence having increased GC content relative to wild type sequence.

Aspects of the invention provide nucleic acid vaccines comprising one or more RNA polynucleotides having an 30 open reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide is present in the formulation for in vivo administration to a host, which confers an antibody titer superior to the criterion for seroprotection for the first antigen for an acceptable percentage of human 35 subjects. In some embodiments, the antibody titer produced by the mRNA vaccines of the invention is a neutralizing antibody titer. In some embodiments the neutralizing antibody titer is greater than a protein vaccine. In other embodiments the neutralizing antibody titer produced by the mRNA 40 vaccines of the invention is greater than an adjuvanted protein vaccine. In yet other embodiments the neutralizing antibody titer produced by the mRNA vaccines of the invention is 1,000-10,000, 1,200-10,000, 1,400-10,000, 1,500-10,000, 1,000-5,000, 1,000-4,000, 1,800-10,000, 45 2000-10,000, 2,000-5,000, 2,000-3,000, 2,000-4,000, 3,000-5.000, 3.000-4.000, or 2.000-2.500. A neutralization titer is typically expressed as the highest serum dilution required to achieve a 50% reduction in the number of plaques.

Also provided are nucleic acid vaccines comprising one 50 or more RNA polynucleotides having an open reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide is present in a formulation for in vivo administration to a host for eliciting a longer lasting high antibody titer than an antibody titer elicited by an mRNA vaccine 55 having a stabilizing element or formulated with an adjuvant and encoding the first antigenic polypeptide. In some embodiments, the RNA polynucleotide is formulated to produce a neutralizing antibodies within one week of a single administration. In some embodiments, the adjuvant is 60 selected from a cationic peptide and an immunostimulatory nucleic acid. In some embodiments, the cationic peptide is protamine.

Aspects provide nucleic acid vaccines comprising one or more RNA polynucleotides having an open reading frame 65 comprising at least one chemical modification or optionally no nucleotide modification, the open reading frame encod-

ing a first antigenic polypeptide, wherein the RNA polynucleotide is present in the formulation for in vivo administration to a host such that the level of antigen expression in the host significantly exceeds a level of antigen expression produced by an mRNA vaccine having a stabilizing element or formulated with an adjuvant and encoding the first antigenic polypeptide.

Other aspects provide nucleic acid vaccines comprising one or more RNA polynucleotides having an open reading frame comprising at least one chemical modification or optionally no nucleotide modification, the open reading frame encoding a first antigenic polypeptide, wherein the vaccine has at least 10 fold less RNA polynucleotide than is required for an unmodified mRNA vaccine to produce an equivalent antibody titer. In some embodiments, the RNA polynucleotide is present in a dosage of 25-100 micrograms.

Aspects of the invention also provide a unit of use vaccine, comprising between 10 ug and 400 ug of one or more RNA polynucleotides having an open reading frame comprising at least one chemical modification or optionally no nucleotide modification, the open reading frame encoding a first antigenic polypeptide, and a pharmaceutically acceptable carrier or excipient, formulated for delivery to a human subject. In some embodiments, the vaccine further comprises a cationic lipid nanoparticle.

Aspects of the invention provide methods of creating, maintaining or restoring antigenic memory to a respiratory virus strain in an individual or population of individuals comprising administering to said individual or population an antigenic memory booster nucleic acid vaccine comprising (a) at least one RNA polynucleotide, said polynucleotide comprising at least one chemical modification or optionally no nucleotide modification and two or more codon-optimized open reading frames, said open reading frames encoding a set of reference antigenic polypeptides, and (b) optionally a pharmaceutically acceptable carrier or excipient. In some embodiments, the vaccine is administered to the individual via a route selected from the group consisting of intramuscular administration, intradermal administration and subcutaneous administration. In some embodiments, the administering step comprises contacting a muscle tissue of the subject with a device suitable for injection of the composition. In some embodiments, the administering step comprises contacting a muscle tissue of the subject with a device suitable for injection of the composition in combination with electroporation.

Aspects of the invention provide methods of vaccinating a subject comprising administering to the subject a single dosage of between 25 ug/kg and 400 ug/kg of a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a first antigenic polypeptide in an effective amount to vaccinate the subject.

Other aspects provide nucleic acid vaccines comprising one or more RNA polynucleotides having an open reading frame comprising at least one chemical modification, the open reading frame encoding a first antigenic polypeptide, wherein the vaccine has at least 10 fold less RNA polynucleotide than is required for an unmodified mRNA vaccine to produce an equivalent antibody titer. In some embodiments, the RNA polynucleotide is present in a dosage of 25-100 micrograms.

Other aspects provide nucleic acid vaccines comprising an LNP formulated RNA polynucleotide having an open reading frame comprising no nucleotide modifications (unmodified), the open reading frame encoding a first antigenic polypeptide, wherein the vaccine has at least 10 fold less RNA polynucleotide than is required for an unmodified

35

mRNA vaccine not formulated in a LNP to produce an equivalent antibody titer. In some embodiments, the RNA polynucleotide is present in a dosage of 25-100 micrograms.

The data presented in the Examples demonstrate significant enhanced immune responses using the formulations of 5 the invention. Both chemically modified and unmodified RNA vaccines are useful according to the invention. Surprisingly, in contrast to prior art reports that it was preferable to use chemically unmodified mRNA formulated in a carrier for the production of vaccines, it is described herein that 10 chemically modified mRNA-LNP vaccines required a much lower effective mRNA dose than unmodified mRNA, i.e., tenfold less than unmodified mRNA when formulated in carriers other than LNP. Both the chemically modified and unmodified RNA vaccines of the invention produce better 15 immune responses than mRNA vaccines formulated in a different lipid carrier.

In other aspects the invention encompasses a method of treating an elderly subject age 60 years or older comprising administering to the subject a nucleic acid vaccine compris- 20 ing one or more RNA polynucleotides having an open reading frame encoding a respiratory virus antigenic polypeptide in an effective amount to vaccinate the subject.

In other aspects the invention encompasses a method of treating a young subject age 17 years or younger comprising 25 administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a respiratory virus antigenic polypeptide in an effective amount to vaccinate the subject.

In other aspects the invention encompasses a method of 30 treating an adult subject comprising administering to the subject a nucleic acid vaccine comprising one or more RNA polynucleotides having an open reading frame encoding a respiratory virus antigenic polypeptide in an effective amount to vaccinate the subject.

In some aspects the invention is a method of vaccinating a subject with a combination vaccine including at least two nucleic acid sequences encoding respiratory antigens wherein the dosage for the vaccine is a combined therapeutic dosage wherein the dosage of each individual nucleic acid 40 encoding an antigen is a sub therapeutic dosage. In some embodiments, the combined dosage is 25 micrograms of the RNA polynucleotide in the nucleic acid vaccine administered to the subject. In some embodiments, the combined dosage is 100 micrograms of the RNA polynucleotide in the 45 nucleic acid vaccine administered to the subject. In some embodiments the combined dosage is 50 micrograms of the RNA polynucleotide in the nucleic acid vaccine administered to the subject. In some embodiments, the combined dosage is 75 micrograms of the RNA polynucleotide in the 50 nucleic acid vaccine administered to the subject. In some embodiments, the combined dosage is 150 micrograms of the RNA polynucleotide in the nucleic acid vaccine administered to the subject. In some embodiments, the combined dosage is 400 micrograms of the RNA polynucleotide in the 55 nucleic acid vaccine administered to the subject. In some embodiments, the sub therapeutic dosage of each individual nucleic acid encoding an antigen is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 micrograms. In other embodiments the nucleic acid vaccine is chemically 60 modified and in other embodiments the nucleic acid vaccine is not chemically modified.

The RNA polynucleotide is one of SEQ ID NO: 1-4, 9-12, 20-23, 35-46, 57-61, and 64-80 and includes at least one chemical modification. In other embodiments the RNA 65 polynucleotide is one of SEQ ID NO: 1-4, 9-12, 20-23, 35-46, 57-61, and 64-80 and does not include any nucleotide

modifications, or is unmodified. In yet other embodiments the at least one RNA polynucleotide encodes an antigenic protein of any of SEQ ID NO: 5-8, 12-13, 24-34, and 47-50 and includes at least one chemical modification. In other embodiments the RNA polynucleotide encodes an antigenic protein of any of SEQ ID NO: 5-8, 12-13, 24-34, and 47-50 and does not include any nucleotide modifications, or is unmodified.

In preferred aspects, vaccines of the invention (e.g., LNP-encapsulated mRNA vaccines) produce prophylactically- and/or therapeutically-efficacious levels, concentrations and/or titers of antigen-specific antibodies in the blood or serum of a vaccinated subject. As defined herein, the term antibody titer refers to the amount of antigen-specific antibody produces in s subject, e.g., a human subject. In exemplary embodiments, antibody titer is expressed as the inverse of the greatest dilution (in a serial dilution) that still gives a positive result. In exemplary embodiments, antibody titer is determined or measured by enzyme-linked immunosorbent assay (ELISA). In exemplary embodiments, antibody titer is determined or measured by neutralization assay, e.g., by microneutralization assay. In certain aspects, antibody titer measurement is expressed as a ratio, such as 1:40, 1:100, etc. In exemplary embodiments of the invention, an efficacious vaccine produces an antibody titer of greater than 1:40, greater that 1:100, greater than 1:400, greater than 1:1000, greater than 1:2000, greater than 1:3000, greater than 1:4000, greater than 1:500, greater than 1:6000, greater than 1:7500, greater than 1:10000. In exemplary embodiments, the antibody titer is produced or reached by 10 days following vaccination, by 20 days following vaccination, by 30 days following vaccination, by 40 days following vaccination, or by 50 or more days following vaccination. In exemplary embodiments, the titer is produced or reached following a single dose of vaccine administered to the subject. In other embodiments, the titer is produced or reached following multiple doses, e.g., following a first and a second dose (e.g., a booster dose.) In exemplary aspects of the invention, antigen-specific antibodies are measured in units of µg/ml or are measured in units of IU/L (International Units per liter) or mIU/ml (milli International Units per ml). In exemplary embodiments of the invention, an efficacious vaccine produces >0.5 µg/ml, >0.1 µg/ml, >0.2 µg/ml, >0.35 $\mu g/ml$, >0.5 $\mu g/ml$, >1 $\mu g/ml$, >2 $\mu g/ml$, >5 $\mu g/ml$ or >10 µg/ml. In exemplary embodiments of the invention, an efficacious vaccine produces >10 mIU/ml, >20 mIU/ml, >50 mIU/ml, >100 mIU/ml, >200 mIU/ml, >500 mIU/ml or >1000 mIU/ml. In exemplary embodiments, the antibody level or concentration is produced or reached by 10 days following vaccination, by 20 days following vaccination, by 30 days following vaccination, by 40 days following vaccination, or by 50 or more days following vaccination. In exemplary embodiments, the level or concentration is produced or reached following a single dose of vaccine administered to the subject. In other embodiments, the level or concentration is produced or reached following multiple doses, e.g., following a first and a second dose (e.g., a booster dose.) In exemplary embodiments, antibody level or concentration is determined or measured by enzyme-linked immunosorbent assay (ELISA). In exemplary embodiments, antibody level or concentration is determined or measured by neutralization assay, e.g., by microneutralization assay.

The details of various embodiments of the disclosure are set forth in the description below. Other features, objects, 15

and advantages of the disclosure will be apparent from the description and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages will be apparent from the following description of particular embodiments of the disclosure, as illustrated in the accompanying drawings in which like reference characters refer to 10the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of various embodiments of the disclosure.

FIG. 1 shows a schematic of one example of a RNA (e.g. mRNA) vaccine construct of the present disclosure. The construct depicts a human metapneumovirus and human respiratory syncytial virus full length fusion protein obtained from wild-type strains (The Journal of General Virology. 2008; 89(Pt 12):3113-3118, incorporated herein by refer- 20 ence).

FIGS. 2A-2C are graphs showing the levels of anti-hMPV fusion protein-specific antibodies in the serum of mice immunized with hMPV mRNA vaccines on day 0 (FIG. 2A), day 14 (FIG. 2B) and day 35 (FIG. 2C) post immunization. 25 The mice were immunized with a single dose $(2 \mu g \text{ or } 10 \mu g)$ on day 0 and were given a boost dose (2 µg or 10 µg) on day 21. hMPV fusion protein-specific antibodies were detected at up to 1:10000 dilution of serum on day 35 for both doses.

FIGS. 3A-3C are graphs showing the result of IgG 30 isotyping in the serum of mice immunized with hMPV mRNA vaccines. The levels of hMPV fusion protein-specific IgG2a (FIG. 3A) and IgG1 (FIG. 3B) antibodies in the serum are measured by ELISA. FIG. 3C shows that hMPV fusion protein mRNA vaccine induced a mixed Th1/Th2 cytokine 35 response with a Th1 bias.

FIG. 4 is a graph showing in vitro neutralization of a hMPV B2 strain (TN/91-316) using the sera of mice immunized with a mRNA vaccine encoding hMPV fusion protein. Mouse serum obtained from mice receiving a 10 µg or a 2 40 titers in cotton rats that received different dosages of PIV µg dose contained hMPV-neutralizing antibodies.

FIGS. 5A-5C are graphs showing a Th1 cytokine response induced by a hMPV fusion peptide pool (15-mers-50 (overlap)) in splenocytes isolated from mice immunized with the hMPV mRNA vaccines. Virus-free media was used as a 45 negative control and Concanavalin A (ConA, a positive control for splenocyte stimulation) was included. The cytokines tested included IFN-y (FIG. 5A), IL-2 (FIG. 5B) and IL12 (FIG. 5C).

FIGS. 6A-6E are graphs showing the Th2 cytokine 50 response induced by a hMPV fusion peptide pool (15-mers-50) in splenocytes isolated from mice immunized with the hMPV mRNA vaccines. Virus-free media was used as a negative control and Concanavalin A was also included. The cytokines tested included IL-10 (FIG. 6A), TNF-a (FIG. 55 immunization. 6B), IL4 (FIG. 6C), IL-5 (FIG. 6D) and IL-6 (FIG. 6E).

FIGS. 7A-7C are graphs showing the Th1 response induced by inactivated hMPV virus in splenocytes isolated from mice immunized with hMPV mRNA vaccines. Virusfree media was used as a negative control and Concanavalin 60 A was included. The cytokines tested included IFN-y (FIG. 7A), IL-2 (FIG. 7B) and IL12 (FIG. 7C).

FIGS. 8A-8E are graphs showing the Th2 response induced by inactivated hMPV virus in splenocytes isolated from mice immunized with the hMPV mRNA vaccines. 65 Virus-free media was used as a negative control and Concanavalin A was included. The cytokines tested include

IL-10 (FIG. 8A), TNF-a (FIG. 8B), IL4 (FIG. 8C), IL-5 (FIG. 8D) and IL-6 (FIG. 8E).

FIGS. 9A-9B are graphs showing the results of cotton rat challenge experiments. Two different doses of the hMPV mRNA vaccines were used (2 µg or 10 µg doses) to immunize the cotton rats before challenge. The hMPV mRNA vaccines reduced the viral titer in the lung and nose of the cotton rat, with the 10 µg dose being more effective in reducing viral titer. Use of a 10 µg dose resulted in 100% protection in the lung and a ~2 log reduction in nose viral titer. Use of a 2 µg dose resulted in a 1 log reduction in lung vital titer and no reduction in nose viral titer. The vaccine was administered on Day 0, and a boost was administered on Day 21.

FIG. 10 is a graph showing the lung histopathology of cotton rats that received hMPV mRNA vaccines. Pathology associated with vaccine-enhanced disease was not observed in immunized groups.

FIG. 11 is a graph showing hMPV neutralization antibody titers in cotton rats that received hMPV mRNA vaccines (2 µg or 10 µg doses) on days 35 and 42 post immunization.

FIG. 12 is a graph showing the lung and nose viral load in cotton rats challenged with a hMPV/A2 strain after immunization with the indicated mRNA vaccines (hMPV mRNA vaccine or hMPV/PIV mRNA combination vaccine). Vaccinated cotton rats showed reduced lung and nose viral loads after challenge, compared to control.

FIG. 13 is a graph showing the lung and nose viral load in cotton rats challenged with PIV3 strain after immunization with indicated mRNA vaccines (PIV mRNA vaccine or hMPV/PIV combination vaccine). Vaccinated cotton rats showed reduced lung and nose viral loads after challenge, compared to control.

FIG. 14 is a graph showing hMPV neutralizing antibody titers in cotton rats that received different dosages of hMPV mRNA vaccines or hMPV/PIV combination mRNA vaccines on day 42 post immunization. The dosages of the vaccine are indicated in Table 9.

FIG. 15 is a graph showing PIV3 neutralizing antibody mRNA vaccines or hMPV/PIV combination mRNA vaccines on day 42 post immunization. The dosages of the vaccine are indicated in Table 9.

FIG. 16 is a graph showing the lung histopathology score of cotton rats immunized with hMPV mRNA vaccines, PIV mRNA vaccines or hMPV/PIV combination mRNA vaccines as indicated in Table 9. Low occurrence of alevolitis and interstitial pneumonia was observed, indicating no antibody-dependent enhancement (ADE) of hMPV associated diseases.

FIG. 17 is a graph showing the reciprocal MERS-CoV neutralizing antibody titers in mice immunized with betacoronavirus mRNA vaccine encoding the MERS-CoV fulllength Spike protein, on days 0, 21, 42, and 56 post

FIG. 18 is a graph showing the reciprocal MERS-CoV neutralizing antibody titers in mice immunized with betacoronavirus mRNA vaccine encoding either the MERS-CoV full-length Spike protein, or the S2 subunit of the Spike protein. The full length spike protein induced a stronger immune response compared to the S2 subunit alone.

FIGS. 19A-19C are graphs showing the viral load in the nose and throat, the bronchoalveolar lavage (BAL), or the lungs of New Zealand white rabbits 4 days post challenge with MERS-CoV. The New Zealand white rabbits were immunized with one 20 µg-dose (on day 0) or two 20 µg-doses (on day 0 and 21) of MERS-CoV mRNA vaccine encoding the full-length Spike protein before challenge. FIG. **19**A shows that two doses of MERS-CoV mRNA vaccine resulted in a 3 log reduction of viral load in the nose and led to complete protection in the throat of the New Zealand white rabbits. FIG. **19**B shows that two doses of ⁵ MERS-CoV mRNA vaccine resulted in a 4 log reduction of viral load in the BAL of the New Zealand white rabbits. FIG. **19**C show one dose of MERS-CoV mRNA vaccine resulted in a 2 log reduction of viral load, while two doses of MERS-CoV mRNA vaccine resulted in an over 4 log ¹⁰ reduction of viral load in the lungs of the New Zealand white rabbits.

FIGS. 20A-20B are images and graphs showing viral load or replicating virus detected by PCR in the lungs of New 15 Zealand white rabbits 4 days post challenge with MERS-CoV. The New Zealand white rabbits were immunized with a single 20 µg dose (on day 0, Group 1a) of MERS-CoV mRNA vaccine encoding the full-length Spike protein, two 20 µg doses (on day 0 and 21, Group 1b) of MERS-CoV 20 mRNA vaccine encoding the full-length Spike protein, or placebo (Group 2) before challenge. FIG. 20A shows that two doses of 20 µg a MERS-CoV mRNA vaccine reduced over 99% (2 log) of viruses in the lungs of New Zealand white rabbits. FIG. 20B shows that the group of New 25 Zealand white rabbits that received 2 doses of 20 µg MERS-CoV mRNA vaccine did not have any detectable replicating MERS-CoV virus in their lungs.

FIG. **21** is a graph showing the MERS-CoV neutralizing antibody titers in New Zealand white rabbits immunized ³⁰ with MERS-CoV mRNA vaccine encoding the full-length Spike protein. Immunization of the in New Zealand white rabbits were carried out as described in FIGS. **21A-21C**. The results show that two doses of 20 μ g MERS-CoV mRNA vaccine induced a significant amount of neutralizing antibodies against MERS-CoV (EC₅₀ between 500-1000). The MERS-CoV mRNA vaccine induced antibody titer is 3-5 fold better than any other vaccines tested in the same model.

DETAILED DESCRIPTION

The present disclosure provides, in some embodiments, vaccines that comprise RNA (e.g., mRNA) polynucleotides encoding a human metapneumovirus (hMPV) antigenic 45 polypeptide, a parainfluenza virus type 3 (PIV3) antigenic polypeptide, a respiratory syncytial virus (RSV) antigenic polypeptide, a measles virus (MeV) antigenic polypeptide, or a betacoronavirus antigenic polypeptide (e.g., Middle East respiratory syndrome coronavirus (MERS-CoV), 50 SARS-CoV, human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH (New Haven) and HCoV-HKU1) (see, e.g., Esper F. et al. Emerging Infectious Diseases, 12(5), 2006; and Pyrc K. et al. Journal of Virology, 81(7):3051-57, 2007, the contents of each of 55 which is here incorporated by reference in their entirety). The present disclosure also provides, in some embodiments, combination vaccines that comprise at least one RNA (e.g., mRNA) polynucleotide encoding at least two antigenic polypeptides selected from hMPV antigenic polypeptides, 60 PIV3 antigenic polypeptides, RSV antigenic polypeptides, MeV antigenic polypeptides and BetaCoV antigenic polypeptides. Also provided herein are methods of administering the RNA (e.g., mRNA) vaccines, methods of producing the RNA (e.g., mRNA) vaccines, compositions (e.g., pharma- 65 ceutical compositions) comprising the RNA (e.g., mRNA) vaccines, and nucleic acids (e.g., DNA) encoding the RNA

(e.g., mRNA) vaccines. In some embodiments, a RNA (e.g., mRNA) vaccine comprises an adjuvant, such as a flagellin adjuvant, as provided herein.

The RNA (e.g., mRNA) vaccines (e.g., hMPV, PIV3, RSV, MeV, BetaCoV RNA vaccines and combinations thereof), in some embodiments, may be used to induce a balanced immune response, comprising both cellular and humoral immunity, without many of the risks associated with DNA vaccination.

The entire contents of International Application No. PCT/ US2015/02740 is incorporated herein by reference.

Human Metapneumovirus (hMPV)

hMPV shares substantial homology with respiratory syncytial virus (RSV) in its surface glycoproteins. hMPV fusion protein (F) is related to other paramyxovirus fusion proteins and appears to have homologous regions that may have similar functions. The hMPV fusion protein amino acid sequence contains features characteristic of other paramyxovirus F proteins, including a putative cleavage site and potential N-linked glycosylation sites. Paramyxovirus fusion proteins are synthesized as inactive precursors (F0) that are cleaved by host cell proteases into the biologically fusion-active F1 and F2 domains (see, e.g., Cseke G. et al. Journal of Virology 2007; 81(2):698-707, incorporated herein by reference). hMPV has one putative cleavage site, in contrast to the two sites established for RSV F, and only shares 34% amino acid sequence identity with RSV F. F2 is extracellular and disulfide linked to F1. Fusion proteins are type I glycoproteins existing as trimers, with two 4-3 heptad repeat domains at the N- and C-terminal regions of the protein (HR1 and HR2), which form coiled-coil alphahelices. These coiled coils become apposed in an antiparallel fashion when the protein undergoes a conformational change into the fusogenic state. There is a hydrophobic fusion peptide N proximal to the N-terminal heptad repeat, which is thought to insert into the target cell membrane, while the association of the heptad repeats brings the trans-40 membrane domain into close proximity, inducing membrane fusion (see, e.g., Baker, K A et al. Mol. Cell 1999; 3:309-319). This mechanism has been proposed for a number of different viruses, including RSV, influenza virus, and human immunodeficiency virus. Fusion proteins are major antigenic determinants for all known paramyxoviruses and for other viruses that possess similar fusion proteins such as human immunodeficiency virus, influenza virus, and Ebola virus.

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV fusion protein (F). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding a F1 or F2 subunit of a hMPV F protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV glycoprotein (G). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV matrix protein (M). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV phosphoprotein (P). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV nucleoprotein (N). In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding hMPV SH protein (SH).

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein, M protein, P protein, N protein and SH protein.

In some embodiments, a hMPV vaccine of the present 5 disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and G protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and M protein. In some embodiments, a hMPV vaccine of the 10 present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and P protein.

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and N protein. In some embodiments, a 15 hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and SH protein.

In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide 20 encoding G protein and M protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and P protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) poly- 25 nucleotide encoding G protein and N protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and SH protein.

In some embodiments, a hMPV vaccine of the present 30 disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and M protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and P protein. In some embodiments, a 35 hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and P protein. In some embodiments, a 35 hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and N protein. In some embodiments, a hMPV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and SH pro- 40 tein.

A hMPV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV antigenic polypeptide identified by any one of SEQ ID NO: 5-8 (Table 3; see also 45 amino acid sequences of Table 4).

A hMPV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide encoded by a nucleic acid (e.g., DNA) identified by any one of SEQ ID NO: 1-4 (Table 2).

The present disclosure is not limited by a particular strain of hMPV. The strain of hMPV used in a vaccine may be any strain of hMPV. Non-limiting examples of strains of hMPV for use as provide herein include the CAN98-75 (CAN75) and the CAN97-83 (CAN83) hMPV strains (Skiadopoulos 55 M H et al. *J Virol.* 20014; 78(13)6927-37, incorporated herein by reference), a hMPV A1, A2, B1 or B2 strain (see, e.g., de Graaf M et al. *The Journal of General Virology* 2008; 89:975-83; Peret T C T et al. *The Journal of Infectious Disease* 2002; 185:1660-63, incorporated herein by reference), a hMPV isolate TN/92-4 (e.g., SEQ ID NO: 1 and 5), a hMPV isolate NL/1/99 (e.g., SEQ ID NO: 2 and 6), or a hMPV isolate PER/CFI0497/2010/B (e.g., SEQ ID NO: 3 and 7).

In some embodiments, at least one hMPV antigenic 65 polypeptide is obtained from a hMPV A1, A2, B1 or B2 strain (see, e.g., de Graaf M et al. *The Journal of General*

Virology 2008; 89:975-83; Peret T C T et al. *The Journal of Infectious Disease* 2002; 185:1660-63, incorporated herein by reference). In some embodiments, at least one antigenic polypeptide is obtained from the CAN98-75 (CAN75) hMPV strain. In some embodiments, at least one antigenic polypeptide is obtained from the CAN97-83 (CAN83) hMPV strain. In some embodiments, at least one antigenic polypeptide is obtained from hMPV isolate TN/92-4 (e.g., SEQ ID NO: 1 and 5). In some embodiments, at least one antigenic polypeptide is obtained from hMPV isolate NL/1/ 99 (e.g., SEQ ID NO: 2 and 6). In some embodiments, at least one antigenic polypeptide is obtained from hMPV isolate NL/1/ 91 (e.g., SEQ ID NO: 2 and 6). In some embodiments, at least one antigenic polypeptide is obtained from hMPV isolate PER/CFI0497/2010/B (e.g., SEQ ID NO: 3 and 7). In some embodiments, hMPV vaccines comprise RNA

(e.g., mRNA) polynucleotides encoding a hMPV antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with hMPV F protein and having F protein activity.

A protein is considered to have F protein activity if, for example, the protein acts to fuse the viral envelope and host cell plasma membrane, mediates viral entry into a host cell via an interaction with arginine-glycine-aspartate RGDbinding integrins, or a combination thereof (see, e.g., Cox R G et al. *J Virol.* 2012; 88(22):12148-60, incorporated herein by reference).

In some embodiments, hMPV vaccines comprise RNA (e.g., mRNA) polynucleotides encoding hMPV antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with hMPV G protein and having G protein activity.

A protein is considered to have G protein activity if, for example, the protein acts to modulate (e.g., inhibit) hMPVinduced cellular (immune) responses (see, e.g., Bao X et al. *PLoS Pathog.* 2008; 4(5):e1000077, incorporated herein by reference).

Human Parainfluenza Virus Type 3 (PIV3)

Parainfluenza viruses belong to the family Paramyxoviridae. These are enveloped viruses with a negative-sense single-stranded RNA genome. Parainfluenza viruses belong to the subfamily Paramyxoviridae, which is subdivided into three genera: Respirovirus (PIV-1, PIV-3, and Sendai virus (SeV)), Rubulavirus (PIV-2, PIV-4 and mumps virus) and Morbillivirus (measles virus, rinderpest virus and canine distemper virus (CDV)). Their genome, a ~15 500 nucleotide-long negative-sense RNA molecule, encodes two envelope glycoproteins, the hemagglutinin-neuraminidase (HN), the fusion protein (F or F0), which is cleaved into F1 and F2 subunits, a matrix protein (M), a nucleocapsid protein (N) and several nonstructural proteins including the viral replicase (L). All parainfluenza viruses, except for PIV-1, express a non-structural V protein that blocks IFN signaling in the infected cell and acts therefore as a virulence factor (see, e.g., Nishio M et al. J Virol. 2008; 82(13):6130-38).

PIV3 hemagglutinin-neuraminidase (HN), a structural protein, is found on the viral envelope, where it is necessary for attachment and cell entry. It recognizes and binds to sialic acid-containing receptors on the host cell's surface. As a neuroaminidase, HN removes sialic acid from virus particles, preventing self-aggregation of the virus, and promoting the efficient spread of the virus. Furthermore, HN promotes the activity of the fusion (F or F0) protein, contributing to the penetration of the host cell's surface.

PIV3 fusion protein (PIV3 F) is located on the viral envelope, where it facilitates the viral fusion and cell entry. The F protein is initially inactive, but proteolytic cleavage leads to its active forms, F1 and F2, which are linked by disulfide bonds. This occurs when the HN protein binds its

receptor on the host cell's surface. During early phases of infection, the F glycoprotein mediates penetration of the host cell by fusion of the viral envelope to the plasma membrane. In later stages of the infection, the F protein facilitates the fusion of the infected cells with neighboring uninfected cells, which leads to the formation of a syncytium and spread of the infection.

PIV3 matrix protein (M) is found within the viral envelope and assists with viral assembly. It interacts with the nucleocapsid and envelope glycoproteins, where it facilitates the budding of progeny viruses through its interactions with specific sites on the cytoplasmic tail of the viral glycoproteins and nucleocapsid. It also plays a role in transporting viral components to the budding site.

PIV3 phosphoprotein (P) and PIV3 large polymerase protein (L) are found in the nucleocapsid where they form part of the RNA polymerase complex. The L protein, a viral RNA-dependent RNA polymerase, facilitates genomic transcription, while the host cell's ribosomes translate the viral 20 mRNA into viral proteins.

PIV3 V is a non-structural protein that blocks IFN signaling in the infected cell, therefore acting as a virulence factor.

PIV3 nucleoprotein (N) encapsidates the genome in a 25 ratio of 1 N per 6 ribonucleotides, protecting it from nucleases. The nucleocapsid (NC) has a helical structure.

The encapsidated genomic RNA is termed the NC and serves as template for transcription and replication. During replication, encapsidation by PIV3 N is coupled to RNA 30 synthesis and all replicative products are resistant to nucleases. PIV3 N homo-multimerizes to form the nucleocapsid and binds to viral genomic RNA. PIV3 N binds the P protein and thereby positions the polymerase on the template.

In some embodiments, a PIV3 vaccine of the present 35 disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 fusion protein (F). In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding a F1 or F2 subunit of a PIV3 F protein. In some embodiments, a PIV3 vaccine of 40 the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 hemagglutinin-neuraminidase (HN) (see, e.g., van Wyke Coelingh K L et al. J Virol. 1987; 61(5):1473-77, incorporated herein by reference). In some embodiments, a PIV3 vaccine of the present disclosure 45 comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 matrix protein (M). In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 phosphoprotein (P). In some embodiments, a PIV3 vaccine of the present dis- 50 closure comprises a RNA (e.g., mRNA) polynucleotide encoding PIV3 nucleoprotein (N).

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, HN protein, M protein, P protein, and N 55 protein.

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and HN protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA 60 (e.g., mRNA) polynucleotide encoding F protein and M protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and P protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and P protein. In some embodiments, a PIV3 vaccine of the present disclosure 65 comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and N protein.

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HN protein and M protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HN protein and P protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HN protein and N protein.

In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, HN protein and M protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, HN protein and P protein. In some embodiments, a 15 PIV3 vaccine of the present disclosure comprises a RNA

(e.g., mRNA) polynucleotide encoding F protein, HN protein and N protein.

A PIV3 vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one PIV3 antigenic polypeptide identified by any one of SEQ ID NO: 12-13 (Table 6; see also amino acid sequences of Table 7).

A PIV3 vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide encoded by a nucleic acid (e.g., DNA) identified by any one of SEQ ID NO: 9-12 (Table 5; see also nucleic acid sequences of Table 7).

The present disclosure is not limited by a particular strain of PIV3. The strain of PIV3 used in a vaccine may be any strain of PIV3. A non-limiting example of a strain of PIV3 for use as provide herein includes HPIV3/Homo sapiens/ PER/FLA4815/2008.

In some embodiments, PIV3 vaccines comprise RNA (e.g., mRNA) polynucleotides encoding a PIV3 antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with PIV3 F protein and having F protein activity.

In some embodiments, PIV3 vaccines comprise RNA (e.g., mRNA) polynucleotides encoding PIV3 antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with PIV3 hemagglutinin-neuraminidase (HN) and having hemagglutininneuraminidase activity.

A protein is considered to have hemagglutinin-neuraminidase activity if, for example, it is capable of both receptor binding and receptor cleaving. Such proteins are major surface glycoproteins that have functional sites for cell attachment and for neuraminidase activity. They are able to cause red blood cells to agglutinate and to cleave the glycosidic linkages of neuraminic acids, so they have the potential to both bind a potential host cell and then release the cell if necessary, for example, to prevent self-aggregation of the virus.

In some embodiments, PIV3 vaccines comprise RNA (e.g., mRNA) polynucleotides encoding PIV3 antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with PIV3 HN, F (e.g., F, F1 or F2), M, N, L or V and having HN, F (e.g., F, F1 or F2), M, N, L or V activity, respectively. Respiratory Syncytial Virus (RSV)

RSV is a negative-sense, single-stranded RNA virus of the genus Pneumovirinae. The virus is present in at least two antigenic subgroups, known as Group A and Group B, primarily resulting from differences in the surface G glycoproteins. Two RSV surface glycoproteins—G and F—mediate attachment with and attachment to cells of the respiratory epithelium. F surface glycoproteins mediate coalescence of neighboring cells. This results in the forma-

tion of syncytial cells. RSV is the most common cause of bronchiolitis. Most infected adults develop mild cold-like symptoms such as congestion, low-grade fever, and wheezing. Infants and small children may suffer more severe symptoms such as bronchiolitis and pneumonia. The disease 5 may be transmitted among humans via contact with respiratory secretions.

The genome of RSV encodes at least three surface glycoproteins, including F, G, and SH, four nucleocapsid proteins, including L, P, N, and M2, and one matrix protein, M. 10 Glycoprotein F directs viral penetration by fusion between the virion and the host membrane. Glycoprotein G is a type II transmembrane glycoprotein and is the major attachment protein. SH is a short integral membrane protein. Matrix protein M is found in the inner layer of the lipid bilayer and 15 assists virion formation. Nucleocapsid proteins L, P, N, and M2 modulate replication and transcription of the RSV genome. It is thought that glycoprotein G tethers and stabilizes the virus particle at the surface of bronchial epithelial cells, while glycoprotein F interacts with cellular gly- 20 cosaminoglycans to mediate fusion and delivery of the RSV virion contents into the host cell (Krzyzaniak M A et al. PLoS Pathog 2013; 9(4)).

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide 25 encoding F protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding L protein. In some 30 embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding P protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding N protein. In some embodiments, a 35 PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding M2 protein. In some embodiments, a PIV3 vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding M protein.

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein, L protein, P protein, N protein, M2 protein and M protein.

In some embodiments, a RSV vaccine of the present 45 disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and G protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and L protein. In some embodiments, a RSV vaccine of the present 50 disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and P protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and N protein. In some embodiments, a RSV vaccine of the present 55 disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and M2 protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and M protein.

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and L protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and P 65 protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide

encoding G protein and N protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and M2 protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding G protein and M protein.

In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and L protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and P protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and N protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and N protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and M2 protein. In some embodiments, a RSV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein, G protein and M protein.

The present disclosure is not limited by a particular strain of RSV. The strain of RSV used in a vaccine may be any strain of RSV.

In some embodiments, RSV vaccines comprise RNA (e.g., mRNA) polynucleotides encoding a RSV antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with RSV F protein and having F protein activity.

In some embodiments, RSV vaccines comprise RNA (e.g., mRNA) polynucleotides encoding RSV antigenic polypeptides having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with RSV G protein and having G protein activity.

A protein is considered to have G protein activity if, for example, the protein acts to modulate (e.g., inhibit) hMPVinduced cellular (immune) responses (see, e.g., Bao X et al. *PLoS Pathog.* 2008; 4(5):e1000077, incorporated herein by reference).

40 Measles Virus (MeV) Molecular epidemiologic investigations and virologic surveillance contribute notably to the control and prevention of measles. Nearly half of measlesrelated deaths worldwide occur in India, yet virologic surveillance data are incomplete for many regions of the 45 country. Previous studies have documented the presence of measles virus genotypes D4, D7, and D8 in India, and genotypes D5, D9, D11, H1, and G3 have been detected in neighboring countries. Recently, MeV genotype B3 was detected in India (Kuttiatt V S et al. *Emerg Infect Dis.* 2014; 50 20(10): 1764-66).

The glycoprotein complex of paramyxoviruses mediates receptor binding and membrane fusion. In particular, the MeV fusion (F) protein executes membrane fusion, after receptor binding by the hemagglutinin (HA) protein (Muhlebach M D et al. Journal of Virology 2008; 82(22):11437-45). The MeV P gene codes for three proteins: P, an essential polymerase cofactor, and V and C, which have multiple functions but are not strictly required for viral propagation in cultured cells. V shares the amino-terminal domain with 60 P but has a zinc-binding carboxyl-terminal domain, whereas C is translated from an overlapping reading frame. The MeV C protein is an infectivity factor. During replication, the P protein binds incoming monomeric nucleocapsid (N) proteins with its amino-terminal domain and positions them for assembly into the nascent ribonucleocapsid. The P protein amino-terminal domain is natively unfolded (Deveaux P et al. Journal of Virology 2004; 78(21): 11632-40).

In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein. In some embodiments, a ⁵ MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding P protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding V protein.

In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide 15 encoding HA protein, F protein, P protein, V protein and C protein.

In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein and F protein. In some embodiments, ²⁰ a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein and P protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein and V protein. In some embodiments, ²⁵ a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein and V protein. In some embodiments, ²⁵ a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein and C protein.

some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encod- 30 ing F protein and P protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F protein and V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding F 35 protein and C protein.

In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein, F protein and P protein. In some embodiments, a MeV vaccine of the present disclosure 40 comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein, F protein and V protein. In some embodiments, a MeV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding HA protein, F protein and C protein. 45

In some embodiments, MeV vaccines comprise RNA (e.g., mRNA) encoding a MeV antigenic polypeptide having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with MeV HA protein and having MeV HA protein activity.

In some embodiments, MeV vaccines comprise RNA (e.g., mRNA) encoding a MeV antigenic polypeptide having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with MeV F protein and having MeV F protein activity.

A protein is considered to have HA protein activity if the protein mediates receptor binding and/or membrane fusion. MeV F protein executes membrane fusion, after receptor binding by the MeV HA protein.

A MeV vaccine may comprise, for example, at least one 60 RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one MeV antigenic polypeptide identified by any one of SEQ ID NO: 47-50 (Table 14; see also amino acid sequences of Table 15).

A MeV vaccine may comprise, for example, at least one 65 RNA (e.g., mRNA) polynucleotide identified by any one of SEQ ID NO: 37, 40, 43, 46 (Table 13).

A MeV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide encoded by a nucleic acid (e.g., DNA) identified by any one of SEQ ID NO: 35, 36, 38, 39, 41, 42, 44 and 45 (Table 13).

The present disclosure is not limited by a particular strain of MeV. The strain of MeV used in a vaccine may be any strain of MeV. Non-limiting examples of strains of MeV for use as provide herein include B3/B3.1, C2, D4, D6, D7, D8, G3, H1, Moraten, Rubeovax, MVi/New Jersey.USA/45.05,

MVi/Texas.USA/4.07, AIK-C, MVi/New York.USA/26.09/ 3, MVi/California.USA/16.03, MVi/Virginia.USA/15.09, MVi/California.USA/8.04, and MVi/Pennsylvania.USA/ 20.09.

MeV proteins may be from MeV genotype D4, D5, D7, D8, D9, D11, H1, G3 or B3. In some embodiments, a MeV HA protein or a MeV F protein is from MeV genotype D8. In some embodiments, a MeV HA protein or a MeV F protein is from MeV genotype B3.

Betacoronaviruses (BetaCoV)

MERS-CoV. MERS-CoV is a positive-sense, singlestranded RNA virus of the genus Betacoronavirus. The genomes are phylogenetically classified into two clades, clade A and clade B. It has a strong tropism for non-ciliated bronchial epithelial cells, evades the innate immune response and antagonizes interferon (IFN) production in infected cells. Dipeptyl peptidase 4 (DDP4, also known as CD26) has been identified as a functional cellular receptor for MERS-CoV. Its enzymatic activity is not required for infection, although its amino acid sequence is highly conserved across species and is expressed in the human bronchial epithelium and kidneys. Most infected individuals develop severe acute respiratory illnesses, including fever, cough, and shortness of breath, and the virus can be fatal. The disease may be transmitted among humans, generally among those in close contact.

The genome of MERS-CoV encodes at least four unique accessory proteins, such as 3, 4a, 4b and 5, two replicase proteins (open reading frame 1a and 1b), and four major structural proteins, including spike (S), envelope (E), nucleocapsid (N), and membrane (M) proteins (Almazan F et al. MBio 2013; 4(5):e00650-13). The accessory proteins play nonessential roles in MERS-CoV replication, but they are likely structural proteins or interferon antagonists, modulating in vivo replication efficiency and/or pathogenesis, as in the case of SARS-CoV (Almazan F et al. MBio 2013; 4(5):e00650-13; Totura A L et al. Curr Opin Virol 2012; 2(3):264-75; Scobey T et al. Proc Natl Acad Sci USA 2013; 110(40):16157-62). The other proteins of MERS-CoV maintain different functions in virus replication. The E protein, for example, involves in virulence, and deleting the E-coding gene results in replication-competent and propagation-defective viruses or attenuated viruses (Almazan F et al. MBio 2013; 4(5):e00650-13). The S protein is particularly essential in mediating virus binding to cells expressing 55 receptor dipeptidyl peptidase-4 (DPP4) through receptorbinding domain (RBD) in the S1 subunit, whereas the S2 subunit subsequently mediates virus entry via fusion of the virus and target cell membranes (Li F. J Virol 2015; 89(4): 1954-64; Raj V S et al. Nature 2013; 495(7440):251-4).

In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding the S1 subunit of the S protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding the S2 subunit of the S protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding E protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding N protein. In 5 some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding M protein.

In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) poly- 10 nucleotide encoding S protein (S, S1 and/or S2), E protein, N protein and M protein.

In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and E 15 protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and N protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) poly- 20 nucleotide encoding S protein (S, S1 and/or S2) and M protein.

In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein 25 and M protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein and N protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a 30 RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), M protein and N protein. In some embodiments, a MERS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding E protein, M protein and N protein.

A MERS-CoV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one MERS-CoV antigenic polypeptide identified by any one of SEQ ID NO: 24-38 or 33 (Table 11; see also amino acid sequences of Table 12). 40

A MERS-CoV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide encoded by a nucleic acid (e.g., DNA) identified by any one of SEQ ID NO: 20-23 (Table 10).

The present disclosure is not limited by a particular strain 45 of MERS-CoV. The strain of MERS-CoV used in a vaccine may be any strain of MERS-CoV. Non-limiting examples of strains of MERS-CoV for use as provide herein include Riyadh_14_2013, and 2cEMC/2012, Hasa_1_2013.

SARS-CoV. The genome of SARS-CoV includes of a 50 single, positive-strand RNA that is approximately 29,700 nucleotides long. The overall genome organization of SARS-CoV is similar to that of other coronaviruses. The reference genome includes 13 genes, which encode at least 14 proteins. Two large overlapping reading frames (ORFs) 55 encompass 71% of the genome. The remainder has 12 potential ORFs, including genes for structural proteins S (spike), E (small envelope), M (membrane), and N (nucleocapsid). Other potential ORFs code for unique putative SARS-CoV-specific polypeptides that lack obvious 60 sequence similarity to known proteins. A detailed analysis of the SARS-CoV genome has been published in J Mol Biol 2003; 331: 991-1004.

In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) poly- 65 nucleotide encoding S protein (S, S1 and/or S2), E protein, N protein and M protein.

36

In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and E protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and N protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2) and M protein.

In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein and M protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), E protein and N protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding S protein (S, S1 and/or S2), M protein and N protein. In some embodiments, a SARS-CoV vaccine of the present disclosure comprises a RNA (e.g., mRNA) polynucleotide encoding E protein, M protein and N protein.

A SARS-CoV vaccine may comprise, for example, at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one SARS-CoV antigenic polypeptide identified by any one of SEQ ID NO: 29, 32 or 34 (Table 11; see also amino acid sequences of Table 12).

The present disclosure is not limited by a particular strain of SARS-CoV. The strain of SARS-CoV used in a vaccine may be any strain of SARS-CoV.

HCoV-OC43.

Human coronavirus OC43 is an enveloped, positivesense, single-stranded RNA virus in the species Betacoro-35 navirus-1 (genus Betacoronavirus, subfamily Coronavirinae, family Coronaviridae, order Nidovirales). Four HCoV-OC43 genotypes (A to D), have been identified with genotype D most likely arising from recombination. The complete genome sequencing of two genotype C and D strains and bootscan analysis shows recombination events between genotypes B and C in the generation of genotype D. Of 29 strains identified, none belong to the more ancient genotype A. Along with HCoV-229E, a species in the Alphacoronavirus genus, HCoV-OC43 are among the known viruses that cause the common cold. Both viruses can cause severe lower respiratory tract infections, including pneumonia in infants, the elderly, and immunocompromised individuals such as those undergoing chemotherapy and those with HIV-AIDS.

HCoV-HKU1.

Human coronavirus HKU1 (HCoV-H KU 1) is a positivesense, single-stranded RNA virus with the HE gene, which distinguishes it as a group 2, or betacoronavirus. It was discovered in January 2005 in two patients in Hong Kong. The genome of HCoV-HKU1 is a 29,926-nucleotide, polyadenylated RNA. The GC content is 32%, the lowest among all known coronaviruses. The genome organization is the same as that of other group II coronaviruses, with the characteristic gene order 1a, 1b, HE, S, E, M, and N. Furthermore, accessory protein genes are present between the S and E genes (ORF4) and at the position of the N gene (ORF8). The TRS is presumably located within the AAUC-UAAAC sequence, which precedes each ORF except E. As in sialodacryoadenitis virus and mouse hepatitis virus (MHV), translation of the E protein possibly occurs via an internal ribosomal entry site. The 3' untranslated region contains a predicted stem-loop structure immediately down-

5

stream of the N ORF (nucleotide position 29647 to 29711). Further downstream, a pseudoknot structure is present at nucleotide position 29708 to 29760. Both RNA structures are conserved in group II coronaviruses and are critical for virus replication.

HCoV-NL63.

The RNA genome of human coronavirus NL63 (HCoV-NL63) is 27,553 nucleotides, with a poly(A) tail (FIG. 1). With a GC content of 34%, HCoV-NL63 has one of the lowest GC contents of the coronaviruses, for which GC 10 content ranges from 32 to 42%. Untranslated regions of 286 and 287 nucleotides are present at the 5' and 3' termini, respectively. Genes predicted to encode the S, E, M, and N proteins are found in the 3' part of the HCoV-NL63 genome. The HE gene, which is present in some group II coronavi- 15 ruses, is absent, and there is only a single, monocistronic accessory protein ORF (ORF3) located between the S and E genes. Subgenomic mRNAs are generated for all ORFs (S, ORF3, E, M, and N), and the core sequence of the TRS of HCoV-NL63 is defined as AACUAAA. This sequence is 20 situated upstream of every ORF except for the E ORF, which contains the suboptimal core sequence AACUAUA. Interestingly, a 13-nucleotide sequence with perfect homology to the leader sequence is situated upstream of the suboptimal E TRS. Annealing of this 13-nucleotide sequence to the leader 25 sequence may act as a compensatory mechanism for the disturbed leader-TRS/body-TRS interaction.

HCoV-229E.

Human coronavirus 229E (HCoV-229E) is a singlestranded, positive-sense, RNA virus species in the Alpha- 30 coronavirus genus of the subfamily Coronavirinae, in the family Coronaviridae, of the order Nidovirales. Along with Human coronavirus OC43, it is responsible for the common cold. HCoV-NL63 and HCoV-229E are two of the four human coronaviruses that circulate worldwide. These two 35 viruses are unique in their relationship towards each other. Phylogenetically, the viruses are more closely related to each other than to any other human coronavirus, yet they only share 65% sequence identity. Moreover, the viruses use different receptors to enter their target cell. HCoV-NL63 is 40 vaccine comprises a RNA (e.g., mRNA) polynucleotide associated with croup in children, whereas all signs suggest that the virus probably causes the common cold in healthy adults. HCoV-229E is a proven common cold virus in healthy adults, so it is probable that both viruses induce comparable symptoms in adults, even though their mode of 45 infection differs (HCoV-NL63 and HCoV-229E are two of the four human coronaviruses that circulate worldwide. These two viruses are unique in their relationship towards each other. Phylogenetically, the viruses are more closely related to each other than to any other human coronavirus, 50 yet they only share 65% sequence identity. Moreover, the viruses use different receptors to enter their target cell. HCoV-NL63 is associated with croup in children, whereas all signs suggest that the virus probably causes the common cold in healthy adults. HCoV-229E is a proven common cold 55 virus in healthy adults, so it is probable that both viruses induce comparable symptoms in adults, even though their mode of infection differs (Dijkman R. et al. J Formos Med Assoc. 2009 April; 108(4):270-9, the contents of which is incorporated herein by reference in their entirety). Combination Vaccines

Embodiments of the present disclosure also provide combination RNA (e.g., mRNA) vaccines. A "combination RNA (e.g., mRNA) vaccine" of the present disclosure refers to a vaccine comprising at least one (e.g., at least 2, 3, 4, or 5) 65 RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a combination of any two or more (or all of)

antigenic polypeptides selected from hMPV antigenic polypeptides, PIV3 antigenic polypeptides, RSV antigenic polypeptides, MeV antigenic polypeptides, and BetaCoV antigenic polypeptides (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide, a RSV antigenic polypeptide, a MeV antigenic polypeptide, and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide and a PIV3 antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide and a RSV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide and a BetaCoV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide and a RSV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) encoding a PIV3 antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a RSV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a RSV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, 60 HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide, a RSV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide, a RSV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, 10 SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1). encoding a RS polypeptide and a BetaCoV 10 HCoV-HKU1). encoding a RS polypeptide and a BetaCoV 10 HCoV-NL63, 10 HCoV-NL (HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a RSV antigenic 15 polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) 20 vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide, a RSV antigenic polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, 25 HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide and a RSV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) 35 vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a PIV3 antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and 40 HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a RSV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a RSV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, 50 HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a hMPV antigenic polypeptide, a MeV antigenic 55 polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) 60 vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a PIV3 antigenic polypeptide, a RSV antigenic polypeptide and a MeV antigenic polypeptide.

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide 65 encoding a PIV3 antigenic polypeptide, a RSV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g.,

selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

In some embodiments, a combination RNA (e.g., mRNA) vaccine comprises a RNA (e.g., mRNA) polynucleotide encoding a RSV antigenic polypeptide, a MeV antigenic polypeptide and a BetaCoV antigenic polypeptide (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1).

Other combination respiratory virus RNA (e.g., mRNA) vaccines are encompassed by the present disclosure.

It has been discovered that the mRNA vaccines described herein are superior to current vaccines in several ways. First, the lipid nanoparticle (LNP) delivery is superior to other formulations including a protamine base approach described in the literature and no additional adjuvants are to be necessary. The use of LNPs enables the effective delivery of chemically modified or unmodified mRNA vaccines. Additionally it has been demonstrated herein that both modified and unmodified LNP formulated mRNA vaccines were superior to conventional vaccines by a significant degree. In some embodiments the mRNA vaccines of the invention are superior to conventional vaccines by a factor of at least 10 fold, 20 fold, 40 fold, 50 fold, 100 fold, 500 fold or 1,000 fold.

Although attempts have been made to produce functional RNA vaccines, including mRNA vaccines and self-replicating RNA vaccines, the therapeutic efficacy of these RNA vaccines have not yet been fully established. Quite surprisingly, the inventors have discovered, according to aspects of the invention a class of formulations for delivering mRNA vaccines in vivo that results in significantly enhanced, and in many respects synergistic, immune responses including enhanced antigen generation and functional antibody production with neutralization capability. These results can be achieved even when significantly lower doses of the mRNA are administered in comparison with mRNA doses used in other classes of lipid based formulations. The formulations of the invention have demonstrated significant unexpected in vivo immune responses sufficient to establish the efficacy of functional mRNA vaccines as prophylactic and therapeutic agents. Additionally, self-replicating RNA vaccines rely on viral replication pathways to deliver enough RNA to a cell to produce an immunogenic response. The formulations of the invention do not require viral replication to produce enough protein to result in a strong immune response. Thus, the mRNA of the invention are not self-replicating RNA and do not include components necessary for viral replication.

The invention involves, in some aspects, the surprising finding that lipid nanoparticle (LNP) formulations significantly enhance the effectiveness of mRNA vaccines, including chemically modified and unmodified mRNA vaccines. The efficacy of mRNA vaccines formulated in LNP was examined in vivo using several distinct antigens. The results presented herein demonstrate the unexpected superior efficacy of the mRNA vaccines formulated in LNP over other commercially available vaccines.

In addition to providing an enhanced immune response, the formulations of the invention generate a more rapid immune response with fewer doses of antigen than other vaccines tested. The mRNA-LNP formulations of the invention also produce quantitatively and qualitatively better immune responses than vaccines formulated in a different carriers.

The data described herein demonstrate that the formulations of the invention produced significant unexpected

improvements over existing antigen vaccines. Additionally, the mRNA-LNP formulations of the invention are superior to other vaccines even when the dose of mRNA is lower than other vaccines. Mice immunized with either 10 μ g or 2 μ g doses of an hMPV fusion protein mRNA LNP vaccine or a 5 PIV3 mRNA LNP vaccine produced neutralizing antibodies which for instance, successfully neutralized the hMPV B2 virus. A 10 µg dose of mRNA vaccine protected 100% of mice from lethal challenge and drastically reduced the viral titer after challenge (~2 log reduction). 10

Two 20 µg doses of MERS-CoV mRNA LNP vaccine significantly reduced viral load and induced significant amount of neutralizing antibodies against MERS-CoV (ECso between 500-1000). The MERS-CoV mRNA vaccine induced antibody titer was 3-5 fold better than any other 15 vaccines tested in the same model.

The LNP used in the studies described herein has been used previously to deliver siRNA in various animal models as well as in humans. In view of the observations made in association with the siRNA delivery of LNP formulations. 20 the fact that LNP is useful in vaccines is quite surprising. It has been observed that therapeutic delivery of siRNA formulated in LNP causes an undesirable inflammatory response associated with a transient IgM response, typically leading to a reduction in antigen production and a compro- 25 1-100, 2-50 or 2-100 antigenic polypeptides. mised immune response. In contrast to the findings observed with siRNA, the LNP-mRNA formulations of the invention are demonstrated herein to generate enhanced IgG levels, sufficient for prophylactic and therapeutic methods rather than transient IgM responses.

Nucleic Acids/Polynucleotides

Respiratory virus vaccines, as provided herein, comprise at least one (one or more) ribonucleic acid (RNA) (e.g., mRNA) polynucleotide having an open reading frame encoding at least one antigenic polypeptide selected from 35 hMPV, PIV3, RSV, MeV and BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1) antigenic polypeptides. The term "nucleic acid" includes any compound and/or substance that comprises a polymer of 40 nucleotides (nucleotide monomer). These polymers are referred to as polynucleotides. Thus, the terms "nucleic acid" and "polynucleotide" are used interchangeably.

Nucleic acids may be or may include, for example, ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), 45 threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs, including LNA having a β -D-ribo configuration, α -LNA having an α -L-ribo configuration (a diastereomer of LNA), 2'-amino-LNA having a 2'-amino functionalization, and 50 2'-amino- α -LNA having a 2'-amino functionalization), ethylene nucleic acids (ENA), cyclohexenyl nucleic acids (CeNA) or chimeras or combinations thereof.

In some embodiments, polynucleotides of the present disclosure function as messenger RNA (mRNA). "Messen- 55 rally-occurring or wild-type mRNA sequence encoding a ger RNA" (mRNA) refers to any polynucleotide that encodes a (at least one) polypeptide (a naturally-occurring, non-naturally-occurring, or modified polymer of amino acids) and can be translated to produce the encoded polypeptide in vitro, in vivo, in situ or ex vivo. The skilled artisan 60 will appreciate that, except where otherwise noted, polynucleotide sequences set forth in the instant application will recite "T"s in a representative DNA sequence but where the sequence represents RNA (e.g., mRNA), the "T"s would be substituted for "U"s. Thus, any of the RNA polynucleotides 65 encoded by a DNA identified by a particular sequence identification number may also comprise the corresponding

RNA (e.g., mRNA) sequence encoded by the DNA, where each "T" of the DNA sequence is substituted with "U."

The basic components of an mRNA molecule typically include at least one coding region, a 5' untranslated region (UTR), a 3' UTR, a 5' cap and a poly-A tail. Polynucleotides of the present disclosure may function as mRNA but can be distinguished from wild-type mRNA in their functional and/or structural design features, which serve to overcome existing problems of effective polypeptide expression using nucleic-acid based therapeutics.

In some embodiments, a RNA polynucleotide of an RNA (e.g., mRNA) vaccine encodes 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-10, 3-9, 3-8, 3-7, 3-6, 3-5, 3-4, 4-10, 4-9, 4-8, 4-7, 4-6, 4-5, 5-10, 5-9, 5-8, 5-7, 5-6, 6-10, 6-9, 6-8, 6-7, 7-10, 7-9, 7-8, 8-10, 8-9 or 9-10 antigenic polypeptides. In some embodiments, a RNA (e.g., mRNA) polynucleotide of a respiratory virus vaccine encodes at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 antigenic polypeptides. In some embodiments, a RNA (e.g., mRNA) polynucleotide of a respiratory virus vaccine encodes at least 100 or at least 200 antigenic polypeptides. In some embodiments, a RNA polynucleotide of an respiratory virus vaccine encodes 1-10, 5-15, 10-20, 15-25, 20-30, 25-35, 30-40, 35-45, 40-50, 1-50,

Polynucleotides of the present disclosure, in some embodiments, are codon optimized. Codon optimization methods are known in the art and may be used as provided herein. Codon optimization, in some embodiments, may be used to match codon frequencies in target and host organisms to ensure proper folding; bias GC content to increase mRNA stability or reduce secondary structures; minimize tandem repeat codons or base runs that may impair gene construction or expression; customize transcriptional and translational control regions; insert or remove protein trafficking sequences; remove/add post translation modification sites in encoded protein (e.g. glycosylation sites); add, remove or shuffle protein domains; insert or delete restriction sites; modify ribosome binding sites and mRNA degradation sites; adjust translational rates to allow the various domains of the protein to fold properly; or to reduce or eliminate problem secondary structures within the polynucleotide. Codon optimization tools, algorithms and services are known in the art-non-limiting examples include services from GeneArt (Life Technologies), DNA2.0 (Menlo Park Calif.) and/or proprietary methods. In some embodiments, the open reading frame (ORF) sequence is optimized using optimization algorithms.

In some embodiments, a codon optimized sequence shares less than 95% sequence identity, less than 90% sequence identity, less than 85% sequence identity, less than 80% sequence identity, or less than 75% sequence identity to a naturally-occurring or wild-type sequence (e.g., a natupolypeptide or protein of interest (e.g., an antigenic protein or antigenic polypeptide)).

In some embodiments, a codon-optimized sequence shares between 65% and 85% (e.g., between about 67% and about 85%, or between about 67% and about 80%) sequence identity to a naturally-occurring sequence or a wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide)). In some embodiments, a codon-optimized sequence shares between 65% and 75%, or about 80% sequence identity to a naturally-occurring sequence or wild-type sequence (e.g., a naturally-occurring

or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide)).

In some embodiments a codon-optimized RNA (e.g., mRNA) may, for instance, be one in which the levels of G/C are enhanced. The G/C-content of nucleic acid molecules may influence the stability of the RNA. RNA having an increased amount of guanine (G) and/or cytosine (C) residues may be functionally more stable than nucleic acids containing a large amount of adenine (A) and thymine (T) or 10 uracil (U) nucleotides. WO02/098443 discloses a pharmaceutical composition containing an mRNA stabilized by sequence modifications in the translated region. Due to the degeneracy of the genetic code, the modifications work by substituting existing codons for those that promote greater 15 RNA stability without changing the resulting amino acid. The approach is limited to coding regions of the RNA. Antigens/Antigenic Polypeptides

In some embodiments, an antigenic polypeptide (e.g., a hMPV, PIV3, RSV, MeV or BetaCoV antigenic polypeptide) 20 is longer than 25 amino acids and shorter than 50 amino acids. Polypeptides include gene products, naturally occurring polypeptides, synthetic polypeptides, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing. A polypeptide may be a 25 single molecule or may be a multi-molecular complex such as a dimer, trimer or tetramer. Polypeptides may also comprise single chain polypeptides or multichain polypeptides, such as antibodies or insulin, and may be associated or linked to each other. Most commonly, disulfide linkages are 30 found in multichain polypeptides. The term "polypeptide" may also apply to amino acid polymers in which at least one amino acid residue is an artificial chemical analogue of a corresponding naturally-occurring amino acid.

A "polypeptide variant" is a molecule that differs in its 35 amino acid sequence relative to a native sequence or a reference sequence. Amino acid sequence variants may possess substitutions, deletions, insertions, or a combination of any two or three of the foregoing, at certain positions within the amino acid sequence, as compared to a native 40 sequence or a reference sequence. Ordinarily, variants possess at least 50% identity to a native sequence or a reference sequence. In some embodiments, variants share at least 80% identity or at least 90% identity with a native sequence or a reference sequence.

In some embodiments "variant mimics" are provided. A "variant mimic" contains at least one amino acid that would mimic an activated sequence. For example, glutamate may serve as a mimic for phosphoro-threonine and/or phosphoroserine. Alternatively, variant mimics may result in deacti- 50 vation or in an inactivated product containing the mimic. For example, phenylalanine may act as an inactivating substitution for tyrosine, or alanine may act as an inactivating substitution for serine.

evolved from a common ancestral gene by speciation. Normally, orthologs retain the same function in the course of evolution. Identification of orthologs is important for reliable prediction of gene function in newly sequenced genomes.

"Analogs" is meant to include polypeptide variants that differ by one or more amino acid alterations, for example, substitutions, additions or deletions of amino acid residues that still maintain one or more of the properties of the parent or starting polypeptide.

The present disclosure provides several types of compositions that are polynucleotide or polypeptide based, includ-

65

ing variants and derivatives. These include, for example, substitutional, insertional, deletion and covalent variants and derivatives. The term "derivative" is synonymous with the term "variant" and generally refers to a molecule that has been modified and/or changed in any way relative to a reference molecule or a starting molecule.

As such, polynucleotides encoding peptides or polypeptides containing substitutions, insertions and/or additions, deletions and covalent modifications with respect to reference sequences, in particular the polypeptide sequences disclosed herein, are included within the scope of this disclosure. For example, sequence tags or amino acids, such as one or more lysines, can be added to peptide sequences (e.g., at the N-terminal or C-terminal ends). Sequence tags can be used for peptide detection, purification or localization. Lysines can be used to increase peptide solubility or to allow for biotinylation. Alternatively, amino acid residues located at the carboxy and amino terminal regions of the amino acid sequence of a peptide or protein may optionally be deleted providing for truncated sequences. Certain amino acids (e.g., C-terminal residues or N-terminal residues) alternatively may be deleted depending on the use of the sequence, as for example, expression of the sequence as part of a larger sequence that is soluble, or linked to a solid support.

"Substitutional variants" when referring to polypeptides are those that have at least one amino acid residue in a native or starting sequence removed and a different amino acid inserted in its place at the same position. Substitutions may be single, where only one amino acid in the molecule has been substituted, or they may be multiple, where two or more (e.g., 3, 4 or 5) amino acids have been substituted in the same molecule.

As used herein the term "conservative amino acid substitution" refers to the substitution of an amino acid that is normally present in the sequence with a different amino acid of similar size, charge, or polarity. Examples of conservative substitutions include the substitution of a non-polar (hydrophobic) residue such as isoleucine, valine and leucine for another non-polar residue. Likewise, examples of conservative substitutions include the substitution of one polar (hydrophilic) residue for another such as between arginine and lysine, between glutamine and asparagine, and between glycine and serine. Additionally, the substitution of a basic residue such as lysine, arginine or histidine for another, or the substitution of one acidic residue such as aspartic acid or glutamic acid for another acidic residue are additional examples of conservative substitutions. Examples of nonconservative substitutions include the substitution of a nonpolar (hydrophobic) amino acid residue such as isoleucine, valine, leucine, alanine, methionine for a polar (hydrophilic) residue such as cysteine, glutamine, glutamic acid or lysine and/or a polar residue for a non-polar residue.

"Features" when referring to polypeptide or polynucle-"Orthologs" refers to genes in different species that 55 otide are defined as distinct amino acid sequence-based or nucleotide-based components of a molecule respectively. Features of the polypeptides encoded by the polynucleotides include surface manifestations, local conformational shape, folds, loops, half-loops, domains, half-domains, sites, ter-60 mini and any combination(s) thereof.

As used herein when referring to polypeptides the term "domain" refers to a motif of a polypeptide having one or more identifiable structural or functional characteristics or properties (e.g., binding capacity, serving as a site for protein-protein interactions).

As used herein when referring to polypeptides the terms "site" as it pertains to amino acid based embodiments is used

25

synonymously with "amino acid residue" and "amino acid side chain." As used herein when referring to polynucleotides the terms "site" as it pertains to nucleotide based embodiments is used synonymously with "nucleotide." A site represents a position within a peptide or polypeptide or 5 polynucleotide that may be modified, manipulated, altered, derivatized or varied within the polypeptide-based or polynucleotide-based molecules.

As used herein the terms "termini" or "terminus" when referring to polypeptides or polynucleotides refers to an 10 extremity of a polypeptide or polynucleotide respectively. Such extremity is not limited only to the first or final site of the polypeptide or polynucleotide but may include additional amino acids or nucleotides in the terminal regions. Polypeptide-based molecules may be characterized as hav- 15 ing both an N-terminus (terminated by an amino acid with a free amino group (NH2)) and a C-terminus (terminated by an amino acid with a free carboxyl group (COOH)). Proteins are in some cases made up of multiple polypeptide chains brought together by disulfide bonds or by non-covalent 20 forces (multimers, oligomers). These proteins have multiple N- and C-termini. Alternatively, the termini of the polypeptides may be modified such that they begin or end, as the case may be, with a non-polypeptide based moiety such as an organic conjugate.

As recognized by those skilled in the art, protein fragments, functional protein domains, and homologous proteins are also considered to be within the scope of polypeptides of interest. For example, provided herein is any protein fragment (meaning a polypeptide sequence at least one amino 30 acid residue shorter than a reference polypeptide sequence but otherwise identical) of a reference protein having a length of 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or longer than 100 amino acids. In another example, any protein that includes a stretch of 20, 30, 40, 50, or 100 (contiguous) 35 amino acids that are 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% identical to any of the sequences described herein can be utilized in accordance with the disclosure. In some embodiments, a polypeptide includes 2, 3, 4, 5, 6, 7, 8, 9, 10, or more mutations as shown in any of the sequences pro- 40 vided herein or referenced herein. In another example, any protein that includes a stretch of 20, 30, 40, 50, or 100 amino acids that are greater than 80%, 90%, 95%, or 100% identical to any of the sequences described herein, wherein the protein has a stretch of 5, 10, 15, 20, 25, or 30 amino 45 acids that are less than 80%, 75%, 70%, 65% to 60% identical to any of the sequences described herein can be utilized in accordance with the disclosure.

Polypeptide or polynucleotide molecules of the present disclosure may share a certain degree of sequence similarity 50 or identity with the reference molecules (e.g., reference polypeptides or reference polynucleotides), for example, with art-described molecules (e.g., engineered or designed molecules or wild-type molecules). The term "identity," as known in the art, refers to a relationship between the 55 sequences of two or more polypeptides or polynucleotides, as determined by comparing the sequences. In the art, identity also means the degree of sequence relatedness between two sequences as determined by the number of matches between strings of two or more amino acid residues 60 or nucleic acid residues. Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (e.g., "algorithms"). Identity of related peptides can be readily 65 calculated by known methods. "% identity" as it applies to polypeptide or polynucleotide sequences is defined as the

46

percentage of residues (amino acid residues or nucleic acid residues) in the candidate amino acid or nucleic acid sequence that are identical with the residues in the amino acid sequence or nucleic acid sequence of a second sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent identity. Methods and computer programs for the alignment are well known in the art. Identity depends on a calculation of percent identity but may differ in value due to gaps and penalties introduced in the calculation. Generally, variants of a particular polynucleotide or polypeptide have at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% but less than 100% sequence identity to that particular reference polynucleotide or polypeptide as determined by sequence alignment programs and parameters described herein and known to those skilled in the art. Such tools for alignment include those of the BLAST suite (Stephen F. Altschul, et al. (1997)." Gapped BLAST and PSI-BLAST: a new generation of protein database search programs," Nucleic Acids Res. 25:3389-3402). Another popular local alignment technique is based on the Smith-Waterman algorithm (Smith, T. F. & Waterman, M. S. (1981) "Identification of common molecular subsequences." J. Mol. Biol. 147:195-197). A general global alignment technique based on dynamic programming is the Needleman-Wunsch algorithm (Needleman, S. B. & Wunsch, C. D. (1970) "A general method applicable to the search for similarities in the amino acid sequences of two proteins." J. Mol. Biol. 48:443-453). More recently, a Fast Optimal Global Sequence Alignment Algorithm (FOGSAA) was developed that purportedly produces global alignment of nucleotide and protein sequences faster than other optimal global alignment methods, including the Needleman-Wunsch algorithm. Other tools are described herein, specifically in the definition of "identity" below.

As used herein, the term "homology" refers to the overall relatedness between polymeric molecules, e.g. between nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Polymeric molecules (e.g. nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or polypeptide molecules) that share a threshold level of similarity or identity determined by alignment of matching residues are termed homologous. Homology is a qualitative term that describes a relationship between molecules and can be based upon the quantitative similarity or identity. Similarity or identity is a quantitative term that defines the degree of sequence match between two compared sequences. In some embodiments, polymeric molecules are considered to be "homologous" to one another if their sequences are at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identical or similar. The term "homologous" necessarily refers to a comparison between at least two sequences (polynucleotide or polypeptide sequences). Two polynucleotide sequences are considered homologous if the polypeptides they encode are at least 50%, 60%, 70%, 80%, 90%, 95%, or even 99% for at least one stretch of at least 20 amino acids. In some embodiments, homologous polynucleotide sequences are characterized by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. For polynucleotide sequences less than 60 nucleotides in length, homology is determined by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. Two protein sequences are considered homologous if the proteins are at least 50%, 60%, 70%, 80%, or 90% identical for at least one stretch of at least 20 amino acids.

Homology implies that the compared sequences diverged in evolution from a common origin. The term "homolog" refers to a first amino acid sequence or nucleic acid sequence (e.g., gene (DNA or RNA) or protein sequence) that is related to a second amino acid sequence or nucleic acid 5 sequence by descent from a common ancestral sequence. The term "homolog" may apply to the relationship between genes and/or proteins separated by the event of speciation or to the relationship between genes and/or proteins separated by the event of genetic duplication. "Orthologs" are genes 10 (or proteins) in different species that evolved from a common ancestral gene (or protein) by speciation. Typically, orthologs retain the same function in the course of evolution. "Paralogs" are genes (or proteins) related by duplication within a genome. Orthologs retain the same function in the 15 course of evolution, whereas paralogs evolve new functions, even if these are related to the original one.

The term "identity" refers to the overall relatedness between polymeric molecules, for example, between polynucleotide molecules (e.g. DNA molecules and/or RNA 20 molecules) and/or between polypeptide molecules. Calculation of the percent identity of two polynucleic acid sequences, for example, can be performed by aligning the two sequences for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second 25 nucleic acid sequences for optimal alignment and nonidentical sequences can be disregarded for comparison purposes). In certain embodiments, the length of a sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, 30 at least 90%, at least 95%, or 100% of the length of the reference sequence. The nucleotides at corresponding nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the 35 molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which needs to be introduced for optimal alignment of the 40 two sequences. The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. For example, the percent identity between two nucleic acid sequences can be determined using methods such as those described in 45 Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Computer Analysis 50 of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; each of which is incorporated herein by reference. For example, the percent identity 55 between two nucleic acid sequences can be determined using the algorithm of Meyers and Miller (CABIOS, 1989, 4:11-17), which has been incorporated into the ALIGN program (version 2.0) using a PAM 120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. The 60 percent identity between two nucleic acid sequences can, alternatively, be determined using the GAP program in the GCG software package using an NWSgapdna.CMP matrix. Methods commonly employed to determine percent identity between sequences include, but are not limited to those 65 disclosed in Carillo, H., and Lipman, D., SIAM J Applied Math., 48:1073 (1988); incorporated herein by reference.

Techniques for determining identity are codified in publicly available computer programs. Exemplary computer software to determine homology between two sequences include, but are not limited to, GCG program package, Devereux, J., et al., *Nucleic Acids Research*, 12(1), 387 (1984)), BLASTP, BLASTN, and FASTA Altschul, S. F. et al., *J. Molec. Biol.*, 215, 403 (1990)).

Multiprotein and Multicomponent Vaccines

The present disclosure encompasses respiratory virus vaccines comprising multiple RNA (e.g., mRNA) polynucleotides, each encoding a single antigenic polypeptide, as well as respiratory virus vaccines comprising a single RNA polynucleotide encoding more than one antigenic polypeptide (e.g., as a fusion polypeptide). Thus, a vaccine composition comprising a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a first antigenic polypeptide and a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a second antigenic polypeptide encompasses (a) vaccines that comprise a first RNA polynucleotide encoding a first antigenic polypeptide and a second RNA polynucleotide encoding a second antigenic polypeptide, and (b) vaccines that comprise a single RNA polynucleotide encoding a first and second antigenic polypeptide (e.g., as a fusion polypeptide). RNA (e.g., mRNA) vaccines of the present disclosure, in some embodiments, comprise 2-10 (e.g., 2, 3, 4, 5, 6, 7, 8, 9 or 10), or more, RNA polynucleotides having an open reading frame, each of which encodes a different antigenic polypeptide (or a single RNA polynucleotide encoding 2-10, or more, different antigenic polypeptides). The antigenic polypeptides may be selected from hMPV, PIV3, RSV, MEV and BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1) antigenic polypeptides.

In some embodiments, a respiratory virus vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral capsid protein, a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral premembrane/membrane protein, and a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral envelope protein. In some embodiments, a respiratory virus vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral fusion (F) protein and a RNA polynucleotide having an open reading frame encoding a viral major surface glycoprotein (G protein). In some embodiments, a vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral F protein. In some embodiments, a vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a viral G protein. In some embodiments, a vaccine comprises a RNA (e.g., mRNA) polynucleotide having an open reading frame encoding a HN protein.

In some embodiments, a multicomponent vaccine comprises at least one RNA (e.g., mRNA) polynucleotide encoding at least one antigenic polypeptide fused to a signal peptide (e.g., any one of SEQ ID NO: 15-19). The signal peptide may be fused at the N-terminus or the C-terminus of an antigenic polypeptide. An antigenic polypeptide fused to a signal peptide may be selected from hMPV, PIV3, RSV, MEV and BetaCoV (e.g., selected from MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and HCoV-HKU1) antigenic polypeptides. Signal Peptides

In some embodiments, antigenic polypeptides encoded by respiratory virus RNA (e.g., mRNA) polynucleotides comprise a signal peptide. Signal peptides, comprising the

N-terminal 15-60 amino acids of proteins, are typically needed for the translocation across the membrane on the secretory pathway and, thus, universally control the entry of most proteins both in eukaryotes and prokaryotes to the secretory pathway. Signal peptides generally include three 5 regions: an N-terminal region of differing length, which usually comprises positively charged amino acids; a hydrophobic region; and a short carboxy-terminal peptide region. In eukaryotes, the signal peptide of a nascent precursor protein (pre-protein) directs the ribosome to the rough 10 endoplasmic reticulum (ER) membrane and initiates the transport of the growing peptide chain across it for processing. ER processing produces mature proteins, wherein the signal peptide is cleaved from precursor proteins, typically by a ER-resident signal peptidase of the host cell, or they 15 remain uncleaved and function as a membrane anchor. A signal peptide may also facilitate the targeting of the protein to the cell membrane. The signal peptide, however, is not responsible for the final destination of the mature protein. Secretory proteins devoid of additional address tags in their 20 sequence are by default secreted to the external environment. During recent years, a more advanced view of signal peptides has evolved, showing that the functions and immunodominance of certain signal peptides are much more versatile than previously anticipated.

Respiratory virus vaccines of the present disclosure may comprise, for example, RNA (e.g., mRNA) polynucleotides encoding an artificial signal peptide, wherein the signal peptide coding sequence is operably linked to and is in frame with the coding sequence of the antigenic polypeptide. Thus, 30 respiratory virus vaccines of the present disclosure, in some embodiments, produce an antigenic polypeptide comprising an antigenic polypeptide (e.g., hMPV, PIV3, RSV, MeV or BetaCoV) fused to a signal peptide. In some embodiments, a signal peptide is fused to the N-terminus of the antigenic 35 polypeptide. In some embodiments, a signal peptide is fused to the C-terminus of the antigenic polypeptide.

In some embodiments, the signal peptide fused to the antigenic polypeptide is an artificial signal peptide. In some embodiments, an artificial signal peptide fused to the anti- 40 genic polypeptide encoded by the RNA (e.g., mRNA) vaccine is obtained from an immunoglobulin protein, e.g., an IgE signal peptide or an IgG signal peptide. In some embodiments, a signal peptide fused to the antigenic polypeptide encoded by a RNA (e.g., mRNA) vaccine is an Ig 45 heavy chain epsilon-1 signal peptide (IgE HC SP) having the sequence of: MDWTWILFLVAAATRVHS (SEQ ID NO: 16). In some embodiments, a signal peptide fused to the antigenic polypeptide encoded by the (e.g., mRNA) RNA (e.g., mRNA) vaccine is an IgGk chain V-III region HAH 50 signal peptide (IgGk SP) having the sequence of MET-PAQLLFLLLWLPDTTG (SEQ ID NO: 15). In some embodiments, the signal peptide is selected from: Japanese encephalitis PRM signal sequence (MLGSNSGQRV-VFTILLLLVAPAYS; SEQ ID NO: 17), VSVg protein signal 55 sequence (MKCLLYLAFLFIGVNCA; SEQ ID NO: 18) and Japanese encephalitis JEV signal sequence (MWLVS-LAIVTACAGA; SEQ ID NO: 19).

In some embodiments, the antigenic polypeptide encoded by a RNA (e.g., mRNA) vaccine comprises an amino acid 60 sequence identified by any one of SEQ ID NO: 5-8, 12-13, 24-34, 47-50 or 54-56 (Tables 3, 6, 11, 14 or 17; see also amino acid sequences of Tables 4, 7, 12 or 15) fused to a signal peptide identified by any one of SEQ ID NO: 15-19 (Table 8). The examples disclosed herein are not meant to be 65 limiting and any signal peptide that is known in the art to facilitate targeting of a protein to ER for processing and/or

targeting of a protein to the cell membrane may be used in accordance with the present disclosure.

A signal peptide may have a length of 15-60 amino acids. For example, a signal peptide may have a length of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60 amino acids. In some embodiments, a signal peptide has a length of 20-60, 25-60, 30-60, 35-60, 40-60, 45-60, 50-60, 55-60, 15-55, 20-55, 25-55, 30-55, 35-55, 40-55, 45-55, 50-55, 15-50, 20-50, 25-50, 30-50, 35-50, 40-50, 45-50, 15-45, 20-45, 25-45, 30-45, 35-45, 40-45, 15-40, 20-40, 25-40, 30-40, 35-40, 15-35, 20-35, 25-35, 30-35, 15-30, 20-30, 25-30, 15-25, 20-25, or 15-20 amino acids.

A signal peptide is typically cleaved from the nascent polypeptide at the cleavage junction during ER processing. The mature antigenic polypeptide produce by a respiratory virus RNA (e.g., mRNA) vaccine of the present disclosure typically does not comprise a signal peptide.

Chemical Modifications

Respiratory virus vaccines of the present disclosure, in some embodiments, comprise at least RNA (e.g. mRNA) polynucleotide having an open reading frame encoding at least one antigenic polypeptide that comprises at least one 25 chemical modification.

The terms "chemical modification" and "chemically modified" refer to modification with respect to adenosine (A), guanosine (G), uridine (U), thymidine (T) or cytidine (C) ribonucleosides or deoxyribnucleosides in at least one of their position, pattern, percent or population. Generally, these terms do not refer to the ribonucleotide modifications in naturally occurring 5'-terminal mRNA cap moieties. With respect to a polypeptide, the term "modification" refers to a modification relative to the canonical set 20 amino acids. Polypeptides, as provided herein, are also considered "modified" of they contain amino acid substitutions, insertions or a combination of substitutions and insertions.

Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides), in some embodiments, comprise various (more than one) different modifications. In some embodiments, a particular region of a polynucleotide contains one, two or more (optionally different) nucleoside or nucleotide modifications. In some embodiments, a modified RNA polynucleotide (e.g., a modified mRNA polynucleotide), introduced to a cell or organism, exhibits reduced degradation in the cell or organism, respectively, relative to an unmodified polynucleotide (e.g., a modified mRNA polynucleotide), introduced into a cell or organism, may exhibit reduced immunogenicity in the cell or organism, respectively (e.g., a reduced innate response).

Modifications of polynucleotides include, without limitation, those described herein. Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) may comprise modifications that are naturally-occurring, non-naturally-occurring or the polynucleotide may comprise a combination of naturally-occurring and non-naturally-occurring modifications. Polynucleotides may include any useful modification, for example, of a sugar, a nucleobase, or an internucleoside linkage (e.g., to a linking phosphate, to a phosphodiester linkage or to the phosphodiester backbone).

Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides), in some embodiments, comprise non-natural modified nucleotides that are introduced during synthesis or post-synthesis of the polynucleotides to achieve desired functions or properties. The modifications may be present on an internucleotide linkages, purine or pyrimidine

bases, or sugars. The modification may be introduced with chemical synthesis or with a polymerase enzyme at the terminal of a chain or anywhere else in the chain. Any of the regions of a polynucleotide may be chemically modified.

The present disclosure provides for modified nucleosides 5 and nucleotides of a polynucleotide (e.g., RNA polynucleotides, such as mRNA polynucleotides). A "nucleoside" refers to a compound containing a sugar molecule (e.g., a pentose or ribose) or a derivative thereof in combination with an organic base (e.g., a purine or pyrimidine) or a 10 derivative thereof (also referred to herein as "nucleobase"). A nucleotide" refers to a nucleoside, including a phosphate group. Modified nucleotides may by synthesized by any useful method, such as, for example, chemically, enzymatically, or recombinantly, to include one or more modified or 15 non-natural nucleosides. Polynucleotides may comprise a region or regions of linked nucleosides. Such regions may have variable backbone linkages. The linkages may be standard phosphdioester linkages, in which case the polynucleotides would comprise regions of nucleotides. 20

Modified nucleotide base pairing encompasses not only the standard adenosine-thymine, adenosine-uracil, or guanosine-cytosine base pairs, but also base pairs formed between nucleotides and/or modified nucleotides comprising non-standard or modified bases, wherein the arrange-25 ment of hydrogen bond donors and hydrogen bond acceptors permits hydrogen bonding between a non-standard base and a standard base or between two complementary non-standard base structures. One example of such non-standard base pairing is the base pairing between the modified nucleotide 30 inosine and adenine, cytosine or uracil. Any combination of base/sugar or linker may be incorporated into polynucleotides of the present disclosure.

Modifications of polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) that are useful in the 35 vaccines of the present disclosure include, but are not limited to the following: 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine; 2-methylthio-N6-methyladenosine; 2-methylthio-N6-threonyl carbamoyladenosine; N6-glycinylcarbamoyladenosine; N6-isopentenyladenosine; 40 N6-methyladenosine; N6-threonylcarbamoyladenosine; 1,2'-O-dimethyladenosine; 1-methyladenosine; 2'-O-methyladenosine; 2'-O-ribosyladenosine (phosphate); 2-methyladenosine; 2-methylthio-N6 isopentenyladenosine; 2-methylthio-N6-hydroxynorvalyl carbamoyladenosine; 2'-O- 45 methyladenosine; 2'-O-ribosyladenosine (phosphate); Isopentenyladenosine; N6-(cis-hydroxyisopentenyl)adenosine; N6,2'-O-dimethyladenosine; N6,2'-O-dimethyladenosine; N6,N6,2'-O-trimethyladenosine; N6,N6-dimethyladenosine; N6-acetyladenosine; 50 N6-hydroxynorvalylcarbamoyladenosine; N6-methyl-N6threonylcarbamoyladenosine; 2-methyladenosine; 2-methylthio-N6-isopentenyladenosine; 7-deaza-adenosine; N1-methyl-adenosine; N6, N6 (dimethyl)adenine; N6-cishydroxy-isopentenyl-adenosine; α -thio-adenosine; 2 55 (amino)adenine; 2 (aminopropyl)adenine; 2 (methylthio) N6 (isopentenyl)adenine; 2-(alkyl)adenine; 2-(aminoalkyl)adenine; 2-(aminopropyl)adenine; 2-(halo)adenine; 2-(halo) adenine; 2-(propyl)adenine; 2'-Amino-2'-deoxy-ATP; 2'-Azido-2'-deoxy-ATP; 2'-Deoxy-2'-a-aminoadenosine TP; 60 2'-Deoxy-2'-a-azidoadenosine TP; 6 (alkyl)adenine; 6 (methyl)adenine; 6-(alkyl)adenine; 6-(methyl)adenine; (deaza)adenine; 8 (alkenyl)adenine; 8 (alkynyl)adenine; 8 (amino)adenine; 8 (thioalkyl)adenine; 8-(alkenyl)adenine; 8-(alkyl)adenine; 8-(alkynyl)adenine; 8-(amino)adenine; 65 8-(halo)adenine; 8-(hydroxyl)adenine; 8-(thioalkyl)adenine; 8-(thiol)adenine; 8-azido-adenosine; aza adenine; deaza

adenine; N6 (methyl)adenine; N6-(isopentyl)adenine; 7-deaza-8-aza-adenosine; 7-methyladenine; 1-Deazaadenosine TP; 2'Fluoro-N6-Bz-deoxyadenosine TP; 2'-OMe-2-Amino-ATP; 2'O-methyl-N6-Bz-deoxyadenosine TP; 2'-a-Ethynyladenosine TP; 2-aminoadenine; 2-Aminoadenosine TP; 2-Amino-ATP; 2'-a-Trifluoromethyladenosine TP; 2-Azidoadenosine TP; 2'-b-Ethynyladenosine TP; 2-Bromoadenosine TP; 2'-b-Trifluoromethyladenosine TP: 2-Chloroadenosine TP; 2'-Deoxy-2', 2'-difluoroadenosine TP; 2'-Deoxy-2'-a-mercaptoadenosine TP; 2'-Deoxy-2'-athiomethoxyadenosine TP; 2'-Deoxy-2'-b-aminoadenosine TP; 2'-Deoxy-2'-b-azidoadenosine TP; 2'-Deoxy-2'-b-bromoadenosine TP; 2'-Deoxy-2'-b-chloroadenosine TP; 2'-Deoxy-2'-b-fluoroadenosine TP; 2'-Deoxy-2'-b-iodoadenosine TP; 2'-Deoxy-2'-b-mercaptoadenosine TP; 2'-Deoxy-2'-bthiomethoxyadenosine TP; 2-Fluoroadenosine TP; 2-lodoadenosine TP; 2-Mercaptoadenosine TP; 2-methoxy-adenine; 2-methylthio-adenine; 2-Trifluoromethyladenosine TP; 3-Deaza-3-bromoadenosine TP; 3-Deaza-3-chloroadenosine TP: 3-Deaza-3-fluoroadenosine TP: 3-Deaza-3-iodoadenosine TP; 3-Deazaadenosine TP; 4'-Azidoadenosine TP; 4'-Carbocyclic adenosine TP; 4'-Ethynyladenosine TP; 5'-Homo-adenosine TP; 8-Aza-ATP; 8-bromo-adenosine TP; 8-Trifluoromethyladenosine TP; 9-Deazaadenosine TP; 2-aminopurine; 7-deaza-2,6-diaminopurine; 7-deaza-8-aza-2,6-diaminopurine; 7-deaza-8-aza-2-aminopurine; 2,6-diaminopurine; 7-deaza-8-aza-adenine, 7-deaza-2-aminopurine; 2-thiocytidine; 3-methylcytidine; 5-formylcytidine; 5-hydroxymethylcytidine; 5-methylcytidine; N4-acetylcytidine; 2'-O-methylcytidine; 2'-O-methylcytidine; 5,2'-O-dimethylcytidine; 5-formyl-2'-O-methylcytidine; Lysidine; N4,2'-O-dimethylcytidine; N4-acetyl-2'-O-methylcytidine; N4-methylcytidine; N4,N4-Dimethyl-2'-OMe-Cytidine TP; 4-methylcytidine; 5-aza-cytidine; Pseudo-iso-cytidine; pyrrolo-cytidine; α-thio-cytidine; 2-(thio)cytosine; 2'-Amino-2'-deoxy-CTP; 2'-Azido-2'-deoxy-CTP; 2'-Deoxy-2'-aaminocytidine TP; 2'-Deoxy-2'-a-azidocytidine TP; 3 (deaza) 5 (aza)cytosine; 3 (methyl)cytosine; 3-(alkyl)cytosine; 3-(deaza) 5 (aza)cytosine; 3-(methyl)cytidine; 4,2'-Odimethylcytidine; 5 (halo)cytosine; 5 (methyl)cytosine; 5 (propynyl)cytosine; 5 (trifluoromethyl)cytosine; 5-(alkyl) cytosine; 5-(alkynyl)cytosine; 5-(halo)cytosine; 5-(propynyl)cytosine; 5-(trifluoromethyl)cytosine; 5-bromo-cytidine; 5-iodo-cytidine; 5-propynyl cytosine; 6-(azo)cytosine; 6-aza-cytidine; aza cytosine; deaza cytosine; N4 (acetyl) cytosine; 1-methyl-1-deaza-pseudoisocytidine; 1-methylpseudoisocvtidine; 2-methoxy-5-methyl-cytidine: 2-methoxy-cytidine; 2-thio-5-methyl-cytidine; 4-methoxy-1-methyl-pseudoisocytidine; 4-methoxy-pseudoisocytidine; 4-thio-1-methyl-1-deaza-pseudoisocytidine; 4-thio-1methyl-pseudoisocytidine; 4-thio-pseudoisocytidine; 5-azazebularine; 5-methyl-zebularine; pyrrolo-pseudoisocytidine; Zebularine; (E)-5-(2-Bromo-vinyl)cytidine TP; 2,2'-anhydro-cytidine TP hydrochloride; 2'Fluor-N4-Bz-cytidine TP; 2'Fluoro-N4-Acetyl-cytidine TP; 2'-O-Methyl-N4-Acetyl-cytidine TP; 2'O-methyl-N4-Bz-cytidine TP; 2'-a-Ethynylcytidine TP; 2'-a-Trifluoromethylcytidine TP; 2'-b-Ethynylcytidine TP; 2'-b-Trifluoromethylcytidine TP; 2'-Deoxy-2', 2'-difluorocytidine TP; 2'-Deoxy-2'-a-mercaptocytidine TP; 2'-Deoxy-2'-a-thiomethoxycytidine TP; 2'-Deoxy-2'-b-aminocytidine TP; 2'-Deoxy-2'-b-azidocytidine TP; 2'-Deoxy-2'-b-bromocytidine TP; 2'-Deoxy-2'-bchlorocytidine TP; 2'-Deoxy-2'-b-fluorocytidine TP; 2'-Deoxy-2'-b-iodocytidine TP; 2'-Deoxy-2'-b-mercaptocytidine TP; 2'-Deoxy-2'-b-thiomethoxycytidine TP; 2'-O-Methyl-5-(1-propynyl)cytidine TP; 3'-Ethynylcytidine TP; 4'-Azidocytidine TP; 4'-Carbocyclic cytidine TP; 4'-Ethynylcytidine

methyluridine;

TP; 5-(1-Propynyl)ara-cytidine TP; 5-(2-Chloro-phenyl)-2thiocytidine TP; 5-(4-Amino-phenyl)-2-thiocytidine TP; 5-Aminoallyl-CTP; 5-Cyanocytidine TP; 5-Ethynylara-cytidine TP; 5-Ethynylcytidine TP; 5'-Homo-cytidine TP; 5-Methoxycytidine TP; 5-Trifluoromethyl-Cytidine TP; 5 N4-Amino-cytidine TP; N4-Benzoyl-cytidine TP; Pseudoisocytidine; 7-methylguanosine; N2,2'-O-dimethylguanosine; N2-methylguanosine; Wyosine; 1,2'-O-dimethylguanosine; 1-methylguanosine; 2'-O-methylguanosine; 2'-O-ribosylguanosine (phosphate); 2'-O-methylguanosine; 10 2'-O-ribosylguanosine (phosphate); 7-aminomethyl-7deazaguanosine; 7-cyano-7-deazaguanosine; Archaeosine; Methylwyosine; N2,7-dimethylguanosine; N2,N2,2'-Otrimethylguanosine; N2,N2,7-trimethylguanosine; N2,N2dimethylguanosine; N2,7,2'-O-trimethylguanosine; 6-thio- 15 7-deaza-guanosine; 8-oxo-guanosine; guanosine; N1-methyl-guanosine; α -thio-guanosine; 2 (propyl)guanine; 2-(alkyl)guanine; 2'-Amino-2'-deoxy-GTP; 2'-Azido-2'-deoxy-GTP; 2'-Deoxy-2'-a-aminoguanosine TP; 2'-Deoxy-2'a-azidoguanosine TP; 6 (methyl)guanine; 6-(alkyl)guanine; 20 6-(methyl)guanine; 6-methyl-guanosine; 7 (alkyl)guanine; 7 (deaza)guanine; 7 (methyl)guanine; 7-(alkyl)guanine; 7-(deaza)guanine; 7-(methyl)guanine; 8 (alkyl)guanine; 8 (alkynyl)guanine; 8 (halo)guanine; 8 (thioalkyl)guanine; 8-(alkenyl)guanine; 8-(alkyl)guanine; 8-(alkynyl)guanine; 25 8-(amino)guanine; 8-(halo)guanine; 8-(hydroxyl)guanine; 8-(thioalkyl)guanine; 8-(thiol)guanine; aza guanine; deaza guanine; N (methyl)guanine; N-(methyl)guanine; 1-methyl-6-thio-guanosine; 6-methoxy-guanosine; 6-thio-7-deaza-8aza-guanosine; 6-thio-7-deaza-guanosine; 6-thio-7-methyl- 30 7-deaza-8-aza-guanosine; guanosine; 7-methyl-8-oxoguanosine; N2,N2-dimethyl-6-thio-guanosine; N2-methyl-6-thio-guanosine; 1-Me-GTP: 2'Fluoro-N2-isobutylguanosine TP; 2'O-methyl-N2-isobutyl-guanosine TP; 2'-a-Ethynylguanosine TP; 2'-a-Trifluoromethylguanosine TP; 35 2'-b-Ethynylguanosine TP; 2'-b-Trifluoromethylguanosine TP; 2'-Deoxy-2', 2'-difluoroguanosine TP; 2'-Deoxy-2'-amercaptoguanosine TP; 2'-Deoxy-2'-a-thiomethoxyguanosine TP; 2'-Deoxy-2'-b-aminoguanosine TP; 2'-Deoxy-2'-bazidoguanosine TP; 2'-Deoxy-2'-b-bromoguanosine TP; 40 2'-Deoxy-2'-b-chloroguanosine TP; 2'-Deoxy-2'-b-fluoroguanosine TP; 2'-Deoxy-2'-b-iodoguanosine TP; 2'-Deoxy-2'-b-mercaptoguanosine TP; 2'-Deoxy-2'-b-thiomethoxyguanosine TP; 4'-Azidoguanosine TP; 4'-Carbocyclic guanosine TP; 4'-Ethynylguanosine TP; 45 5'-Homo-guanosine TP; 8-bromo-guanosine TP; 9-Deazaguanosine TP: N2-isobutyl-guanosine TP: 1-methylinosine; 1,2'-O-dimethylinosine; 2'-O-methylinosine; Inosine: 7-methylinosine; 2'-O-methylinosine; Epoxyqueuosine; galactosyl-queuosine; Mannosylqueuosine; Queuosine; 50 allyamino-thymidine; aza thymidine; deaza thymidine; deoxy-thymidine; 2'-O-methyluridine; 2-thiouridine; 3-methyluridine; 5-carboxymethyluridine; 5-hydroxyuridine; 5-methyluridine; 5-taurinomethyl-2-thiouridine; 5-taurinomethyluridine; Dihydrouridine; Pseudouridine; (3-(3- 55 amino-3-carboxypropyl)uridine; 1-methyl-3-(3-amino-5carboxypropyl)pseudouridine; 1-methylpseduouridine; 1-methyl-pseudouridine; 2'-O-methyluridine; 2'-O-methylpseudouridine; 2'-O-methyluridine; 2-thio-2'-O-methyluridine; 3-(3-amino-3-carboxypropyl)uridine; 3,2'-O-dimethy- 60 luridine; 3-Methyl-pseudo-Uridine TP; 4-thiouridine; 5-(carboxyhydroxymethyl)uridine; 5-(carboxyhydroxymethyl)uridine methyl ester; 5,2'-O-dimethyluridine; 5,6-dihydro-uridine; 5-aminomethyl-2-thiouridine; 5-carbamoylmethyl-2'-O-methyluridine; 5-carbamoylmethyluridine; 65 5-carboxyhydroxymethyluridine; 5-carboxyhydroxymethyluridine methyl ester; 5-carboxymethylaminomethyl-2'-O-

5-carboxymethylaminomethyl-2-thiouri-

5-carboxymethylaminomethyl-2-thiouridine; dine; 5-carboxymethylaminomethyluridine; 5-carboxymethylaminomethyluridine; 5-Carbamoylmethyluridine TP: 5-methoxycarbonylmethyl-2'-O-methyluridine; 5-methoxycarbonylmethyl-2-thiouridine; 5-methoxycarbonylmethyluridine; 5-methoxyuridine; 5-methyl-2-thiouridine; 5-methylaminomethyl-2-selenouridine; 5-methylaminomethyl-2thiouridine; 5-methylaminomethyluridine; 5-Methyldihydrouridine; 5-Oxyacetic acid-Uridine TP; 5-Oxyacetic acid-methyl ester-Uridine TP; N1-methylpseudo-uridine; uridine 5-oxyacetic acid; uridine 5-oxyacetic acid methyl ester; 3-(3-Amino-3-carboxypropyl)-Uridine TP; 5-(iso-Pentenylaminomethyl)-2-thiouridine TP; 5-(iso-Pentenylaminomethyl)-2'-O-methyluridine TP; 5-(iso-Pentenylaminomethyl)uridine TP; 5-propynyl uracil; α -thio-uridine; 1 (aminoalkylamino-carbonylethylenyl)-2 (thio)-pseudouracil; 1 (aminoalkylaminocarbonylethylenyl)-2,4-(dithio)pseudouracil; 1 (aminoalkylaminocarbo-(thio)pseudouracil: nvlethvlenvl)-4 1 (aminoalkylaminocarbonylethylenyl)-pseudouracil; 1 (aminocarbonylethylenyl)-2(thio)-pseudouracil; 1 (aminocarbonylethylenyl)-2,4-(dithio)pseudouracil; 1 (aminocarbonylethylenyl)-4 (thio)pseudouracil; 1 (aminocarbonylethvlenvl)-pseudouracil; 1 substituted 2(thio)-pseudouracil; 1 substituted 2,4-(dithio)pseudouracil; 1 substituted 4 (thio) pseudouracil; 1 substituted pseudouracil; 1-(aminoalkylamino-carbonylethylenyl)-2-(thio)-pseudouracil; 1-Methyl-3-(3-amino-3-carboxypropyl) pseudouridine TP; 1-Methyl-3-(3-amino-3-carboxypropyl)pseudo-UTP; 1-Methyl-pseudo-UTP; 2 (thio)pseudouracil; 2' deoxy uridine; 2' fluorouridine; 2-(thio)uracil; 2,4-(dithio)psuedouracil; 2' methyl, 2'amino, 2' azido, 2'fluro-guanosine; 2'-Amino-2'-deoxy-UTP; 2'-Azido-2'-deoxy-UTP; 2'-Azido-deoxyuridine TP; 2'-O-methylpseudouridine; 2' deoxy uridine; 2' fluorouridine; 2'-Deoxy-2'-a-aminouridine TP; 2'-Deoxy-2'-a-azidouridine TP; 2-methylpseudouridine; 3 (3 amino-3 carboxypropyl)uracil; 4 (thio)pseudouracil; 4-(thio)pseudouracil; 4-(thio)uracil; 4-thiouracil; 5 (1,3-diazole-1-alkyl)uracil; 5 (2-aminopropyl)uracil; 5 (aminoalkyl)uracil; 5 (dimethylaminoalkyl)uracil; 5 (guanidiniumalkyl)uracil; 5 (methoxycarbonylmethyl)-2-(thio)uracil; 5 (methoxycarbonyl-methyl)uracil; 5 (methyl) 2 (thio)uracil; 5 (methyl) 2,4 (dithio)uracil; 5 (methyl) 4 (thio)uracil; 5 (methylaminomethyl)-2 (thio)uracil; 5 (methylaminomethyl)-2,4 (dithio)uracil; 5 (methylaminomethyl)-4 (thio) uracil; 5 (propynyl)uracil; 5 (trifluoromethyl)uracil; 5-(2aminopropyl)uracil; 5-(alkyl)-2-(thio)pseudouracil; (dithio)pseudouracil; 5-(alkyl)-4 5-(alkyl)-2,4 (thio) pseudouracil; 5-(alkyl)pseudouracil; 5-(alkyl)uracil; 5-(alkynyl)uracil; 5-(allylamino)uracil; 5-(cyanoalkyl)uracil; 5-(dialkylaminoalkyl)uracil; 5-(dimethylaminoalkyl) uracil; 5-(guanidiniumalkyl)uracil; 5-(halo)uracil; 5-(1,3-diazole-1-alkyl)uracil; 5-(methoxy)uracil; 5-(methoxycarbonylmethyl)-2-(thio)uracil; 5-(methoxycarbonyl-methyl)uracil; 5-(methyl) 2(thio)uracil; 5-(methyl) 2,4 (dithio)uracil; 5-(methyl) 4 (thio)uracil; 5-(methyl)-2-(thio)pseudouracil; 5-(methyl)-2,4 (dithio)pseudouracil; 5-(methyl)-4 (thio)pseudouracil; 5-(methyl)pseudouracil; 5-(methylaminomethyl)-2 (thio)uracil; 5-(methylaminomethyl)-2,4(dithio)uracil; 5-(methylaminomethyl)-4-(thio) uracil: 5-(propynyl)uracil; 5-(trifluoromethyl)uracil; 5-aminoallyl-uridine; 5-bromo-uridine; 5-iodo-uridine;

5-uracil; 6 (azo)uracil; 6-(azo)uracil; 6-aza-uridine; allyamino-uracil; aza uracil; deaza uracil; N3 (methyl)uracil; Pseudo-UTP-1-2-ethanoic acid; Pseudouracil; 4-Thiopseudo-UTP; 1-carboxymethyl-pseudouridine; 1-methyl-1deaza-pseudouridine; 1-propynyl-uridine; 1-taurinomethyl-1-methyl-uridine; 1-taurinomethyl-4-thio-uridine; 1-taurinomethyl-pseudouridine; 2-methoxy-4-thio-pseudouridine; 2-thio-1-methyl-1-deaza-pseudouridine; 2-thio-1methyl-pseudouridine; 2-thio-5-aza-uridine; 2-thio-dihy- 5 dropseudouridine; 2-thio-dihydrouridine; 2-thio-4-methoxy-2-thio-pseudouridine; pseudouridine; 4-methoxy-pseudouridine; 4-thio-1-methyl-pseudouridine; 4-thio-pseudouridine; 5-aza-uridine; Dihydropseudouridine; (±) 1-(2-Hydroxypropyl)pseudouridine TP; (2R)-1-(2-Hy- 10 droxypropyl)pseudouridine TP; (2S)-1-(2-Hydroxypropyl) pseudouridine TP; (E)-5-(2-Bromo-vinyl)ara-uridine TP; (E)-5-(2-Bromo-vinyl)uridine TP; (Z)-5-(2-Bromo-vinyl) ara-uridine TP; (Z)-5-(2-Bromo-vinyl)uridine TP; 1-(2,2,2-Trifluoroethyl)-pseudo-UTP; 1-(2,2,3,3,3-Pentafluoropro- 15 pyl)pseudouridine TP; 1-(2,2-Diethoxyethyl)pseudouridine TP; 1-(2,4,6-Trimethylbenzyl)pseudouridine TP; 1-(2,4,6-Trimethyl-benzyl)pseudo-UTP; 1-(2,4,6-Trimethyl-phenyl) pseudo-UTP; 1-(2-Amino-2-carboxyethyl)pseudo-UTP; 1-(2-Amino-ethyl)pseudo-UTP; 1-(2-Hvdroxvethvl) 20 pseudouridine TP; 1-(2-Methoxyethyl)pseudouridine TP; 1-(3,4-Bis-trifluoromethoxybenzyl)pseudouridine TP; 1-(3, 4-Dimethoxybenzyl)pseudouridine TP; 1-(3-Amino-3-carboxypropyl)pseudo-UTP; 1-(3-Amino-propyl)pseudo-UTP; 1-(3-Cyclopropyl-prop-2-ynyl)pseudouridine TP; 1-(4- 25 Amino-4-carboxybutyl)pseudo-UTP; 1-(4-Amino-benzyl) pseudo-UTP; 1-(4-Amino-butyl)pseudo-UTP; 1-(4-Aminophenyl)pseudo-UTP; 1-(4-Azidobenzyl)pseudouridine TP; 1-(4-Bromobenzyl)pseudouridine TP; 1-(4-Chlorobenzyl) pseudouridine TP; 1-(4-Fluorobenzyl)pseudouridine TP; 30 1-(4-Iodobenzyl)pseudouridine TP; 1-(4-Methanesulfonylbenzyl)pseudouridine TP; 1-(4-Methoxybenzyl)pseudouridine TP; 1-(4-Methoxy-benzyl)pseudo-UTP; 1-(4-Methoxyphenyl)pseudo-UTP; 1-(4-Methylbenzyl)pseudouridine TP; 1-(4-Methyl-benzyl)pseudo-UTP; 1-(4-Nitrobenzyl) 35 pseudouridine TP; 1-(4-Nitro-benzyl)pseudo-UTP; 1(4-Nitro-phenyl)pseudo-UTP; 1-(4-Thiomethoxybenzyl) pseudouridine TP; 1-(4-Trifluoromethoxybenzyl) pseudouridine TP: 1-(4-Trifluoromethylbenzyl) pseudouridine TP; 1-(5-Amino-pentyl)pseudo-UTP; 1-(6- 40 Amino-hexyl)pseudo-UTP; 1,6-Dimethyl-pseudo-UTP; 1-[3-(2-{2-[2-(2-Aminoethoxy)-ethoxy]-ethoxy}-ethoxy)propionyl]pseudouridine TP; 1-{3-[2-(2-Aminoethoxy)ethoxy]-propionyl}pseudouridine TP; 1-Acetylpseudouridine TP; 1-Alkyl-6-(1-propynyl)-pseudo-UTP; 1-Alkyl-6- 45 (2-propynyl)-pseudo-UTP; 1-Alkyl-6-allyl-pseudo-UTP; 1-Alkyl-6-ethynyl-pseudo-UTP; 1-Alkvl-6-homoallvlpseudo-UTP; 1-Alkyl-6-vinyl-pseudo-UTP; 1-Allylpseudouridine TP; 1-Aminomethyl-pseudo-UTP; 1-Benzoylpseudouridine TP; 1-Benzyloxymethylpseudouridine TP; 50 1-Benzyl-pseudo-UTP; 1-Biotinyl-PEG2-pseudouridine TP; 1-Biotinylpseudouridine TP; 1-Butyl-pseudo-UTP; 1-Cyanomethylpseudouridine TP; 1-Cyclobutylmethyl-pseudo-UTP; 1-Cyclobutyl-pseudo-UTP; 1-Cycloheptylmethylpseudo-UTP; 1-Cycloheptyl-pseudo-UTP; 55 1-Cyclohexylmethyl-pseudo-UTP; 1-Cyclohexyl-pseudo-UTP: 1-Cyclooctylmethyl-pseudo-UTP; 1-Cyclooctylpseudo-UTP; 1-Cyclopentylmethyl-pseudo-UTP; 1-Cyclopentyl-pseudo-UTP; 1-Cyclopropylmethyl-pseudo-UTP; 1-Cyclopropyl-pseudo-UTP; 1-Ethyl-pseudo-UTP; 60 1-Hexyl-pseudo-UTP; 1-Homoallylpseudouridine TP; 1-Hydroxymethylpseudouridine TP; 1-iso-propyl-pseudo-UTP; 1-Me-2-thio-pseudo-UTP; 1-Me-4-thio-pseudo-UTP; 1-Me-alpha-thio-pseudo-UTP; 1-Methanesulfonylmethylpseudouridine TP; 1-Methoxymethylpseudouridine TP; 65 1-Methyl-6-(2,2,2-Trifluoroethyl)pseudo-UTP; 1-Methyl-6-(4-morpholino)-pseudo-UTP; 1-Methyl-6-(4-thiomor56

pholino)-pseudo-UTP; 1-Methyl-6-(substituted phenyl) pseudo-UTP; 1-Methyl-6-amino-pseudo-UTP; 1-Methyl-6azido-pseudo-UTP; 1-Methyl-6-bromo-pseudo-UTP; 1-Methyl-6-butyl-pseudo-UTP; 1-Methyl-6-chloro-pseudo-UTP; 1-Methyl-6-cyano-pseudo-UTP; 1-Methyl-6-dimethylamino-pseudo-UTP; 1-Methyl-6-ethoxy-pseudo-UTP; 1-Methyl-6-ethylcarboxylate-pseudo-UTP; 1-Methyl-6-1-Methyl-6-fluoro-pseudo-UTP; ethyl-pseudo-UTP; 1-Methyl-6-formyl-pseudo-UTP; 1-Methyl-6-hydroxyamino-pseudo-UTP; 1-Methyl-6-hydroxy-pseudo-UTP; 1-Methyl-6-iodo-pseudo-UTP; 1-Methyl-6-iso-propyl-pseudo-UTP; 1-Methyl-6-methoxy-pseudo-UTP; 1-Methyl-6-methylamino-pseudo-UTP; 1-Methyl-6-phenylpseudo-UTP; 1-Methyl-6-propyl-pseudo-UTP; 1-Methyl-6tert-butyl-pseudo-UTP; 1-Methyl-6-trifluoromethoxypseudo-UTP; 1-Methyl-6-trifluoromethyl-pseudo-UTP; 1-Morpholinomethylpseudouridine TP; 1-Pentyl-pseudo-UTP; 1-Phenyl-pseudo-UTP; 1-Pivaloylpseudouridine TP; TP; 1-Propyl-pseudo-UTP; 1-Propargylpseudouridine 1-propynyl-pseudouridine; 1-p-tolyl-pseudo-UTP; 1-tert-Butyl-pseudo-UTP; 1-Thiomethoxymethylpseudouridine TP; 1-Thiomorpholinomethylpseudouridine TP; 1-Trifluoroacetylpseudouridine TP; 1-Trifluoromethyl-pseudo-UTP; 1-Vinylpseudouridine TP; 2,2'-anhydro-uridine TP: 2'-bromo-deoxyuridine TP; 2'-F-5-Methyl-2'-deoxy-UTP; 2'-OMe-5-Me-UTP; 2'-OMe-pseudo-UTP; 2'-a-Ethynyluridine TP; 2'-a-Trifluoromethyluridine TP; 2'-b-Ethynyluridine TP; 2'-b-Trifluoromethyluridine TP; 2'-Deoxy-2', 2'-difluorouridine TP; 2'-Deoxy-2'-a-mercaptouridine TP; 2'-Deoxy-2'-a-thiomethoxyuridine TP; 2'-Deoxy-2'-b-aminouridine TP; 2'-Deoxy-2'-b-azidouridine TP; 2'-Deoxy-2'-bbromouridine TP; 2'-Deoxy-2'-b-chlorouridine TP; 2'-Deoxy-2'-b-fluorouridine TP; 2'-Deoxy-2'-b-iodouridine TP; 2'-Deoxy-2'-b-mercaptouridine TP; 2'-Deoxy-2'-b-thiomethoxyuridine TP; 2-methoxy-4-thio-uridine; 2-methoxyuridine; 2'-O-Methyl-5-(1-propynyl)uridine TP; 3-Alkyl-pseudo-UTP; 4'-Azidouridine TP; 4'-Carbocyclic uridine TP; 4'-Ethynyluridine TP; 5-(1-Propynyl)ara-uridine TP; 5-(2-Furanyl)uridine TP; 5-Cyanouridine TP; 5-Dimethylaminouridine TP; 5'-Homo-uridine TP; 5-iodo-2'fluoro-deoxyuridine TP; 5-Phenylethynyluridine TP; 5-Trideuteromethyl-6-deuterouridine TP; 5-Trifluoromethyl-Uridine TP; 5-Vinylarauridine TP; 6-(2,2,2-Trifluoroethyl)pseudo-UTP; 6-(4-Morpholino)-pseudo-UTP; 6-(4-Thiomorpholino)-pseudo-UTP; 6-(Substituted-Phenyl)pseudo-UTP; 6-Amino-pseudo-UTP; 6-Azido-pseudo-UTP; 6-Bromo-pseudo-UTP; 6-Butyl-pseudo-UTP; 6-Chloropseudo-UTP; 6-Cyano-pseudo-UTP; 6-Dimethylaminopseudo-UTP; 6-Ethoxy-pseudo-UTP; 6-Ethylcarboxylatepseudo-UTP; 6-Ethyl-pseudo-UTP; 6-Fluoro-pseudo-UTP; 6-Formyl-pseudo-UTP; 6-Hydroxyamino-pseudo-UTP; 6-Hydroxy-pseudo-UTP; 6-Iodo-pseudo-UTP; 6-iso-Propyl-pseudo-UTP; 6-Methoxy-pseudo-UTP; 6-Methylamino-pseudo-UTP; 6-Methyl-pseudo-UTP; 6-Phenylpseudo-UTP; 6-Phenyl-pseudo-UTP; 6-Propyl-pseudo-UTP; 6-tert-Butyl-pseudo-UTP; 6-Trifluoromethoxypseudo-UTP; 6-Trifluoromethyl-pseudo-UTP; Alpha-thiopseudo-UTP; Pseudouridine 1-(4-methylbenzenesulfonic acid) TP; Pseudouridine 1-(4-methylbenzoic acid) TP; Pseudouridine TP 1-[3-(2-ethoxy)]propionic acid; Pseudou-1-[3-{2-(2-[2-(2-ethoxy)-ethoxy]-ethoxy)ridine ΤP ethoxy}]propionic acid; Pseudouridine TP 1-[3-{2-(2-[2-{2 (2-ethoxy)-ethoxy]-ethoxy]-ethoxy]propionic acid; Pseudouridine TP 1-[3-{2-(2-[2-ethoxy]-ethoxy)ethoxy}]propionic acid; Pseudouridine TP 1-[3-{2-(2ethoxy)-ethoxy}] propionic acid; Pseudouridine TP 1-methylphosphonic acid; Pseudouridine TP 1-methylphosphonic

acid diethyl ester; Pseudo-UTP-N1-3-propionic acid; Pseudo-UTP-N1-4-butanoic acid; Pseudo-UTP-N1-5-pentanoic acid; Pseudo-UTP-N1-6-hexanoic acid; Pseudo-UTP-N1-7-heptanoic acid; Pseudo-UTP-N1-methyl-p-benzoic acid; Pseudo-UTP-N1-p-benzoic acid; Wybutosine; 5 Hvdroxywybutosine: Isowyosine: Peroxywybutosine: undermodified hydroxywybutosine; 4-demethylwyosine; 2,6-(diamino)purine; 1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl: 1,3-(diaza)-2-(oxo)-phenthiazin-1-yl; 1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 1,3,5-(triaza)-2,6-(dioxa)-naphthalene;2 (amino)purine;2,4,5-(trimethyl)phenyl;2' methyl, 2'amino, 2'azido, 2'fluro-cytidine;2' methyl, 2' amino, 2'azido, 2'fluro-adenine;2'methyl, 2'amino, 2' azido, 2'flurouridine;2'-amino-2'-deoxyribose; 2-amino-6-Chloro-purine; 15 2-aza-inosinyl; 2'-azido-2'-deoxyribose; 2'fluoro-2'-deoxyribose; 2'-fluoro-modified bases; 2'-O-methyl-ribose; 2-oxo-7-aminopyridopyrimidin-3-yl; 2-oxo-pyridopyrimidine-3yl; 2-pyridinone; 3 nitropyrrole; 3-(methyl)-7-(propynyl) isocarbostyrilyl; 3-(methyl)isocarbostyrilyl; 4-(fluoro)-6- 20 4-(methyl)benzimidazole; (methyl)benzimidazole; 4-(methyl)indolyl; 4,6-(dimethyl)indolyl; 5 nitroindole; 5 substituted pyrimidines; 5-(methyl)isocarbostyrilyl; 5-nitroindole; 6-(aza)pyrimidine; 6-(azo)thymine; 6-(methyl)-7-(aza)indolyl; 6-chloro-purine; 6-phenyl-pyrrolo-pyrimidin- 25 2-on-3-yl; 7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)phenthiazin-1-yl; 7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-7-(aminoalkylhydroxy)-1,3-3-(aza)-phenoxazin-1-yl; (diaza)-2-(oxo)-phenoxazin-1-yl; 7-(aminoalkylhydroxy)-1, 3-(diaza)-2-(oxo)-phenthiazin-1-yl;

7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1yl; 7-(aza)indolyl; 7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazinl-yl; 7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl;

7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phe- 35 noxazin-1-yl; 7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(guanidiniumalkyl-hydroxy)-1,3-(diaza)-2-(oxo)-phenthiazin-1-yl;

7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(propynyl)isocarbostyrilyl; 7-(propynyl)isocar- 40 bostyrilyl, propynyl-7-(aza)indolyl; 7-deaza-inosinyl; 7-substituted 1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl; 1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-substituted 9-(methyl)-imidizopyridinyl; Aminoindolyl; Anthracenyl; bis-ortho-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimi-45 din-2-on-3-yl; bis-ortho-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; Difluorotolyl; Hypoxanthine; Imidizopyridinyl; Inosinyl; Isocarbostyrilyl; Isoguanisine; N2-substituted purines; N6-methyl-2-amino-purine; N6-substituted purines; N-alkylated derivative; Napthale- 50 nyl; Nitrobenzimidazolyl; Nitroimidazolyl; Nitroindazolyl; Nitropyrazolyl; Nubularine; 06-substituted purines; O-alkylated derivative; ortho-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; ortho-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; Oxoformycin para- 55 TP: (aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3yl; para-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; Pentacenyl; Phenanthracenyl; Phenyl; propynyl-7-(aza)indolyl; Pyrenyl; pyridopyrimidin-3-yl; pyridopyrimidin-3-yl, 2-oxo-7-amino-pyridopyrimidin-3-yl; pyrrolo-pyrimidin-2- 60 on-3-yl; Pyrrolopyrimidinyl; Pyrrolopyrizinyl; Stilbenzyl; substituted 1,2,4-triazoles; Tetracenyl; Tubercidine; Xanthine; Xanthosine-5'-TP; 2-thio-zebularine; 5-aza-2-thio-zebularine; 7-deaza-2-amino-purine; pyridin-4-one ribonucleoside; 2-Amino-riboside-TP; Formycin A TP; 65 Formycin B TP; Pyrrolosine TP; 2'-OH-ara-adenosine TP; 2'-OH-ara-cytidine TP; 2'-OH-ara-uridine TP; 2'-OH-ara-

guanosine TP; 5-(2-carbomethoxyvinyl)uridine TP; and N6-(19-Amino-pentaoxanonadecyl)adenosine TP.

In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) include a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.

In some embodiments, modified nucleobases in polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) are selected from the group consisting of pseudouridine (ψ), N1-methylpseudouridine (m¹ ψ), N1-ethylpseudouridine, 2-thiouridine, 4'-thiouridine, 5-methylcyto sine. 2-thio-1-methyl-1-deaza-pseudouridine, 2-thio-1methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-pseudouridine, 4-methoxy-2-thio-pseudouridine, 4-methoxypseudouridine, 4-thio-1-methyl-pseudouridine, 4-thiopseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine and 2'-O-methyl uridine. In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) include a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.

In some embodiments, modified nucleobases in polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) are selected from the group consisting of 1-methyl-pseudouridine ($m^1\psi$), 5-methoxy-uridine (mo^5U), 5-methyl-cytidine (m^5C), pseudouridine (ψ), α -thio-guanosine and α -thio-adenosine. In some embodiments, polynucleotides includes a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.

In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise pseudouridine (v) and 5-methyl-cytidine (m⁵C). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 1-methylpseudouridine $(m^1\psi)$. In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 1-methyl-pseudouridine $(m^{1}\psi)$ and 5-methyl-cytidine (m⁵C). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 2-thiouridine (s²U). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 2-thiouridine and 5-methyl-cytidine (m⁵C). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise methoxy-uridine (mo⁵U). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 5-methoxy-uridine (mo⁵U) and 5-methyl-cytidine (m⁵C). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 2'-O-methyl uridine. In some embodiments polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise 2'-Omethyl uridine and 5-methyl-cytidine (m⁵C). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise N6-methyl-adenosine (m⁶A). In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) comprise N6-methyl-adenosine (m⁶A) and 5-methyl-cytidine (m⁵C).

In some embodiments, polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) are uniformly modified (e.g., fully modified, modified throughout the entire sequence) for a particular modification. For example, a polynucleotide can be uniformly modified with 5-methyl-cytidine ($m^{s}C$), meaning that all cytosine residues in the mRNA sequence are replaced with 5-methyl-cytidine ($m^{s}C$).

Similarly, a polynucleotide can be uniformly modified for any type of nucleoside residue present in the sequence by replacement with a modified residue such as those set forth above.

Exemplary nucleobases and nucleosides having a modi-5 fied cytosine include N4-acetyl-cytidine (ac4C), 5-methylcytidine (m5C), 5-halo-cytidine (e.g., 5-iodo-cytidine), 5-hydroxymethyl-cytidine (hm5C), 1-methyl-pseudoisocytidine, 2-thio-cytidine (s2C), and 2-thio-5-methyl-cytidine.

In some embodiments, a modified nucleobase is a modified uridine. Exemplary nucleobases and In some embodiments, a modified nucleobase is a modified cytosine. nucleosides having a modified uridine include 5-cyano uridine, and 4'-thio uridine.

In some embodiments, a modified nucleobase is a modi-15 fied adenine. Exemplary nucleobases and nucleosides having a modified adenine include 7-deaza-adenine, 1-methyladenosine (m1A), 2-methyl-adenine (m2A), and N6-methyladenosine (m6A).

In some embodiments, a modified nucleobase is a modi- 20 fied guanine. Exemplary nucleobases and nucleosides having a modified guanine include inosine (I), 1-methyl-inosine (m1I), wyosine (imG), methylwyosine (mimG), 7-deazaguanosine, 7-cyano-7-deaza-guanosine (preQO), 7-aminomethyl-7-deaza-guanosine (preQ1), 7-methyl-guanosine 25 (m7G), 1-methyl-guanosine (mIG), 8-oxo-guanosine, 7-methyl-8-oxo-guanosine.

The polynucleotides of the present disclosure may be partially or fully modified along the entire length of the molecule. For example, one or more or all or a given type of 30 nucleotide (e.g., purine or pyrimidine, or any one or more or all of A, G, U, C) may be uniformly modified in a polynucleotide of the disclosure, or in a given predetermined sequence region thereof (e.g., in the mRNA including or excluding the polyA tail). In some embodiments, all nucleo-35 tides X in a polynucleotide of the present disclosure (or in a given sequence region thereof) are modified nucleotides, wherein X may any one of nucleotides A, G, U, C, or any one of the combinations A+G, A+U, A+C, G+U, G+C, U+C, A+G+U, A+G+C, G+U+C or A+G+C. 40

The polynucleotide may contain from about 1% to about 100% modified nucleotides (either in relation to overall nucleotide content, or in relation to one or more types of nucleotide, i.e., any one or more of A, G, U or C) or any intervening percentage (e.g., from 1% to 20%, from 1% to 45 25%, from 1% to 50%, from 1% to 60%, from 1% to 70%, from 1% to 80%, from 1% to 90%, from 1% to 95%, from 10% to 20%, from 10% to 25%, from 10% to 50%, from 10% to 60%, from 10% to 70%, from 10% to 80%, from 10% to 90%, from 10% to 95%, from 10% to 100%, from 50 20% to 25%, from 20% to 50%, from 20% to 60%, from 20% to 70%, from 20% to 80%, from 20% to 90%, from 20% to 95%, from 20% to 100%, from 50% to 60%, from 50% to 70%, from 50% to 80%, from 50% to 90%, from 50% to 95%, from 50% to 100%, from 70% to 80%, from 55 70% to 90%, from 70% to 95%, from 70% to 100%, from 80% to 90%, from 80% to 95%, from 80% to 100%, from 90% to 95%, from 90% to 100%, and from 95% to 100%). Any remaining percentage is accounted for by the presence of unmodified A, G, U, or C.

The polynucleotides may contain at a minimum 1% and at maximum 100% modified nucleotides, or any intervening percentage, such as at least 5% modified nucleotides, at least 10% modified nucleotides, at least 25% modified nucleotides, at least 50% modified nucleotides, at least 80% 65 modified nucleotides, or at least 90% modified nucleotides. For example, the polynucleotides may contain a modified

pyrimidine such as a modified uracil or cytosine. In some embodiments, at least 5%, at least 10%, at least 25%, at least 50%, at least 80%, at least 90% or 100% of the uracil in the polynucleotide is replaced with a modified uracil (e.g., a 5-substituted uracil). The modified uracil can be replaced by a compound having a single unique structure, or can be replaced by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures). n some embodiments, at least 5%, at least 10%, at least 25%, at least 50%, at least 80%, at least 90% or 100% of the cytosine in the polynucleotide is replaced with a modified cytosine (e.g., a 5-substituted cytosine). The modified cytosine can be replaced by a compound having a single unique structure, or can be replaced by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures).

Thus, in some embodiments, the RNA (e.g., mRNA) vaccines comprise a 5'UTR element, an optionally codon optimized open reading frame, and a 3'UTR element, a poly(A) sequence and/or a polyadenylation signal wherein the RNA is not chemically modified.

In some embodiments, the modified nucleobase is a modified uracil. Exemplary nucleobases and nucleosides having a modified uracil include pseudouridine (ψ), pyridin-4-one ribonucleoside, 5-aza-uridine, 6-aza-uridine, 2-thio-5-aza-uridine, 2-thio-uridine (s^2U), 4-thio-uridine (s^4U), 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxy-uridine (ho⁵U), 5-aminoallyl-uridine, 5-halo-uridine (e.g., 5-iodo-uridineor 5-bromo-uridine), 3-methyl-uridine (m³U), 5-methoxy-uridine (mo⁵U), uridine 5-oxyacetic acid (cmo^{5}U) , uridine 5-oxyacetic acid methyl ester (mcmo⁵U), 5-carboxymethyl-uridine $(cm^{2}U),$ 1-carboxymethylpseudouridine, 5-carboxyhydroxymethyl-uridine (chm⁵U), 5-carboxyhydroxymethyl-uridine methyl ester (mchm⁵U), 5-methoxycarbonylmethyl-uridine (mcm⁵U), 5-methoxycarbonylmethyl-2-thio-uridine (mcm⁵s²U), 5-aminomethyl-2-thio-uridine (nm^5s^2U) , 5-methylaminomethyl-uridine (mnm⁵U), 5-methylaminomethyl-2-thio-uridine $(mnm^5s^2U),$ 5-methylaminomethyl-2-seleno-uridine (mnm⁵se²U), 5-carbamoylmethyl-uridine (ncm⁵U), 5-carboxymethylaminomethyl-uridine (cmnm⁵U), 5-carboxymethylaminomethyl-2-thio-uridine (cmnm⁵s²U), 5-propynyluridine, 1-propynyl-pseudouridine, 5-taurinomethyl-uridine ($\tau m^5 U$), 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2thio-uridine(m⁵s²U), 1-taurinomethyl-4-thio-pseudouridine, 5-methyl-uridine (m⁵U, i.e., having the nucleobase deoxythymine), 1-methyl-pseudouridine ($m^1\psi$), 5-methyl-2-thiouridine (m5s²U), 1-methyl-4-thio-pseudouridine (m¹s⁴ ψ), 4-thio-1-methyl-pseudouridine, 3-methyl-pseudouridine $(m^{3}\psi)$, 2-thio-1-methyl-pseudouridine, 1-methyl-1-deazapseudouridine, 2-thio-1-methyl-1-deaza-pseudouridine, dihydrouridine (D), dihydropseudouridine, 5,6-dihydrouridine, 5-methyl-dihydrouridine (m⁵D), 2-thio-dihydrouri-2-thio-dihydropseudouridine, 2-methoxy-uridine, dine. 2-methoxy-4-thio-uridine, 4-methoxy-pseudouridine, 4-methoxy-2-thio-pseudouridine, N1-methyl-pseudouridine. 3-(3-amino-3-carboxypropyl)uridine (acp³U), 1-methyl-3-(3-amino-3-carboxypropyl)pseudouridine (inm⁵U), $(acp^{3}\psi),$ 5-(isopentenylaminomethyl)uridine 5-(isopentenylaminomethyl)-2-thio-uridine $(inm^5s^2U),$ 60 α-thio-uridine, 2'-O-methyl-uridine (Um), 5,2'-O-dimethyluridine (msUm), 2'-O-methyl-pseudouridine (Wm), 2-thio-2'-O-methyl-uridine (s²Um), 5-methoxycarbonylmethyl-2'-O-methyl-uridine (mcm⁵Um), 5-carbamoylmethyl-2'-O-

D-methyl-uridine (mcm⁻Um), 5-carbamoyimethyl-2'-O-methyl-uridine (ncm⁵Um), 5-carboxymethylaminomethyl 2'-O-methyl-uridine (cmnm⁵Um), 3,2'-O-dimethyl-uridine (m³Um), and 5-(isopentenylaminomethyl)-2'-O-methyl-uridine (inm⁵Um), 1-thio-uridine, deoxythymidine, 2'-F-ara-

uridine, 2'-F-uridine, 2'-OH-ara-uridine, 5-(2-carbomethoxyvinyl) uridine, and 5-[3-(1-E-propenylamino)] uridine.

In some embodiments, the modified nucleobase is a modified cytosine. Exemplary nucleobases and nucleosides 5 having a modified cytosine include 5-aza-cytidine, 6-azacytidine, pseudoisocytidine, 3-methyl-cytidine $(m^{3}C),$ N4-acetyl-cytidine (ac^4C) , 5-formyl-cytidine (f⁵C), N4-methyl-cytidine (m⁴C), 5-methyl-cytidine $(m^{5}C),$ 5-halo-cytidine (e.g., 5-iodo-cytidine), 5-hydroxymethyl- 10 cytidine (hm⁵C), 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine (s²C), 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-4-thio-1-methyl-1-deaza-1-methyl-pseudoisocytidine, pseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, 15 zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocytidine, 4-methoxy-1-methyl-pseudoisocytidine, lysidine (k₂C), α -thio-cytidine, 2'-O-methyl-cytidine (Cm), 5.2'-O- 20 dimethyl-cytidine (m⁵Cm), N4-acetyl-2'-O-methyl-cytidine (ac⁴Cm), N4,2'-O-dimethyl-cytidine (m⁴Cm), 5-formyl-2'-O-methyl-cytidine (f^sCm), N4,N4,2'-O-trimethyl-cytidine (m⁴2Cm), 1-thio-cytidine, 2'-F-ara-cytidine, 2'-F-cytidine, and 2'-OH-ara-cytidine. 25

In some embodiments, the modified nucleobase is a modified adenine. Exemplary nucleobases and nucleosides having a modified adenine include 2-amino-purine, 2, 6-diaminopurine, 2-amino-6-halo-purine (e.g., 2-amino-6chloro-purine), 6-halo-purine (e.g., 6-chloro-purine), 30 2-amino-6-methyl-purine, 8-azido-adenosine, 7-deaza-ad-7-deaza-8-aza-adenine, 7-deaza-2-amino-purine, enine, 7-deaza-8-aza-2-amino-purine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, 1-methyl-adenosine (m¹A), 2-methyl-adenine (m²A), N6-methyl-adenosine 35 2-methylthio-N6-methyl-adenosine (ms^2m^6A) , $(m^{6}A),$ N6-isopentenyl-adenosine (i⁶A), 2-methylthio-N6-isopentenyl-adenosine (ms²i⁶A), N6-(cis-hydroxyisopentenyl)adenosine (io⁶A), 2-methylthio-N6-(cis-hydroxyisopentenyl) adenosine (ms²io⁶A), N6-glycinylcarbamoyl-adenosine 40 (g⁶A), N6-threonylcarbamoyl-adenosine (t⁶A), N6-methyl-N6-threonylcarbamoyl-adenosine (m6t6A), 2-methylthio-N6-threonylcarbamoyl-adenosine (ms²g⁶A), N6,N6-dimethyl-adenosine (m⁶2A), N6-hydroxynorvalylcarbamoyl- $(hn^6A),$ 2-methylthio-N6- 45 adenosine $(ms^2hn^6A),$ hydroxynorvalylcarbamoyl-adenosine N6-acetyl-adenosine (ac⁶A), 7-methyl-adenine, 2-methylthio-adenine, 2-methoxy-adenine, α-thio-adenosine, 2'-O-N6,2'-O-dimethyl-adenosine methyl-adenosine (Am), (m⁶Am), N6,N6,2'-O-trimethyl-adenosine (m⁶2Am), 1,2'- 50 O-dimethyl-adenosine (m¹Am), 2'-O-ribosyladenosine (phosphate) (Ar(p)), 2-amino-N6-methyl-purine, 1-thio-adenosine, 8-azido-adenosine, 2'-F-ara-adenosine, 2'-F-adenosine, 2'-OH-ara-adenosine, and N6-(19-amino-pentaoxanonadecv1)-adenosine.

In some embodiments, the modified nucleobase is a modified guanine. Exemplary nucleobases and nucleosides having a modified guanine include inosine (I), 1-methylinosine (m¹I), wyosine (imG), methylwyosine (mimG), 4-demethyl-wyosine (imG-14), isowyosine (imG2), wybu- 60 tosine (yW), peroxywybutosine (o₂yW), hydroxywybutosine (OhyW), undermodified hydroxywybutosine (OhyW*), 7-deaza-guanosine, queuosine (Q), epoxyqueuosine (oQ), galactosyl-queuosine (galQ), mannosyl-queuosine (manQ), 7-cyano-7-deaza-guanosine (preQ₀), 7-aminomethyl-7- 65 deaza-guanosine (preQ₁), archaeosine (G⁺), 7-deaza-8-azaguanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine,

6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine 6-thio-7-methyl-guanosine, $(m^{7}G),$ 7-methyl-inosine, 6-methoxy-guanosine, 1-methyl-guanosine (mG). N2-methyl-guanosine (m^2G) , N2,N2-dimethyl-guanosine (m²2G), N2,7-dimethyl-guanosine (m^{2,7}G), N2, N2,7-dimethyl-guanosine (m^{2,2,7}G), 8-oxo-guanosine, 7-methyl-8oxo-guanosine, 1-methyl-6-thio-guanosine, N2-methyl-6thio-guanosine, N2,N2-dimethyl-6-thio-guanosine, a-thioguanosine, 2'-O-methyl-guanosine (Gm), N2-methyl-2'-Omethyl-guanosine (m²Gm), N2,N2-dimethyl-2'-O-methylguanosine (m²2Gm), 1-methyl-2'-O-methyl-guanosine (mGm), N2,7-dimethyl-2'-O-methyl-guanosine (m²'7Gm), 2'-O-methyl-inosine (Im), 1,2'-O-dimethyl-inosine (m¹Im), 2'-O-ribosylguanosine (phosphate) (Gr(p)), 1-thio-guanosine, 06-methyl-guanosine, 2'-F-ara-guanosine, and 2'-Fguanosine.

N-Linked Glycosylation Site Mutants

N-linked glycans of viral proteins play important roles in modulating the immune response. Glycans can be important for maintaining the appropriate antigenic conformations, shielding potential neutralization epitopes, and may alter the proteolytic susceptibility of proteins. Some viruses have putative N-linked glycosylation sites. Deletion or modification of an N-linked glycosylation site may enhance the immune response. Thus, the present disclosure provides, in some embodiments, RNA (e.g., mRNA) vaccines comprising nucleic acids (e.g., mRNA) encoding antigenic polypeptides that comprise a deletion or modification at one or more N-linked glycosylation sites.

In Vitro Transcription of RNA (e.g., mRNA)

Respiratory virus vaccines of the present disclosure comprise at least one RNA polynucleotide, such as a mRNA (e.g., modified mRNA). mRNA, for example, is transcribed in vitro from template DNA, referred to as an "in vitro transcription template." In some embodiments, an in vitro transcription template encodes a 5' untranslated (UTR) region, contains an open reading frame, and encodes a 3' UTR and a polyA tail. The particular nucleic acid sequence composition and length of an in vitro transcription template will depend on the mRNA encoded by the template.

A "5' untranslated region" (5'UTR) refers to a region of an mRNA that is directly upstream (i.e., 5') from the start codon (i.e., the first codon of an mRNA transcript translated by a ribosome) that does not encode a polypeptide.

A "3' untranslated region" (3'UTR) refers to a region of an mRNA that is directly downstream (i.e., 3') from the stop codon (i.e., the codon of an mRNA transcript that signals a termination of translation) that does not encode a polypeptide.

An "open reading frame" is a continuous stretch of DNA beginning with a start codon (e.g., methionine (ATG)), and ending with a stop codon (e.g., TAA, TAG or TGA) and encodes a polypeptide.

A "polyA tail" is a region of mRNA that is downstream,
e.g., directly downstream (i.e., 3'), from the 3' UTR that contains multiple, consecutive adenosine monophosphates. A polyA tail may contain 10 to 300 adenosine monophosphates. For example, a polyA tail may contain 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290 or 300 adenosine monophosphates. In some embodiments, a polyA tail contains 50 to 250 adenosine monophosphates. In a relevant biological setting (e.g., in cells, in vivo) the poly(A) tail functions to protect mRNA from enzymatic 65 degradation, e.g., in the cytoplasm, and aids in transcription termination, export of the mRNA from the nucleus and translation.

In some embodiments, a polynucleotide includes 200 to 3,000 nucleotides. For example, a polynucleotide may include 200 to 500, 200 to 1000, 200 to 1500, 200 to 3000, 500 to 1000, 500 to 1500, 500 to 2000, 500 to 3000, 1000 to 1500, 1000 to 2000, 1000 to 3000, 1500 to 3000, or 2000 5 to 3000 nucleotides.

Flagellin Adjuvants

Flagellin is an approximately 500 amino acid monomeric protein that polymerizes to form the flagella associated with bacterial motion. Flagellin is expressed by a variety of 10 flagellated bacteria (Salmonella typhimurium for example) as well as non-flagellated bacteria (such as Escherichia coli). Sensing of flagellin by cells of the innate immune system (dendritic cells, macrophages, etc.) is mediated by the Tolllike receptor 5 (TLR5) as well as by Nod-like receptors 15 (NLRs) Ipaf and Naip5. TLRs and NLRs have been identified as playing a role in the activation of innate immune response and adaptive immune response. As such, flagellin provides an adjuvant effect in a vaccine.

The nucleotide and amino acid sequences encoding 20 known flagellin polypeptides are publicly available in the NCBI GenBank database. The flagellin sequences from S.

Typhimurium, H. Pylori, V. Cholera, S. marcesens, S. flexneri, T. Pallidum, L. pneumophila, B. burgdorferei, C. difficile, R. meliloti, A. tumefaciens, R. lupini, B. clar- 25 ridgeiae, P. Mirabilis, B. subtilus, L. monocytogenes, P. aeruginosa, and E. coli, among others are known.

A flagellin polypeptide, as used herein, refers to a full length flagellin protein, immunogenic fragments thereof, and peptides having at least 50% sequence identify to a 30 flagellin protein or immunogenic fragments thereof. Exemplary flagellin proteins include flagellin from Salmonella typhi (UniPro Entry number: Q56086), Salmonella typhimu-(A0A0C9DG09), rium Salmonella enteritidis (AOAOC9BAB7), and Salmonella choleraesuis (Q6V2X8), 35 includes at least two separate RNA polynucleotides, one and SEQ ID NO: 54-56 (Table 17). In some embodiments, the flagellin polypeptide has at least 60%, 70%, 75%, 80%, 90%, 95%, 97%, 98%, or 99% sequence identify to a flagellin protein or immunogenic fragments thereof.

In some embodiments, the flagellin polypeptide is an 40 immunogenic fragment. An immunogenic fragment is a portion of a flagellin protein that provokes an immune response. In some embodiments, the immune response is a TLR5 immune response. An example of an immunogenic fragment is a flagellin protein in which all or a portion of a hinge region has been deleted or replaced with other amino acids. For example, an antigenic polypeptide may be inserted in the hinge region. Hinge regions are the hypervariable regions of a flagellin. Hinge regions of a flagellin are also referred to as "D3 domain or region, "propeller 50 domain or region," "hypervariable domain or region" and "variable domain or region." "At least a portion of a hinge region," as used herein, refers to any part of the hinge region of the flagellin, or the entirety of the hinge region. In other embodiments an immunogenic fragment of flagellin is a 20, 55 25, 30, 35, or 40 amino acid C-terminal fragment of flagel-

The flagellin monomer is formed by domains D0 through D3. D0 and D1, which form the stem, are composed of tandem long alpha helices and are highly conserved among 60 different bacteria. The D1 domain includes several stretches of amino acids that are useful for TLR5 activation. The entire D1 domain or one or more of the active regions within the domain are immunogenic fragments of flagellin. Examples of immunogenic regions within the D1 domain 65 include residues 88-114 and residues 411-431 (in Salmonella typhimurium FliC flagellin. Within the 13 amino acids

in the 88-100 region, at least 6 substitutions are permitted between Salmonella flagellin and other flagellins that still preserve TLR5 activation. Thus, immunogenic fragments of flagellin include flagellin like sequences that activate TLR5 and contain a 13 amino acid motif that is 53% or more identical to the Salmonella sequence in 88-100 of FliC (LQRVRELAVQSAN; SEQ ID NO: 84).

In some embodiments, the RNA (e.g., mRNA) vaccine includes an RNA that encodes a fusion protein of flagellin and one or more antigenic polypeptides. A "fusion protein" as used herein, refers to a linking of two components of the construct. In some embodiments, a carboxy-terminus of the antigenic polypeptide is fused or linked to an amino terminus of the flagellin polypeptide. In other embodiments, an amino-terminus of the antigenic polypeptide is fused or linked to a carboxy-terminus of the flagellin polypeptide. The fusion protein may include, for example, one, two, three, four, five, six or more flagellin polypeptides linked to one, two, three, four, five, six or more antigenic polypeptides. When two or more flagellin polypeptides and/or two or more antigenic polypeptides are linked such a construct may be referred to as a "multimer."

Each of the components of a fusion protein may be directly linked to one another or they may be connected through a linker. For instance, the linker may be an amino acid linker. The amino acid linker encoded for by the RNA (e.g., mRNA) vaccine to link the components of the fusion protein may include, for instance, at least one member selected from the group consisting of a lysine residue, a glutamic acid residue, a serine residue and an arginine residue. In some embodiments the linker is 1-30, 1-25, 1-25, 5-10, 5, 15, or 5-20 amino acids in length.

In other embodiments the RNA (e.g., mRNA) vaccine encoding one or more antigenic polypeptides and the other encoding the flagellin polypeptide. The at least two RNA polynucleotides may be co-formulated in a carrier such as a lipid nanoparticle.

Broad Spectrum RNA (e.g., mRNA) Vaccines

There may be situations where persons are at risk for infection with more than one strain of hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1). RNA (e.g., mRNA) therapeutic vaccines are particularly amenable to combination vaccination approaches due to a number of factors including, but not limited to, speed of manufacture, ability to rapidly tailor vaccines to accommodate perceived geographical threat, and the like. Moreover, because the vaccines utilize the human body to produce the antigenic protein, the vaccines are amenable to the production of larger, more complex antigenic proteins, allowing for proper folding, surface expression, antigen presentation, etc. in the human subject. To protect against more than one strain of hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1), a combination vaccine can be administered that includes RNA (e.g., mRNA) encoding at least one antigenic polypeptide protein (or antigenic portion thereof) of a first respiratory virus and further includes RNA encoding at least one antigenic polypeptide protein (or antigenic portion thereof) of a second respiratory virus. RNA (e.g., mRNA) can be co-formulated, for example, in a single lipid nanoparticle (LNP) or can be formulated in separate LNPs for co-administration.

Methods of Treatment

Provided herein are compositions (e.g., pharmaceutical compositions), methods, kits and reagents for prevention and/or treatment of respiratory diseases/infections in humans and other mammals. Respiratory virus RNA (e.g. 5 mRNA) vaccines can be used as therapeutic or prophylactic agents, alone or in combination with other vaccine(s). They may be used in medicine to prevent and/or treat respiratory disease/infection. In exemplary aspects, the RNA (e.g., mRNA) vaccines of the present disclosure are used to 10 provide prophylactic protection from hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1). Prophylactic protection from hMPV, PIV3, RSV, MeV and/or BetaCoV (including 15 MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) can be achieved following administration of a RNA (e.g., mRNA) vaccine of the present disclosure. Respiratory virus RNA (e.g., mRNA) vaccines of the present disclosure may 20 be used to treat or prevent viral "co-infections" containing two or more respiratory infections. Vaccines can be administered once, twice, three times, four times or more, but it is likely sufficient to administer the vaccine once (optionally followed by a single booster). It is possible, although less 25 desirable, to administer the vaccine to an infected individual to achieve a therapeutic response. Dosing may need to be adjusted accordingly.

A method of eliciting an immune response in a subject against hMPV, PIV3, RSV, MeV and/or BetaCoV (including 30 MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) is provided in aspects of the present disclosure. The method involves administering to the subject a respiratory virus RNA (e.g., mRNA) vaccine comprising at least one RNA 35 (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide thereof, thereby 40 inducing in the subject an immune response specific to hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide or an immunogenic fragment thereof, 45 wherein anti-antigenic polypeptide antibody titer in the subject is increased following vaccination relative to antiantigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against hMPV, PIV3, RSV, MeV and/or BetaCoV 50 (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1). An "anti-antigenic polypeptide antibody" is a serum antibody the binds specifically to the antigenic polypeptide.

In some embodiments, a RNA (e.g., mRNA) vaccine 55 (e.g., a hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1 RNA vaccine) capable of eliciting an immune response is administered intramuscularly via a composition including a 60 compound according to Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) (e.g., Compound 3, 18, 20, 25, 26, 29, 30, 60, 108-112, or 122).

A prophylactically effective dose is a therapeutically effective dose that prevents infection with the virus at a 65 clinically acceptable level. In some embodiments the therapeutically effective dose is a dose listed in a package insert

for the vaccine. A traditional vaccine, as used herein, refers to a vaccine other than the RNA (e.g., mRNA) vaccines of the present disclosure. For instance, a traditional vaccine includes but is not limited to live/attenuated microorganism vaccines, killed/inactivated microorganism vaccines, subunit vaccines, protein antigen vaccines, DNA vaccines, VLP vaccines, etc. In exemplary embodiments, a traditional vaccine is a vaccine that has achieved regulatory approval and/or is registered by a national drug regulatory body, for example the Food and Drug Administration (FDA) in the United States or the European Medicines Agency (EMA).

In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased 1 log to 10 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1).

In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased 1 log, 2 log, 3 log, 5 log or 10 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1).

A method of eliciting an immune response in a subject against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) is provided in other aspects of the disclosure. The method involves administering to the subject a respiratory virus RNA (e.g., mRNA) vaccine comprising at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide or an immunogenic fragment thereof, thereby inducing in the subject an immune response specific to hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide or an immunogenic fragment thereof, wherein the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine against the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) at 2 times to 100 times the dosage level relative to the RNA (e.g., mRNA) vaccine.

In some embodiments, the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 2, 3, 4, 5, 10, 50, 100 times the dosage level relative to the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) RNA (e.g., mRNA) vaccine.

In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 10-100 times, or 100-1000 times, the dosage level relative to the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, 5

HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) RNA (e.g., mRNA) vaccine.

In some embodiments the immune response is assessed by determining [protein] antibody titer in the subject.

Some aspects of the present disclosure provide a method of eliciting an immune response in a subject against a In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated 10with a traditional vaccine at 2, 3, 4, 5, 10, 50, 100 times the dosage level relative to the hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) RNA (e.g., mRNA) vaccine by admin-15 istering to the subject a respiratory virus RNA (e.g., mRNA) vaccine comprising at least one RNA (e.g., mRNA) polynucleotide having an open reading frame encoding at least one hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, 20 mRNA) vaccine is provided based, at least in part, on the HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) antigenic polypeptide, thereby inducing in the subject an immune response specific to the antigenic polypeptide or an immunogenic fragment thereof, wherein the immune response in the subject is induced 2 days to 10 weeks earlier 25 relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the hMPV, PIV3, RSV, MeV and/or Beta-CoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or 30 HCoV-HKU1). In some embodiments, the immune response in the subject is induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine at 2 times to 100 times the dosage level relative to the RNA (e.g., mRNA) vaccine.

In some embodiments, the immune response in the subject is induced 2 days earlier, or 3 days earlier, relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.

In some embodiments the immune response in the subject 40 is induced 1 week, 2 weeks, 3 weeks, 5 weeks, or 10 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.

Also provided herein is a method of eliciting an immune 45 response in a subject against hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1) by administering to the subject a respiratory virus RNA (e.g., mRNA) vaccine having an open 50 reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide does not include a stabilization element, and wherein an adjuvant is not co-formulated or co-administered with the vaccine.

Therapeutic and Prophylactic Compositions

Provided herein are compositions (e.g., pharmaceutical compositions), methods, kits and reagents for prevention, treatment or diagnosis of hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH 60 and/or HCoV-HKU1) in humans and other mammals, for example. Respiratory virus RNA (e.g. mRNA) vaccines can be used as therapeutic or prophylactic agents. They may be used in medicine to prevent and/or treat infectious disease. In some embodiments, the respiratory RNA (e.g., mRNA) 65 vaccines of the present disclosure are used fin the priming of immune effector cells, for example, to activate peripheral

blood mononuclear cells (PBMCs) ex vivo, which are then infused (re-infused) into a subject.

In some embodiments, respiratory virus vaccine containing RNA (e.g., mRNA) polynucleotides as described herein can be administered to a subject (e.g., a mammalian subject, such as a human subject), and the RNA (e.g., mRNA) polynucleotides are translated in vivo to produce an antigenic polypeptide.

The respiratory virus RNA (e.g., mRNA) vaccines may be induced for translation of a polypeptide (e.g., antigen or immunogen) in a cell, tissue or organism. In some embodiments, such translation occurs in vivo, although such translation may occur ex vivo, in culture or in vitro. In some embodiments, the cell, tissue or organism is contacted with an effective amount of a composition containing a respiratory virus RNA (e.g., mRNA) vaccine that contains a polynucleotide that has at least one a translatable region encoding an antigenic polypeptide.

An "effective amount" of an respiratory virus RNA (e.g. target tissue, target cell type, means of administration, physical characteristics of the polynucleotide (e.g., size, and extent of modified nucleosides) and other components of the vaccine, and other determinants. In general, an effective amount of the respiratory virus RNA (e.g., mRNA) vaccine composition provides an induced or boosted immune response as a function of antigen production in the cell, preferably more efficient than a composition containing a corresponding unmodified polynucleotide encoding the same antigen or a peptide antigen. Increased antigen production may be demonstrated by increased cell transfection (the percentage of cells transfected with the RNA, e.g., mRNA, vaccine), increased protein translation from the polynucleotide, decreased nucleic acid degradation (as dem-35 onstrated, for example, by increased duration of protein translation from a modified polynucleotide), or altered antigen specific immune response of the host cell.

In some embodiments, RNA (e.g. mRNA) vaccines (including polynucleotides their encoded polypeptides) in accordance with the present disclosure may be used for treatment of hMPV, PIV3, RSV, MeV and/or BetaCoV (including MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH and/or HCoV-HKU1).

Respiratory RNA (e.g. mRNA) vaccines may be administered prophylactically or therapeutically as part of an active immunization scheme to healthy individuals or early in infection during the incubation phase or during active infection after onset of symptoms. In some embodiments, the amount of RNA (e.g., mRNA) vaccine of the present disclosure provided to a cell, a tissue or a subject may be an amount effective for immune prophylaxis.

Respiratory virus RNA (e.g. mRNA) vaccines may be administrated with other prophylactic or therapeutic com-55 pounds. As a non-limiting example, a prophylactic or therapeutic compound may be an adjuvant or a booster. As used herein, when referring to a prophylactic composition, such as a vaccine, the term "booster" refers to an extra administration of the prophylactic (vaccine) composition. A booster (or booster vaccine) may be given after an earlier administration of the prophylactic composition. The time of administration between the initial administration of the prophylactic composition and the booster may be, but is not limited to, 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes, 10 minutes, 15 minutes, 20 minutes 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5

hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours, 1 day, 36 hours, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 10 days, 2 weeks, 3 weeks, 1 month, 2 months, 3 5 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, 18 months, 2 years, 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 13 years, 14 years, 15 years, 16 years, 17 years, 18 years, 19 years, 20 years, 25 years, 30 10 years, 35 years, 40 years, 45 years, 50 years, 55 years, 60 years, 65 years, 70 years, 75 years, 80 years, 85 years, 90 years, 95 years or more than 99 years. In some embodiments, the time of administration between the initial administration of the prophylactic composition and the booster 15 may be, but is not limited to, 1 week, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, 6 months or 1 year.

In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines may be administered intramuscularly or intradermally, similarly to the administration of inactivated 20 vaccines known in the art.

Respiratory virus RNA (e.g. mRNA) vaccines may be utilized in various settings depending on the prevalence of the infection or the degree or level of unmet medical need. As a non-limiting example, the RNA (e.g., mRNA) vaccines 25 may be utilized to treat and/or prevent a variety of respiratory infections. RNA (e.g., mRNA) vaccines have superior properties in that they produce much larger antibody titers and produce responses early than commercially available anti-viral agents/compositions. 30

Provided herein are pharmaceutical compositions including respiratory virus RNA (e.g. mRNA) vaccines and RNA (e.g. mRNA) vaccine compositions and/or complexes optionally in combination with one or more pharmaceutically acceptable excipients.

Respiratory virus RNA (e.g. mRNA) vaccines may be formulated or administered alone or in conjunction with one or more other components. For instance, hMPV/PIV3/RSV RNA (e.g., mRNA) vaccines (vaccine compositions) may comprise other components including, but not limited to, 40 adjuvants.

In some embodiments, respiratory virus (e.g. mRNA) vaccines do not include an adjuvant (they are adjuvant free).

Respiratory virus RNA (e.g. mRNA) vaccines may be formulated or administered in combination with one or more 45 pharmaceutically-acceptable excipients. In some embodiments, vaccine compositions comprise at least one additional active substances, such as, for example, a therapeutically-active substance, a prophylactically-active substance, or a combination of both. Vaccine compositions may be 50 sterile, pyrogen-free or both sterile and pyrogen-free. General considerations in the formulation and/or manufacture of pharmaceutical agents, such as vaccine compositions, may be found, for example, in Remington: The Science and Practice of Pharmacy 21st ed., Lippincott Williams & 55 Wilkins, 2005 (incorporated herein by reference in its entirety).

In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines are administered to humans, human patients or subjects. For the purposes of the present disclo- 60 sure, the phrase "active ingredient" generally refers to the RNA (e.g., mRNA) vaccines or the polynucleotides contained therein, for example, RNA polynucleotides (e.g., mRNA polynucleotides) encoding antigenic polypeptides.

Formulations of the respiratory virus vaccine composi-65 tions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In

general, such preparatory methods include the step of bringing the active ingredient (e.g., mRNA polynucleotide) into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, dividing, shaping and/or packaging the product into a desired single- or multi-dose unit.

Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition in accordance with the disclosure will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, the composition may comprise between 0.1% and 100%, e.g., between 0.5 and 50%, between 1-30%, between 5-80%, at least 80% (w/w) active ingredient.

Respiratory virus RNA (e.g. mRNA) vaccines can be formulated using one or more excipients to: (1) increase stability; (2) increase cell transfection; (3) permit the sustained or delayed release (e.g., from a depot formulation); (4) alter the biodistribution (e.g., target to specific tissues or cell types); (5) increase the translation of encoded protein in vivo; and/or (6) alter the release profile of encoded protein (antigen) in vivo. In addition to traditional excipients such as any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, excipients can include, without limitation, lipidoids, liposomes, lipid nanoparticles, polymers, lipoplexes, core-shell nanoparticles, peptides, proteins, cells transfected with respiratory virus RNA (e.g. mRNA)vaccines (e.g., for transplantation into a subject), hyaluronidase, nanoparticle mimics and combinations thereof.

35 Stabilizing Elements

Naturally-occurring eukaryotic mRNA molecules have been found to contain stabilizing elements, including, but not limited to untranslated regions (UTR) at their 5'-end (5'UTR) and/or at their 3'-end (3'UTR), in addition to other structural features, such as a 5'-cap structure or a 3'-poly(A) tail. Both the 5'UTR and the 3'UTR are typically transcribed from the genomic DNA and are elements of the premature mRNA. Characteristic structural features of mature mRNA, such as the 5'-cap and the 3'-poly(A) tail are usually added to the transcribed (premature) mRNA during mRNA processing. The 3'-poly(A) tail is typically a stretch of adenine nucleotides added to the 3'-end of the transcribed mRNA. It can comprise up to about 400 adenine nucleotides. In some embodiments the length of the 3'-poly(A) tail may be an essential element with respect to the stability of the individual mRNA.

In some embodiments the RNA (e.g., mRNA) vaccine may include one or more stabilizing elements. Stabilizing elements may include for instance a histone stem-loop. A stem-loop binding protein (SLBP), a 32 kDa protein has been identified. It is associated with the histone stem-loop at the 3'-end of the histone messages in both the nucleus and the cytoplasm. Its expression level is regulated by the cell cycle; it peaks during the S-phase, when histone mRNA levels are also elevated. The protein has been shown to be essential for efficient 3'-end processing of histone premRNA by the U7 snRNP. SLBP continues to be associated with the stem-loop after processing, and then stimulates the translation of mature histone mRNAs into histone proteins in the cytoplasm. The RNA binding domain of SLBP is conserved through metazoa and protozoa; its binding to the histone stem-loop depends on the structure of the loop. The minimum binding site includes at least three nucleotides 5' and two nucleotides 3' relative to the stem-loop.

In some embodiments, the RNA (e.g., mRNA) vaccines include a coding region, at least one histone stem-loop, and optionally, a poly(A) sequence or polyadenylation signal. 5 The poly(A) sequence or polyadenylation signal generally should enhance the expression level of the encoded protein. The encoded protein, in some embodiments, is not a histone protein, a reporter protein (e.g. Luciferase, GFP, EGFP, β -Galactosidase, EGFP), or a marker or selection protein 10 (e.g. alpha-Globin, Galactokinase and Xanthine:guanine phosphoribosyl transferase (GPT)).

In some embodiments, the combination of a poly(A) sequence or polyadenylation signal and at least one histone stem-loop, even though both represent alternative mecha- 15 nisms in nature, acts synergistically to increase the protein expression beyond the level observed with either of the individual elements. It has been found that the synergistic effect of the combination of poly(A) and at least one histone stem-loop does not depend on the order of the elements or 20 the length of the poly(A) sequence.

In some embodiments, the RNA (e.g., mRNA) vaccine does not comprise a histone downstream element (HDE). "Histone downstream element" (HDE) includes a purinerich polynucleotide stretch of approximately 15 to 20 25 nucleotides 3' of naturally occurring stem-loops, representing the binding site for the U7 snRNA, which is involved in processing of histone pre-mRNA into mature histone mRNA. Ideally, the inventive nucleic acid does not include an intron. 30

In some embodiments, the RNA (e.g., mRNA) vaccine may or may not contain a enhancer and/or promoter sequence, which may be modified or unmodified or which may be activated or inactivated. In some embodiments, the histone stem-loop is generally derived from histone genes, 35 and includes an intramolecular base pairing of two neighbored partially or entirely reverse complementary sequences separated by a spacer, including (e.g., consisting of) a short sequence, which forms the loop of the structure. The unpaired loop region is typically unable to base pair with 40 either of the stem loop elements. It occurs more often in RNA, as is a key component of many RNA secondary structures, but may be present in single-stranded DNA as well. Stability of the stem-loop structure generally depends on the length, number of mismatches or bulges, and base 45 composition of the paired region. In some embodiments, wobble base pairing (non-Watson-Crick base pairing) may result. In some embodiments, the at least one histone stemloop sequence comprises a length of 15 to 45 nucleotides.

In other embodiments the RNA (e.g., mRNA) vaccine 50 DLin-MC3-DMA, DLin-KC2-DMA, DODMA and amino alcohol lipids. 51 sequences, sometimes referred to as AURES are destabilizing sequences found in the 3'UTR. The AURES may be removed from the RNA (e.g., mRNA) vaccines. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections. Alternatively the AURES may remain in the RNA (e.g., mRNA) sections are alsoluted. Alternatively the AURES may remain in th

Nanoparticle Formulations

In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines are formulated in a nanoparticle. In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines 60 are formulated in a lipid nanoparticle. In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines are formulated in a lipid-polycation complex, referred to as a cationic lipid nanoparticle. As a non-limiting example, the polycation may include a cationic peptide or a polypeptide 65 such as, but not limited to, polylysine, polyornithine and/or polyarginine. In some embodiments, respiratory virus RNA

(e.g., mRNA) vaccines are formulated in a lipid nanoparticle that includes a non-cationic lipid such as, but not limited to, cholesterol or dioleoyl phosphatidylethanolamine (DOPE).

A lipid nanoparticle formulation may be influenced by, but not limited to, the selection of the cationic lipid component, the degree of cationic lipid saturation, the nature of the PEGylation, ratio of all components and biophysical parameters such as size. In one example by Semple et al. (*Nature Biotech.* 2010 28:172-176), the lipid nanoparticle formulation is composed of 57.1% cationic lipid, 7.1% dipalmitoylphosphatidylcholine, 34.3% cholesterol, and 1.4% PEG-c-DMA. As another example, changing the composition of the cationic lipid can more effectively deliver siRNA to various antigen presenting cells (Basha et al. *Mol Ther.* 2011 19:2186-2200).

In some embodiments, lipid nanoparticle formulations may comprise 35 to 45% cationic lipid, 40% to 50% cationic lipid, 50% to 60% cationic lipid and/or 55% to 65% cationic lipid. In some embodiments, the ratio of lipid to RNA (e.g., mRNA) in lipid nanoparticles may be 5:1 to 20:1, 10:1 to 25:1, 15:1 to 30:1 and/or at least 30:1.

In some embodiments, the ratio of PEG in the lipid nanoparticle formulations may be increased or decreased and/or the carbon chain length of the PEG lipid may be modified from C14 to C18 to alter the pharmacokinetics and/or biodistribution of the lipid nanoparticle formulations. As a non-limiting example, lipid nanoparticle formulations may contain 0.5% to 3.0%, 1.0% to 3.5%, 1.5% to 4.0%, 2.0% to 4.5%, 2.5% to 5.0% and/or 3.0% to 6.0% of the lipid molar ratio of PEG-c-DOMG (R-3-[(ω -methoxy-poly(ethvleneglycol)2000)carbamoyl)]-1,2-dimyristyloxypropyl-3amine) (also referred to herein as PEG-DOMG) as compared to the cationic lipid, DSPC and cholesterol. In some embodiments, the PEG-c-DOMG may be replaced with a PEG lipid such as, but not limited to, PEG-DSG (1,2-Distearoyl-snglycerol, methoxypolyethylene glycol), PEG-DMG (1,2-Dimyristoyl-sn-glycerol) and/or PEG-DPG (1,2-Dipalmitoyl-sn-glycerol, methoxypolyethylene glycol). The cationic lipid may be selected from any lipid known in the art such as, but not limited to, DLin-MC3-DMA, DLin-DMA, C12-200 and DLin-KC2-DMA.

In some embodiments, an respiratory virus RNA (e.g. mRNA) vaccine formulation is a nanoparticle that comprises at least one lipid. The lipid may be selected from, but is not limited to, DLin-DMA, DLin-K-DMA, 98N12-5, C12-200, DLin-MC3-DMA, DLin-KC2-DMA, DODMA, PLGA, PEG, PEG-DMG, PEGylated lipids and amino alcohol lipids. In some embodiments, the lipid may be a cationic lipid such as, but not limited to, DLin-DMA, DCIn-DMA, DLin-DMA, DLin-MC3-DMA, DLin-KC2-DMA, DODMA and amino alcohol lipids.

The amino alcohol cationic lipid may be the lipids described in and/or made by the methods described in U.S. Patent Publication No. US20130150625, herein incorpothe cationic lipid may be 2-amino-3-[(9Z,12Z)-octadeca-9, 12-dien-1-yloxy]-2-{[(9Z,2Z)-octadeca-9,12-dien-1-yloxy] methyl}propan-1-ol (Compound 1 in US20130150625); 2-amino-3-[(9Z)-octadec-9-en-1-yloxy]-2-{[(9Z)-octadec-9-en-1-yloxy]methyl}propan-1-ol (Compound 2 in US20130150625); 2-amino-3-[(9Z,12Z)-octadeca-9,12dien-1-yloxy]-2-[(octyloxy)methyl]propan-1-ol (Compound 3 in US20130150625); and 2-(dimethylamino)-3-[(9Z,12Z)octadeca-9,12-dien-1-yloxy]-2-{[(9Z, 12Z)-octadeca-9,12dien-1-yloxy]methyl}propan-1-ol (Compound 4 in US20130150625); or any pharmaceutically acceptable salt or stereoisomer thereof.

Lipid nanoparticle formulations typically comprise a lipid, in particular, an ionizable cationic lipid, for example, 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobu-

tyrate (DLin-MC3-DMA), or di((Z)-non-2-en-1-yl) 9-((4-5 (dimethylamino)butanoyl)oxy)heptadecanedioate (L319), and further comprise a neutral lipid, a sterol and a molecule capable of reducing particle aggregation, for example a PEG or PEG-modified lipid.

In some embodiments, a lipid nanoparticle formulation 10 consists essentially of (i) at least one lipid selected from the group consisting of 2,2-dilinoleyl-4-dimethylaminoethyl-[1, 3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2en-1-vl) 9-((4-(dimethylamino)butanoyl)oxy) 15 heptadecanedioate (L319); (ii) a neutral lipid selected from DSPC, DPPC, POPC, DOPE and SM; (iii) a sterol, e.g., cholesterol; and (iv) a PEG-lipid, e.g., PEG-DMG or PEGcDMA, in a molar ratio of 20-60% cationic lipid: 5-25% neutral lipid: 25-55% sterol; 0.5-15% PEG-lipid.

In some embodiments, a lipid nanoparticle formulation includes 25% to 75% on a molar basis of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1- 25 yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), e.g., 35 to 65%, 45 to 65%, 60%, 57.5%, 50% or 40% on a molar basis.

In some embodiments, a lipid nanoparticle formulation includes 0.5% to 15% on a molar basis of the neutral lipid, 30 e.g., 3 to 12%, 5 to 10% or 15%, 10%, or 7.5% on a molar basis. Examples of neutral lipids include, without limitation, DSPC, POPC, DPPC, DOPE and SM. In some embodiments, the formulation includes 5% to 50% on a molar basis of the sterol (e.g., 15 to 45%, 20 to 40%, 40%, 38.5%, 35%, 35 include 40% of a cationic lipid selected from 2,2-dilinoleylor 31% on a molar basis. A non-limiting example of a sterol is cholesterol. In some embodiments, a lipid nanoparticle formulation includes 0.5% to 20% on a molar basis of the PEG or PEG-modified lipid (e.g., 0.5 to 10%, 0.5 to 5%, 1.5%, 0.5%, 1.5%, 3.5%, or 5% on a molar basis. In some 40 embodiments, a PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of 2,000 Da. In some embodiments, a PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of less than 2,000, for example around 1,500 Da, around 1,000 45 Da, or around 500 Da. Non-limiting examples of PEGmodified lipids include PEG-distearoyl glycerol (PEG-DMG) (also referred herein as PEG-C14 or C14-PEG), PEG-cDMA (further discussed in Reyes et al. J. Controlled Release, 107, 276-287 (2005) the contents of which are 50 herein incorporated by reference in their entirety).

In some embodiments, lipid nanoparticle formulations include 25-75% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin- 55 MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 0.5-15% of the neutral lipid, 5-50% of the sterol, and 0.5-20% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations 60 include 35-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), 9-((4and di((Z)-non-2-en-1-yl) (L319), 65 (dimethylamino)butanoyl)oxy)heptadecanedioate 3-12% of the neutral lipid, 15-45% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.

74

In some embodiments, lipid nanoparticle formulations include 45-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl)9-((4-(L319), (dimethylamino)butanoyl)oxy)heptadecanedioate 5-10% of the neutral lipid, 25-40% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 60% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 7.5% of the neutral lipid, 31% of the sterol, and 1.5% of the PEG or PEGmodified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), 20 dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 10% of the neutral lipid, 38.5% of the sterol, and 1.5% of the PEG or PEGmodified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 10% of the neutral lipid, 35% of the sterol, 4.5% or 5% of the PEG or PEG-modified lipid, and 0.5% of the targeting lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations 4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 15% of the neutral lipid, 40% of the sterol, and 5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 57.2% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLindi((Z)-non-2-en-1-yl) 9-((4-MC3-DMA), and (dimethylamino)butanoyl)oxy)heptadecanedioate (L319). 7.1% of the neutral lipid, 34.3% of the sterol, and 1.4% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations include 57.5% of a cationic lipid selected from the PEG lipid is PEG-cDMA (PEG-cDMA is further discussed in Reves et al. (J. Controlled Release, 107, 276-287 (2005), the contents of which are herein incorporated by reference in their entirety), 7.5% of the neutral lipid, 31.5% of the sterol, and 3.5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulations consists essentially of a lipid mixture in molar ratios of 20-70% cationic lipid: 5-45% neutral lipid: 20-55% cholesterol: 0.5-15% PEG-modified lipid. In some embodiments, lipid nanoparticle formulations consists essentially of a lipid mixture in a molar ratio of 20-60% cationic lipid: 5-25% neutral lipid: 25-55% cholesterol: 0.5-15% PEG-modified lipid.

In some embodiments, the molar lipid ratio is 50/10/38.5/ 1.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/ PEG-modified lipid, e.g., PEG-DMG, PEG-DSG or PEG-

DPG), 57.2/7.1134.3/1.4 (mol % cationic lipid/neutral lipid, e.g., DPPC/Chol/PEG-modified lipid, e.g., PEG-cDMA), 40/15/40/5 (mol % cationic lipid/neutral lipid, e.g., DSPC/ Chol/PEG-modified lipid, e.g., PEG-DMG), 50/10/35/4.5/ 0.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/ 5 PEG-modified lipid, e.g., PEG-DSG), 50/10/35/5 (cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG), 40/10/40/10 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA), 35/15/40/10 (mol % cationic lipid/neutral 10 lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA) or 52/13/30/5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA).

Non-limiting examples of lipid nanoparticle compositions 15 and methods of making them are described, for example, in Semple et al. (2010) *Nat. Biotechnol.* 28:172-176; Jayarama et al. (2012), *Angew. Chem. Int. Ed.*, 51: 8529-8533; and Maier et al. (2013) *Molecular Therapy* 21, 1570-1578 (the contents of each of which are incorporated herein by refer- 20 ence in their entirety).

In some embodiments, lipid nanoparticle formulations may comprise a cationic lipid, a PEG lipid and a structural lipid and optionally comprise a non-cationic lipid. As a non-limiting example, a lipid nanoparticle may comprise 25 40-60% of cationic lipid, 5-15% of a non-cationic lipid, 1-2% of a PEG lipid and 30-50% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise 50% cationic lipid, 10% non-cationic lipid, 1.5% PEG lipid and 38.5% structural lipid. As yet another nonimiting example, a lipid nanoparticle may comprise 55% cationic lipid, 10% non-cationic lipid, 2.5% PEG lipid and 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but not limited to, DLin-KC2-DMA, DLin-MC3-DMA and 35 L319.

In some embodiments, the lipid nanoparticle formulations described herein may be 4 component lipid nanoparticles. The lipid nanoparticle may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid. As a 40 non-limiting example, the lipid nanoparticle may comprise 40-60% of cationic lipid, 5-15% of a non-cationic lipid, 1-2% of a PEG lipid and 30-50% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise 50% cationic lipid, 10% non-cationic lipid, 1.5% 45 PEG lipid and 38.5% structural lipid. As yet another nonlimiting example, the lipid nanoparticle may comprise 55% cationic lipid, 10% non-cationic lipid, 2.5% PEG lipid and 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but 50 not limited to, DLin-KC2-DMA, DLin-MC3-DMA and L319.

In some embodiments, the lipid nanoparticle formulations described herein may comprise a cationic lipid, a noncationic lipid, a PEG lipid and a structural lipid. As a 55 non-limiting example, the lipid nanoparticle comprise 50% of the cationic lipid DLin-KC2-DMA, 10% of the noncationic lipid DSPC, 1.5% of the PEG lipid PEG-DOMG and 38.5% of the structural lipid cholesterol. As a nonlimiting example, the lipid nanoparticle comprise 50% of the 60 cationic lipid DLin-MC3-DMA, 10% of the non-cationic lipid DSPC, 1.5% of the PEG lipid PEG-DOMG and 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle comprise 50% of the cationic lipid DSPC, 1.5% of the PEG lipid PEG-DOMG and 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle comprise 50% of the cationic lipid DLin-MC3-DMA, 10% of the non-cationic lipid 65 DSPC, 1.5% of the PEG lipid PEG-DMG and 38.5% of the structural lipid cholesterol. As yet another non-limiting

example, the lipid nanoparticle comprise 55% of the cationic lipid L319, 10% of the non-cationic lipid DSPC, 2.5% of the PEG lipid PEG-DMG and 32.5% of the structural lipid cholesterol.

Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a vaccine composition may vary, depending upon the identity, size, and/or condition of the subject being treated and further depending upon the route by which the composition is to be administered. For example, the composition may comprise between 0.1% and 99% (w/w) of the active ingredient. By way of example, the composition may comprise between 0.1% and 100%, e.g., between 0.5 and 50%, between 1-30%, between 5-80%, at least 80% (w/w) active ingredient.

In some embodiments, the respiratory virus RNA (e.g. mRNA) vaccine composition may comprise the polynucleotide described herein, formulated in a lipid nanoparticle comprising MC3, Cholesterol, DSPC and PEG2000-DMG, the buffer trisodium citrate, sucrose and water for injection. As a non-limiting example, the composition comprises: 2.0 mg/mL of drug substance (e.g., polynucleotides encoding H10N8 hMPV), 21.8 mg/mL of MC3, 10.1 mg/mL of cholesterol, 5.4 mg/mL of DSPC, 2.7 mg/mL of PEG2000-DMG, 5.16 mg/mL of trisodium citrate, 71 mg/mL of sucrose and 1.0 mL of water for injection.

In some embodiments, a nanoparticle (e.g., a lipid nanoparticle) has a mean diameter of 10-500 nm, 20-400 nm, 30-300 nm, 40-200 nm. In some embodiments, a nanoparticle (e.g., a lipid nanoparticle) has a mean diameter of 50-150 nm, 50-200 nm, 80-100 nm or 80-200 nm.

Liposomes, Lipoplexes, and Lipid Nanoparticles

The RNA (e.g., mRNA) vaccines of the disclosure can be formulated using one or more liposomes, lipoplexes, or lipid nanoparticles. In some embodiments, pharmaceutical compositions of RNA (e.g., mRNA) vaccines include liposomes. Liposomes are artificially-prepared vesicles which may primarily be composed of a lipid bilayer and may be used as a delivery vehicle for the administration of nutrients and pharmaceutical formulations. Liposomes can be of different sizes such as, but not limited to, a multilamellar vesicle (MLV) which may be hundreds of nanometers in diameter and may contain a series of concentric bilayers separated by narrow aqueous compartments, a small unicellular vesicle (SUV) which may be smaller than 50 nm in diameter, and a large unilamellar vesicle (LUV) which may be between 50 and 500 nm in diameter. Liposome design may include, but is not limited to, opsonins or ligands in order to improve the attachment of liposomes to unhealthy tissue or to activate events such as, but not limited to, endocytosis. Liposomes may contain a low or a high pH in order to improve the delivery of the pharmaceutical formulations.

The formation of liposomes may depend on the physicochemical characteristics such as, but not limited to, the pharmaceutical formulation entrapped and the liposomal ingredients, the nature of the medium in which the lipid vesicles are dispersed, the effective concentration of the entrapped substance and its potential toxicity, any additional processes involved during the application and/or delivery of the vesicles, the optimization size, polydispersity and the shelf-life of the vesicles for the intended application, and the batch-to-batch reproducibility and possibility of large-scale production of safe and efficient liposomal products.

In some embodiments, pharmaceutical compositions described herein may include, without limitation, liposomes such as those formed from 1,2-dioleyloxy-N,N-dimethylam-inopropane (DODMA) liposomes, DiLa2 liposomes from

Marina Biotech (Bothell, Wash.), 1,2-dilinoleyloxy-3-dimethylaminopropane (DLin-DMA), 2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLin-KC2-DMA), and MC3 (US20100324120; herein incorporated by reference in its entirety) and liposomes which may deliver small molecule drugs such as, but not limited to, DOXIL® from Janssen Biotech, Inc. (Horsham, Pa.).

In some embodiments, pharmaceutical compositions described herein may include, without limitation, liposomes such as those formed from the synthesis of stabilized plasmid-lipid particles (SPLP) or stabilized nucleic acid lipid particle (SNALP) that have been previously described and shown to be suitable for oligonucleotide delivery in vitro and in vivo (see Wheeler et al. Gene Therapy. 1999 6:271-281; Zhang et al. Gene Therapy. 1999 6:1438-1447; Jeffs et al. Pharm Res. 2005 22:362-372; Morrissey et al., Nat Biotechnol. 2005 2:1002-1007; Zimmermann et al., Nature. 2006 441:111-114; Heyes et al. J Contr Rel. 2005 107:276-287; Semple et al. Nature Biotech. 2010 28:172-176; Judge 20 et al. J Clin Invest. 2009 119:661-673; deFougerolles Hum Gene Ther. 2008 19:125-132; U.S. Patent Publication No US20130122104; all of which are incorporated herein in their entireties). The original manufacture method by Wheeler et al. was a detergent dialysis method, which was 25 later improved by Jeffs et al. and is referred to as the spontaneous vesicle formation method. The liposome formulations are composed of 3 to 4 lipid components in addition to the polynucleotide. As an example a liposome can contain, but is not limited to, 55% cholesterol, 20% 30 disteroylphosphatidyl choline (DSPC), 10% PEG-S-DSG, 15% 1,2-dioleyloxy-N,N-dimethylaminopropane and (DODMA), as described by Jeffs et al. As another example, certain liposome formulations may contain, but are not limited to, 48% cholesterol, 20% DSPC, 2% PEG-c-DMA, 35 and 30% cationic lipid, where the cationic lipid can be 1,2-distearloxy-N,N-dimethylaminopropane (DSDMA). DODMA, DLin-DMA, or 1,2-dilinolenyloxy-3-dimethylaminopropane (DLenDMA), as described by Heyes et al.

In some embodiments, liposome formulations may com- 40 prise from about 25.0% cholesterol to about 40.0% cholesterol, from about 30.0% cholesterol to about 45.0% cholesterol, from about 35.0% cholesterol to about 50.0% cholesterol and/or from about 48.5% cholesterol to about 60% cholesterol. In some embodiments, formulations may 45 comprise a percentage of cholesterol selected from the group consisting of 28.5%, 31.5%, 33.5%, 36.5%, 37.0%, 38.5%, 39.0% and 43.5%. In some embodiments, formulations may comprise from about 5.0% to about 10.0% DSPC and/or from about 7.0% to about 15.0% DSPC. 50

In some embodiments, the RNA (e.g., mRNA) vaccine pharmaceutical compositions may be formulated in liposomes such as, but not limited to, DiLa2 liposomes (Marina Biotech, Bothell, Wash.), SMARTICLES® (Marina Biotech, Bothell, Wash.), neutral DOPC (1,2-dioleoyl-sn-55 glycero-3-phosphocholine) based liposomes (e.g., siRNA delivery for ovarian cancer (Landen et al. Cancer Biology & Therapy 2006 5(12)1708-1713); herein incorporated by reference in its entirety) and hyaluronan-coated liposomes (Quiet Therapeutics, Israel). 60

In some embodiments, the cationic lipid may be a low molecular weight cationic lipid such as those described in U.S. Patent Application No. 20130090372, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccines 65 may be formulated in a lipid vesicle, which may have crosslinks between functionalized lipid bilayers.

78

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a lipid-polycation complex. The formation of the lipid-polycation complex may be accomplished by methods known in the art and/or as described in U.S. Pub. No. 20120178702, herein incorporated by reference in its entirety. As a non-limiting example, the polycation may include a cationic peptide or a polypeptide such as, but not limited to, polylysine, polyomithine and/or polyarginine. In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a lipid-polycation complex, which may further include a non-cationic lipid such as, but not limited to, cholesterol or dioleoyl phosphatidylethanolamine (DOPE).

In some embodiments, the ratio of PEG in the lipid nanoparticle (LNP) formulations may be increased or decreased and/or the carbon chain length of the PEG lipid may be modified from C14 to C18 to alter the pharmacokinetics and/or biodistribution of the LNP formulations. As a non-limiting example, LNP formulations may contain from about 0.5% to about 3.0%, from about 1.0% to about 3.5%, from about 1.5% to about 4.0%, from about 2.0% to about 4.5%, from about 2.5% to about 5.0% and/or from about 3.0% to about 6.0% of the lipid molar ratio of PEG-c-DOMG (R-3-[(ω -methoxy-poly(ethyleneglycol)2000)carbamoyl)]-1,2-dimyristyloxypropyl-3-amine) (also referred to herein as PEG-DOMG) as compared to the cationic lipid, DSPC and cholesterol. In some embodiments, the PEG-c-DOMG may be replaced with a PEG lipid such as, but not limited to, PEG-DSG (1,2-Distearoyl-sn-glycerol, methoxypolyethylene glycol), PEG-DMG (1,2-Dimyristoyl-sn-glycerol) and/or PEG-DPG (1,2-Dipalmitoyl-sn-glycerol, methoxypolyethylene glycol). The cationic lipid may be selected from any lipid known in the art such as, but not limited to, DLin-MC3-DMA, DLin-DMA, C12-200 and DLin-KC2-DMA.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a lipid nanoparticle.

In some embodiments, the RNA (e.g., mRNA) vaccine formulation comprising the polynucleotide is a nanoparticle which may comprise at least one lipid. The lipid may be selected from, but is not limited to, DLin-DMA, DLin-K-DMA, 98N12-5, C12-200, DLin-MC3-DMA, DLin-KC2-DMA, DODMA, PLGA, PEG, PEG-DMG, PEGylated lipids and amino alcohol lipids. In another aspect, the lipid may be a cationic lipid such as, but not limited to, DLin-DMA, DLin-D-DMA, DLin-MC3-DMA, DLin-KC2-DMA. DODMA and amino alcohol lipids. The amino alcohol cationic lipid may be the lipids described in and/or made by the methods described in U.S. Patent Publication No. US20130150625, herein incorporated by reference in its entirety. As a non-limiting example, the cationic lipid may be 2-amino-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]-2-{ [(9Z,2Z)-octadeca-9,12-dien-1-yloxy]methyl}propan-1-ol (Compound 1 in US20130150625); 2-amino-3-[(9Z)-octadec-9-en-1-yloxy]-2-{[(9Z)-octadec-9-en-1-yloxy]

methyl}propan-1-ol (Compound 2 in US20130150625);
2-amino-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]-2-[(oc-tyloxy)methyl]propan-1-ol (Compound 3 in US20130150625); and 2-(dimethylamino)-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]methyl}propan-1-ol (Compound 4 in US20130150625); or any pharmaceutically acceptable salt or stereoisomer thereof.

Lipid nanoparticle formulations typically comprise a lipid, in particular, an ionizable cationic lipid, for example, 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobu-

tyrate (DLin-MC3-DMA), or di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), and further comprise a neutral lipid, a sterol and a molecule capable of reducing particle aggregation, for example a PEG or PEG-modified lipid.

In some embodiments, the lipid nanoparticle formulation consists essentially of (i) at least one lipid selected from the group consisting of 2,2-dilinoleyl-4-dimethylaminoethyl-[1, 3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2- 10 en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy) heptadecanedioate (L319); (ii) a neutral lipid selected from DSPC, DPPC, POPC, DOPE and SM; (iii) a sterol, e.g., cholesterol; and (iv) a PEG-lipid, e.g., PEG-DMG or PEGcDMA, in a molar ratio of about 20-60% cationic lipid: 15 5-25% neutral lipid: 25-55% sterol; 0.5-15% PEG-lipid.

In some embodiments, the formulation includes from about 25% to about 75% on a molar basis of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethyl- 20 aminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), e.g., from about 35 to about 65%, from about 45 to about 65%, about 60%, about 57.5%, about 50% or about 40% on a molar basis. 25

In some embodiments, the formulation includes from about 0.5% to about 15% on a molar basis of the neutral lipid e.g., from about 3 to about 12%, from about 5 to about 10% or about 15%, about 10%, or about 7.5% on a molar basis. Examples of neutral lipids include, but are not limited to, 30 DSPC, POPC, DPPC, DOPE and SM. In some embodiments, the formulation includes from about 5% to about 50% on a molar basis of the sterol (e.g., about 15 to about 45%, about 20 to about 40%, about 40%, about 38.5%, about 35%, or about 31% on a molar basis. An exemplary sterol is 35 cholesterol. In some embodiments, the formulation includes from about 0.5% to about 20% on a molar basis of the PEG or PEG-modified lipid (e.g., about 0.5 to about 10%, about 0.5 to about 5%, about 1.5%, about 0.5%, about 1.5%, about 3.5%, or about 5% on a molar basis. In some embodiments, 40 the PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of 2,000 Da. In other embodiments, the PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of less than 2,000, for example around 1,500 Da, around 1,000 Da, or 45 around 500 Da. Examples of PEG-modified lipids include, but are not limited to, PEG-distearoyl glycerol (PEG-DMG) (also referred herein as PEG-C14 or C14-PEG), PEGcDMA (further discussed in Reyes et al. J. Controlled Release, 107, 276-287 (2005) the contents of which are 50 herein incorporated by reference in their entirety)

In some embodiments, the formulations of the present disclosure include 25-75% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobu- 55 tyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 0.5-15% of the neutral lipid, 5-50% of the sterol, and 0.5-20% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present 60 disclosure include 35-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobu-tyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 65 3-12% of the neutral lipid, 15-45% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.

80

In some embodiments, the formulations of the present disclosure include 45-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane

(DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 5-10% of the neutral lipid, 25-40% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 60% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobu-tyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 7.5% of the neutral lipid, about 31% of the sterol, and about 1.5% of the PEG or PEG-modified lipid on a molar

basis. In some embodiments, the formulations of the present disclosure include about 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 10% of the neutral lipid, about 38.5% of the sterol, and about 1.5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 10% of the neutral lipid, about 35% of the sterol, about 4.5% or about 5% of the PEG or PEG-modified lipid, and about 0.5% of the targeting lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 40% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobu-tyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 15% of the neutral lipid, about 40% of the sterol, and about 5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 57.2% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobu-tyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), about 7.1% of the neutral lipid, about 34.3% of the sterol, and about 1.4% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, the formulations of the present disclosure include about 57.5% of a cationic lipid selected from the PEG lipid is PEG-cDMA (PEG-cDMA is further discussed in Reyes et al. (*J. Controlled Release*, 107, 276-287 (2005), the contents of which are herein incorporated by reference in their entirety), about 7.5% of the neutral lipid, about 31.5% of the sterol, and about 3.5% of the PEG or PEG-modified lipid on a molar basis.

In some embodiments, lipid nanoparticle formulation consists essentially of a lipid mixture in molar ratios of about 20-70% cationic lipid: 5-45% neutral lipid: 20-55% cholesterol: 0.5-15% PEG-modified lipid; more preferably in a molar ratio of about 20-60% cationic lipid: 5-25% neutral lipid: 25-55% cholesterol: 0.5-15% PEG-modified lipid.

In some embodiments, the molar lipid ratio is approximately 50/10/38.5/1.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG, PEG-DSG or PEG-DPG), 57.2/7.1134.3/1.4 (mol % cationic lipid/neutral lipid, e.g., DPPC/Chol/PEG-modified lipid, 5 e.g., PEG-cDMA), 40/15/40/5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG), 50/10/35/4.5/0.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DSG), 50/10/35/5 (cationic lipid/neutral lipid, e.g., DSPC/Chol/ 10 PEG-modified lipid, e.g., PEG-DMG), 40/10/40/10 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA), 35/15/40/10 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA) or 52/13/30/5 (mol % 15 cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA).

Examples of lipid nanoparticle compositions and methods of making same are described, for example, in Semple et al. (2010) *Nat. Biotechnol.* 28:172-176; Jayarama et al. (2012), 20 *Angew. Chem. Int. Ed.*, 51: 8529-8533; and Maier et al. (2013) *Molecular Therapy* 21, 1570-1578 (the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, the lipid nanoparticle formulations 25 described herein may comprise a cationic lipid, a PEG lipid and a structural lipid and optionally comprise a non-cationic lipid. As a non-limiting example, the lipid nanoparticle may comprise about 40-60% of cationic lipid, about 5-15% of a non-cationic lipid, about 1-2% of a PEG lipid and about 30 30-50% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise about 50% cationic lipid, about 10% non-cationic lipid, about 1.5% PEG lipid and about 38.5% structural lipid. As yet another non-limiting example, the lipid nanoparticle may comprise 35 about 55% cationic lipid, about 10% non-cationic lipid, about 2.5% PEG lipid and about 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but not limited to, DLin-KC2-DMA, DLin-MC3-DMA and L319.

In some embodiments, the lipid nanoparticle formulations described herein may be 4 component lipid nanoparticles. The lipid nanoparticle may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid. As a non-limiting example, the lipid nanoparticle may comprise 45 about 40-60% of cationic lipid, about 5-15% of a noncationic lipid, about 1-2% of a PEG lipid and about 30-50% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise about 50% cationic lipid, about 10% non-cationic lipid, about 1.5% PEG lipid and 50 about 38.5% structural lipid. As yet another non-limiting example, the lipid nanoparticle may comprise about 55% cationic lipid, about 10% non-cationic lipid, about 2.5% PEG lipid and about 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described 55 herein such as, but not limited to, DLin-KC2-DMA, DLin-MC3-DMA and L319.

In some embodiments, the lipid nanoparticle formulations described herein may comprise a cationic lipid, a noncationic lipid, a PEG lipid and a structural lipid. As a 60 non-limiting example, the lipid nanoparticle comprise about 50% of the cationic lipid DLin-KC2-DMA, about 10% of the non-cationic lipid DSPC, about 1.5% of the PEG lipid PEG-DOMG and about 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle 65 comprise about 50% of the cationic lipid DLin-MC3-DMA, about 10% of the non-cationic lipid DSPC, about 1.5% of

the PEG lipid PEG-DOMG and about 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle comprise about 50% of the cationic lipid DLin-MC3-DMA, about 10% of the non-cationic lipid DSPC, about 1.5% of the PEG lipid PEG-DMG and about 38.5% of the structural lipid cholesterol. As yet another non-limiting example, the lipid nanoparticle comprise about 55% of the cationic lipid L319, about 10% of the non-cationic lipid DSPC, about 2.5% of the PEG lipid PEG-DMG and about 32.5% of the structural lipid cholesterol.

As a non-limiting example, the cationic lipid may be selected from (20Z,23Z)-N,N-dimethylnonacosa-20,23dien-10-amine, (17Z,20Z)-N,N-dimemylhexacosa-17,20dien-9-amine. (1Z,19Z)-N5N-dimethylpentacosa-16, 19-dien-8-amine. (13Z,16Z)-N,N-dimethyldocosa-13,16dien-5-amine, (12Z, 15Z)-N,N-dimethylhenicosa-12,15dien-4-amine, (14Z, 17Z)-N,N-dimethyltricosa-14,17-dien-6-amine, (15Z, 18Z)-N,N-dimethyltetracosa-15,18-dien-7amine, (18Z,21Z)-N,N-dimethylheptacosa-18,21-dien-10-(15Z, 18Z)-N.N-dimethyltetracosa-15,18-dien-5amine. amine, (14Z, 17Z)-N,N-dimethyltricosa-14,17-dien-4amine, (19Z,22Z)-N,N-dimeihyloctacosa-19,22-dien-9-(18Z,21 Z)-N,N-dimethylheptacosa-18,21-dien-8amine, amine, (17Z,20Z)-N,N-dimethylhexacosa-17,20-dien-7amine, (16Z, 19Z)-N,N-dimethylpentacosa-16,19-dien-6-(22Z,25Z)-N,N-dimethylhentriaconta-22,25-dienamine, 10-amine, (21 Z,24Z)-N,N-dimethyltriaconta-21,24-dien-9amine, (18Z)-N,N-dimetylheptacos-18-en-10-amine, (17Z)-N,N-dimethylhexacos-17-en-9-amine, (19Z,22Z)-N,Ndimethyloctacosa-19,22-dien-7-amine, N.N-(20Z,23Z)-N-ethyl-Ndimethylheptacosan-10-amine, methylnonacosa-20,23-dien-10-amine, 1-[(11Z,14Z)-1pyrrolidine, nonylicosa-11,14-dien-1-yl] (20Z)-N,Ndimethylheptacos-20-en-10-amine, (15Z)-N,N-dimethyl eptacos-15-en-10-amine, (14Z)-N,N-dimethylnonacos-14en-10-amine, (17Z)-N,N-dimethylnonacos-17-en-10-amine, (24Z)-N,N-dimethyltritriacont-24-en-10-amine, (20Z)-N,Ndimethylnonacos-20-en-10-amine, (22Z)-N,N-dimethylhentriacont-22-en-10-amine, (16Z)-N,N-dimethylpentacos-16-40 en-8-amine, (12Z, 15Z)-N,N-dimethyl-2-nonylhenicosa-12, 15-dien-1-amine, (13Z, 16Z)-N,N-dimethyl-3-nonyldocosa-N,N-dimethyl-1-[(1S,2R)-2-13,16-dien-1-amine, eptadecan-8-amine, octylcyclopropyl] 1-[(1S,2R)-2hexylcyclopropyl]-N,N-dimethylnonadecan-10-amine, N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl]nonadecan-10-amine, N,N-dimethyl-21-[(1S,2R)-2-octylcyclopropyl] henicosan-10-amine,N,N-dimethyl-1-[(1S,2S)-2-{[(1R, 2R)-2-pentylcyclopropyl]methyl}cyclopropyl]nonadecan-10-amine,N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl] hexadecan-8-amine, N,N-dimethyl-[(1R,2S)-2undecylcyclopropyl]tetradecan-5-amine, N,N-dimethyl-3-{7-[(1S,2R)-2-octylcyclopropyl]heptyl} dodecan-1-amine, 1-[(1R,2S)-2-heptylcyclopropyl]-N,N-dimethyloctadecan-1-[(1S,2R)-2-decylcyclopropyl]-N,N-dimethyl-9-amine. pentadecan-6-amine, N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl]pentadecan-8-amine, R-N,N-dimethyl-1-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]-3-(octyloxy)propan-2amine, S-N,N-dimethyl-1-[(9Z, 12Z)-octadeca-9,12-dien-1yloxy]-3-(octyloxy)propan-2-amine, 1-{2-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-1-[(octyloxy)methyl] ethyl}pyrrolidine. (2S)-N,N-dimethyl-1-[(9Z, 12Z)octadeca-9,12-dien-1-yloxy]-3-[(5Z)-oct-5-en-1-yloxy] propan-2-amine, 1-{2-[(9Z, 12Z)-octadeca-9,12-dien-1-(2S)-1yloxy]-1-[(octyloxy)methyl]ethyl}azetidine,

(hexyloxy)-N,N-dimethyl-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, (2S)-1-(heptyloxy)-N,Ndimethyl-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]propan-

N,N-dimethyl-1-(nonyloxy)-3-[(9Z, 12Z)-2-amine. octadeca-9,12-dien-1-yloxy]propan-2-amine, N,Ndimethyl-1-[(9Z)-octadec-9-en-1-yloxy]-3-(octyloxy) propan-2-amine; (2S)-N,N-dimethyl-1-[(6Z,9Z, 12Z)-5 octadeca-6,9,12-trien-1-yloxy]-3-(octyloxy)propan-2amine, (2S)-1-[(11Z,14Z)-icosa-11,14-dien-1-yloxy]-N,Ndimethyl-3-(pentyloxy)propan-2-amine, (2S)-1-(hexyloxy)-3-[(11Z,14Z)-icosa-11,14-dien-1-yloxy]-N,Ndimethylpropan-2-amine, 1-[(11Z,14Z)-icosa-11,14-dien-1-10 yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, 1-[(13Z, 16Z)-docosa-13,16-dien-1-yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, (2S)-1-[(13Z,16Z)-docosa-13, 16-dien-1-yloxy]-3-(hexyloxy)-N,N-dimethylpropan-2amine, (2S)-1-[(13Z)-docos-13-en-1-yloxy]-3-(hexyloxy)-N,N-dimethylpropan-2-amine, 1-[(13Z)-docos-13-en-1yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, 1-[(9Z)hexadec-9-en-1-yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine. (2R)-N,N-dimethyl-H(1-metoylo ctyl)oxy]-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, 20 (2R)-1-[(3,7-dimethyloctyl)oxy]-N,N-dimethyl-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, N,N-dimethyl-1-(octyloxy)-3-({8-[(1S,2S)-2-{[(1R,2R)-2-pentylcyclopropyl]methyl}cyclopropyl]octyl}oxy)propan-2-N,N-dimethyl-1-{[8-(2-oc1ylcyclopropyl)octyl] 25 amine, oxy}-3-(octyloxy)propan-2-amine and (11E,20Z,23Z)-N,Ndimethylnonacosa-11,20,2-trien-10-amine or pharmaceutically acceptable salt or stereoisomer thereof.

In some embodiments, the LNP formulations of the RNA (e.g., mRNA) vaccines may contain PEG-c-DOMG at 3% 30 lipid molar ratio. In some embodiments, the LNP formulations of the RNA (e.g., mRNA) vaccines may contain PEG-c-DOMG at 1.5% lipid molar ratio.

In some embodiments, the pharmaceutical compositions of the RNA (e.g., mRNA) vaccines may include at least one 35 of the PEGylated lipids described in International Publication No. WO2012099755, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the LNP formulation may contain PEG-DMG 2000 (1,2-dimyristoyl-sn-glycero-3-phophoe- 40 thanolamine-N-[methoxy(polyethylene glycol)-2000). In some embodiments, the LNP formulation may contain PEG-DMG 2000, a cationic lipid known in the art and at least one other component. In some embodiments, the LNP formulation may contain PEG-DMG 2000, a cationic lipid known in 45 the art, DSPC and cholesterol. As a non-limiting example, the LNP formulation may contain PEG-DMG 2000, DLin-DMA, DSPC and cholesterol. As another non-limiting example the LNP formulation may contain PEG-DMG 2000, DLin-DMA, DSPC and cholesterol in a molar ratio of 50 2:40:10:48 (see e.g., Geall et al., Nonviral delivery of self-amplifying RNA (e.g., mRNA) vaccines, PNAS 2012; PMID: 22908294, the contents of each of which are herein incorporated by reference in their entirety).

The lipid nanoparticles described herein may be made in 55 a sterile environment.

In some embodiments, the LNP formulation may be formulated in a nanoparticle such as a nucleic acid-lipid particle. As a non-limiting example, the lipid particle may comprise one or more active agents or therapeutic agents; 60 one or more cationic lipids comprising from about 50 mol % to about 85 mol % of the total lipid present in the particle; one or more non-cationic lipids comprising from about 13 mol % to about 49.5 mol % of the total lipid present in the particle; and one or more conjugated lipids that inhibit 65 aggregation of particles comprising from about 0.5 mol % to about 2 mol % of the total lipid present in the particle.

The nanoparticle formulations may comprise a phosphate conjugate. The phosphate conjugate may increase in vivo circulation times and/or increase the targeted delivery of the nanoparticle. As a non-limiting example, the phosphate conjugates may include a compound of any one of the formulas described in International Application No. WO2013033438, the contents of which are herein incorporated by reference in its entirety.

The nanoparticle formulation may comprise a polymer conjugate. The polymer conjugate may be a water soluble conjugate. The polymer conjugate may have a structure as described in U.S. Patent Application No. 20130059360, the contents of which are herein incorporated by reference in its entirety. In some embodiments, polymer conjugates with the polynucleotides of the present disclosure may be made using the methods and/or segmented polymeric reagents described in U.S. Patent Application No. 20130072709, the contents of which are herein incorporated by reference in its entirety. In some embodiments, the polymer conjugate may have pendant side groups comprising ring moieties such as, but not limited to, the polymer conjugates described in U.S. Patent Publication No. US20130196948, the contents which are herein incorporated by reference in its entirety.

The nanoparticle formulations may comprise a conjugate to enhance the delivery of nanoparticles of the present disclosure in a subject. Further, the conjugate may inhibit phagocytic clearance of the nanoparticles in a subject. In one aspect, the conjugate may be a "self" peptide designed from the human membrane protein CD47 (e.g., the "self" particles described by Rodriguez et al. (Science 2013 339, 971-975), herein incorporated by reference in its entirety). As shown by Rodriguez et al., the self peptides delayed macrophagemediated clearance of nanoparticles which enhanced delivery of the nanoparticles. In another aspect, the conjugate may be the membrane protein CD47 (e.g., see Rodriguez et al. Science 2013 339, 971-975, herein incorporated by reference in its entirety). Rodriguez et al. showed that, similarly to "self" peptides, CD47 can increase the circulating particle ratio in a subject as compared to scrambled peptides and PEG coated nanoparticles.

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure are formulated in nanoparticles which comprise a conjugate to enhance the delivery of the nanoparticles of the present disclosure in a subject. The conjugate may be the CD47 membrane or the conjugate may be derived from the CD47 membrane protein, such as the "self" peptide described previously. In some embodiments, the nanoparticle may comprise PEG and a conjugate of CD47 or a derivative thereof. In some embodiments, the nanoparticle may comprise both the "self" peptide described above and the membrane protein CD47.

In some embodiments, a "self" peptide and/or CD47 protein may be conjugated to a virus-like particle or pseudovirion, as described herein for delivery of the RNA (e.g., mRNA) vaccines of the present disclosure.

In some embodiments, RNA (e.g., mRNA) vaccine pharmaceutical compositions comprising the polynucleotides of the present disclosure and a conjugate that may have a degradable linkage. Non-limiting examples of conjugates include an aromatic moiety comprising an ionizable hydrogen atom, a spacer moiety, and a water-soluble polymer. As a non-limiting example, pharmaceutical compositions comprising a conjugate with a degradable linkage and methods for delivering such pharmaceutical compositions are described in U.S. Patent Publication No. US20130184443, the contents of which are herein incorporated by reference in their entirety. The nanoparticle formulations may be a carbohydrate nanoparticle comprising a carbohydrate carrier and a RNA (e.g., mRNA) vaccine. As a non-limiting example, the carbohydrate carrier may include, but is not limited to, an anhydride-modified phytoglycogen or glycogen-type material, phtoglycogen octenyl succinate, phytoglycogen betadextrin, anhydride-modified phytoglycogen beta-dextrin. (See e.g., International Publication No. WO2012109121; the contents of which are herein incorporated by reference in their entirety).

Nanoparticle formulations of the present disclosure may be coated with a surfactant or polymer in order to improve the delivery of the particle. In some embodiments, the nanoparticle may be coated with a hydrophilic coating such as, but not limited to, PEG coatings and/or coatings that have 15 a neutral surface charge. The hydrophilic coatings may help to deliver nanoparticles with larger payloads such as, but not limited to, RNA (e.g., mRNA) vaccines within the central nervous system. As a non-limiting example nanoparticles comprising a hydrophilic coating and methods of making 20 such nanoparticles are described in U.S. Patent Publication No. US20130183244, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the lipid nanoparticles of the present disclosure may be hydrophilic polymer particles. 25 Non-limiting examples of hydrophilic polymer particles and methods of making hydrophilic polymer particles are described in U.S. Patent Publication No. US20130210991, the contents of which are herein incorporated by reference in their entirety. 30

In some embodiments, the lipid nanoparticles of the present disclosure may be hydrophobic polymer particles.

Lipid nanoparticle formulations may be improved by replacing the cationic lipid with a biodegradable cationic lipid which is known as a rapidly eliminated lipid nanopar- 35 ticle (reLNP). Ionizable cationic lipids, such as, but not limited to, DLinDMA, DLin-KC2-DMA, and DLin-MC3-DMA, have been shown to accumulate in plasma and tissues over time and may be a potential source of toxicity. The rapid metabolism of the rapidly eliminated lipids can 40 improve the tolerability and therapeutic index of the lipid nanoparticles by an order of magnitude from a 1 mg/kg dose to a 10 mg/kg dose in rat. Inclusion of an enzymatically degraded ester linkage can improve the degradation and metabolism profile of the cationic component, while still 45 maintaining the activity of the reLNP formulation. The ester linkage can be internally located within the lipid chain or it may be terminally located at the terminal end of the lipid chain. The internal ester linkage may replace any carbon in the lipid chain.

In some embodiments, the internal ester linkage may be located on either side of the saturated carbon.

In some embodiments, an immune response may be elicited by delivering a lipid nanoparticle which may include a nanospecies, a polymer and an immunogen. (U.S. Publi-55 cation No. 20120189700 and International Publication No. WO2012099805; each of which is herein incorporated by reference in their entirety). The polymer may encapsulate the nanospecies or partially encapsulate the nanospecies. The immunogen may be a recombinant protein, a modified 60 RNA and/or a polynucleotide described herein. In some embodiments, the lipid nanoparticle may be formulated for use in a vaccine such as, but not limited to, against a pathogen.

Lipid nanoparticles may be engineered to alter the surface 65 properties of particles so the lipid nanoparticles may penetrate the mucosal barrier. Mucus is located on mucosal 86

tissue such as, but not limited to, oral (e.g., the buccal and esophageal membranes and tonsil tissue), ophthalmic, gastrointestinal (e.g., stomach, small intestine, large intestine, colon, rectum), nasal, respiratory (e.g., nasal, pharyngeal, tracheal and bronchial membranes), genital (e.g., vaginal, cervical and urethral membranes). Nanoparticles larger than 10-200 nm which are preferred for higher drug encapsulation efficiency and the ability to provide the sustained delivery of a wide array of drugs have been thought to be too large to rapidly diffuse through mucosal barriers. Mucus is continuously secreted, shed, discarded or digested and recycled so most of the trapped particles may be removed from the mucosa tissue within seconds or within a few hours. Large polymeric nanoparticles (200 nm-500 nm in diameter) which have been coated densely with a low molecular weight polyethylene glycol (PEG) diffused through mucus only 4 to 6-fold lower than the same particles diffusing in water (Lai et al. PNAS 2007 104(5):1482-487; Lai et al. Adv Drug Deliv Rev. 2009 61(2): 158-171; each of which is herein incorporated by reference in their entirety). The transport of nanoparticles may be determined using rates of permeation and/or fluorescent microscopy techniques including, but not limited to, fluorescence recovery after photobleaching (FRAP) and high resolution multiple particle tracking (MPT). As a non-limiting example, compositions which can penetrate a mucosal barrier may be made as described in U.S. Pat. No. 8,241,670 or International Patent Publication No. WO2013110028, the contents of each of which are herein incorporated by reference in its entirety.

The lipid nanoparticle engineered to penetrate mucus may comprise a polymeric material (i.e. a polymeric core) and/or a polymer-vitamin conjugate and/or a tri-block co-polymer. The polymeric material may include, but is not limited to, polyamines, polyethers, polyamides, polyesters, polycarbamates, polyureas, polycarbonates, poly(styrenes), polyimides, polysulfones, polyurethanes, polyacetylenes, polyethylenes, polyethyeneimines, polyisocyanates, polyacrylates, polymethacrylates, polyacrylonitriles, and polyarylates. The polymeric material may be biodegradable and/or biocompatible. Non-limiting examples of biocompatible polymers are described in International Patent Publication No. WO2013116804, the contents of which are herein incorporated by reference in their entirety. The polymeric material may additionally be irradiated. As a non-limiting example, the polymeric material may be gamma irradiated (see e.g., International App. No. WO201282165, herein incorporated by reference in its entirety). Non-limiting examples of specific polymers include poly(caprolactone) (PCL), ethylene vinyl acetate polymer (EVA), poly(lactic acid) (PLA), poly(L-lactic acid) (PLLA), poly(glycolic acid) (PGA), poly (lactic acid-co-glycolic acid) (PLGA), poly(L-lactic acidco-glycolic acid) (PLLGA), poly(D,L-lactide) (PDLA), poly (L-lactide) (PLLA), poly(D,L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone-co-glycolide), poly(D,Llactide-co-PEO-co-D,L-lactide), poly(D,L-lactide-co-PPOco-D,L-lactide), polyalkyl cyanoacralate, polyurethane, poly-L-lysine (PLL), hydroxypropyl methacrylate (HPMA), polyethyleneglycol, poly-L-glutamic acid, poly(hydroxy acids), polyanhydrides, polyorthoesters, poly(ester amides), polyamides, poly(ester ethers), polycarbonates, polyalkylenes such as polyethylene and polypropylene, polyalkylene glycols such as poly(ethylene glycol) (PEG), polyalkylene oxides (PEO), polyalkylene terephthalates such as poly (ethylene terephthalate), polyvinyl alcohols (PVA), polyvinyl ethers, polyvinyl esters such as poly(vinyl acetate), polyvinyl halides such as poly(vinyl chloride) (PVC), poly-

vinylpyrrolidone, polysiloxanes, polystyrene (PS), polyurethanes, derivatized celluloses such as alkyl celluloses, hydroxyalkyl celluloses, cellulose ethers, cellulose esters, nitro celluloses, hydroxypropylcellulose, carboxymethylcellulose, polymers of acrylic acids, such as poly(methyl(meth) 5 acrylate) (PMMA), poly(ethyl(meth)acrylate), poly(butyl (meth)acrylate), poly(isobutyl(meth)acrylate), poly(hexyl (meth)acrylate), poly(isodecyl(meth)acrylate), poly(lauryl (meth)acrylate), poly(phenyl(meth)acrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate), 10 poly(octadecyl acrylate) and copolymers and mixtures thereof, polydioxanone and its copolymers, polyhydroxyalkanoates, polypropylene fumarate, polyoxymethylene, poloxamers, poly(ortho)esters, poly(butyric acid), poly(valeric acid), poly(lactide-co-caprolactone), PEG-PLGA-PEG 15 and trimethylene carbonate, polyvinylpyrrolidone. The lipid nanoparticle may be coated or associated with a co-polymer such as, but not limited to, a block co-polymer (such as a branched polyether-polyamide block copolymer described in International Publication No. WO2013012476, herein 20 incorporated by reference in its entirety), and (poly(ethylene glycol))-(poly(propylene oxide))-(poly(ethylene glycol)) triblock copolymer (see e.g., U.S. Publication 20120121718 and U.S. Publication 20100003337 and U.S. Pat. No. 8,263, 665, the contents of each of which is herein incorporated by 25 reference in their entirety). The co-polymer may be a polymer that is generally regarded as safe (GRAS) and the formation of the lipid nanoparticle may be in such a way that no new chemical entities are created. For example, the lipid nanoparticle may comprise poloxamers coating PLGA nano- 30 particles without forming new chemical entities which are still able to rapidly penetrate human mucus (Yang et al. Angew. Chem. Int. Ed. 2011 50:2597-2600; the contents of which are herein incorporated by reference in their entirety). A non-limiting scalable method to produce nanoparticles 35 which can penetrate human mucus is described by Xu et al. (see, e.g., J Control Release 2013, 170(2):279-86; the contents of which are herein incorporated by reference in their entirety).

The vitamin of the polymer-vitamin conjugate may be 40 vitamin E. The vitamin portion of the conjugate may be substituted with other suitable components such as, but not limited to, vitamin A, vitamin E, other vitamins, cholesterol, a hydrophobic moiety, or a hydrophobic component of other surfactants (e.g., sterol chains, fatty acids, hydrocarbon 45 chains and alkylene oxide chains).

The lipid nanoparticle engineered to penetrate mucus may include surface altering agents such as, but not limited to, polynucleotides, anionic proteins (e.g., bovine serum albumin), surfactants (e.g., cationic surfactants such as for 50 example dimethyldioctadecyl-ammonium bromide), sugars or sugar derivatives (e.g., cyclodextrin), nucleic acids, polymers (e.g., heparin, polyethylene glycol and poloxamer), mucolytic agents (e.g., N-acetylcysteine, mugwort, bromelain, papain, clerodendrum, acetylcysteine, bromhexine, car- 55 bocisteine, eprazinone, mesna, ambroxol, sobrerol, domiodol, letosteine, stepronin, tiopronin, gelsolin, thymosin 34 dornase alfa, neltenexine, erdosteine) and various DNases including rhDNase. The surface altering agent may be embedded or enmeshed in the particle's surface or disposed 60 (e.g., by coating, adsorption, covalent linkage, or other process) on the surface of the lipid nanoparticle. (see e.g., U.S. Publication 20100215580 and U.S. Publication 20080166414 and US20130164343; the contents of each of which are herein incorporated by reference in their entirety). 65

In some embodiments, the mucus penetrating lipid nanoparticles may comprise at least one polynucleotide described herein. The polynucleotide may be encapsulated in the lipid nanoparticle and/or disposed on the surface of the particle. The polynucleotide may be covalently coupled to the lipid nanoparticle. Formulations of mucus penetrating lipid nanoparticles may comprise a plurality of nanoparticles. Further, the formulations may contain particles which may interact with the mucus and alter the structural and/or adhesive properties of the surrounding mucus to decrease mucoadhesion, which may increase the delivery of the mucus penetrating lipid nanoparticles to the mucosal tissue.

In some embodiments, the mucus penetrating lipid nanoparticles may be a hypotonic formulation comprising a mucosal penetration enhancing coating. The formulation may be hypotonice for the epithelium to which it is being delivered. Non-limiting examples of hypotonic formulations may be found in International Patent Publication No. WO2013110028, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, in order to enhance the delivery through the mucosal barrier the RNA (e.g., mRNA) vaccine formulation may comprise or be a hypotonic solution.

Hypotonic solutions were found to increase the rate at which mucoinert particles such as, but not limited to, mucus-penetrating particles, were able to reach the vaginal epithelial surface (see e.g., Ensign et al. Biomaterials 2013 34(28):6922-9, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccine is formulated as a lipoplex, such as, without limitation, the ATUPLEX[™] system, the DACC system, the DBTC system and other siRNA-lipoplex technology from Silence Therapeutics (London, United Kingdom), STEMFECT[™] from STEMGENT® (Cambridge, Mass.), and polyethylenimine (PEI) or protamine-based targeted and non-targeted delivery of nucleic acids acids (Aleku et al. Cancer Res. 2008 68:9788-9798; Strumberg et al. Int J Clin Pharmacol Ther 2012 50:76-78; Santel et al., Gene Ther 2006 13:1222-1234; Santel et al., Gene Ther 2006 13:1360-1370; Gutbier et al., Pulm Pharmacol. Ther. 2010 23:334-344; Kaufmann et al. Microvasc Res 2010 80:286-293 Weide et al. J Immunother. 2009 32:498-507; Weide et al. J Immunother. 2008 31:180-188; Pascolo Expert Opin. Biol. Ther. 4:1285-1294; Fotin-Mleczek et al., 2011 J. Immunother. 34:1-15; Song et al., Nature Biotechnol. 2005, 23:709-717; Peer et al., Proc Natl Acad Sci USA. 2007 6; 104:4095-4100; deFougerolles Hum Gene Ther. 2008 19:125-132, the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, such formulations may also be constructed or compositions altered such that they passively or actively are directed to different cell types in vivo, including but not limited to hepatocytes, immune cells, tumor cells, endothelial cells, antigen presenting cells, and leukocytes (Akinc et al. Mol Ther. 2010 18:1357-1364; Song et al., Nat Biotechnol. 2005 23:709-717; Judge et al., J Clin Invest. 2009 119:661-673; Kaufmann et al., Microvasc Res 2010 80:286-293; Santel et al., Gene Ther 2006 13:1222-1234; Santel et al., Gene Ther 2006 13:1360-1370; Gutbier et al., Pulm Pharmacol. Ther. 2010 23:334-344; Basha et al., Mol. Ther. 2011 19:2186-2200; Fenske and Cullis, Expert Opin Drug Deliv. 2008 5:25-44; Peer et al., Science. 2008 319:627-630; Peer and Lieberman, Gene Ther. 2011 18:1127-1133, the contents of each of which are incorporated herein by reference in their entirety). One example of passive targeting of formulations to liver cells includes the DLin-DMA, DLin-KC2-DMA and DLin-MC3-DMA-based lipid nanoparticle formulations, which have been shown to bind to apolipoprotein E and promote binding

and uptake of these formulations into hepatocytes in vivo (Akinc et al. Mol Ther. 2010 18:1357-1364, the contents of which are incorporated herein by reference in their entirety). Formulations can also be selectively targeted through expression of different ligands on their surface as exempli-5 fied by, but not limited by, folate, transferrin, N-acetylgalactosamine (GalNAc), and antibody targeted approaches (Kolhatkar et al., Curr Drug Discov Technol. 2011 8:197-206; Musacchio and Torchilin, Front Biosci. 2011 16:1388-1412; Yu et al., Mol Membr Biol. 2010 27:286-298; Patil et 10 al., Crit Rev Ther Drug Carrier Syst. 2008 25:1-61; Benoit et al., Biomacromolecules. 2011 12:2708-2714; Zhao et al., Expert Opin Drug Deliv. 2008 5:309-319; Akinc et al., Mol Ther. 2010 18:1357-1364; Srinivasan et al., Methods Mol Biol. 2012 820:105-116; Ben-Arie et al., Methods Mol Biol. 15 may include, but is not limited to, tri-block co-polymers. As 2012 757:497-507; Peer 2010 J Control Release. 20:63-68; Peer et al., Proc Natl Acad Sci USA. 2007 104:4095-4100; Kim et al., Methods Mol Biol. 2011 721:339-353; Subramanya et al., Mol Ther. 2010 18:2028-2037; Song et al., Nat Biotechnol. 2005 23:709-717; Peer et al., Science. 2008 20 319:627-630; Peer and Lieberman, Gene Ther. 2011 18:1127-1133, the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccine is formulated as a solid lipid nanoparticle. A solid lipid nano- 25 particle (SLN) may be spherical with an average diameter between 10 to 1000 nm. SLN possess a solid lipid core matrix that can solubilize lipophilic molecules and may be stabilized with surfactants and/or emulsifiers. In some embodiments, the lipid nanoparticle may be a self-assembly 30 lipid-polymer nanoparticle (see Zhang et al., ACS Nano, 2008, 2 (8), pp 1696-1702; the contents of which are herein incorporated by reference in their entirety). As a nonlimiting example, the SLN may be the SLN described in International Patent Publication No. WO2013105101, the 35 contents of which are herein incorporated by reference in their entirety. As another non-limiting example, the SLN may be made by the methods or processes described in International Patent Publication No. WO2013105101, the contents of which are herein incorporated by reference in 40 their entirety.

Liposomes, lipoplexes, or lipid nanoparticles may be used to improve the efficacy of polynucleotides directed protein production as these formulations may be able to increase cell transfection by the RNA (e.g., mRNA) vaccine; and/or 45 increase the translation of encoded protein. One such example involves the use of lipid encapsulation to enable the effective systemic delivery of polyplex plasmid DNA (Heyes et al., Mol Ther. 2007 15:713-720; the contents of which are incorporated herein by reference in their entirety). 50 The liposomes, lipoplexes, or lipid nanoparticles may also be used to increase the stability of the polynucleotide.

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure can be formulated for controlled release and/or targeted delivery. As used herein, "controlled 55 release" refers to a pharmaceutical composition or compound release profile that conforms to a particular pattern of release to effect a therapeutic outcome. In some embodiments, the RNA (e.g., mRNA) vaccines may be encapsulated into a delivery agent described herein and/or known in 60 the art for controlled release and/or targeted delivery. As used herein, the term "encapsulate" means to enclose, surround or encase. As it relates to the formulation of the compounds of the disclosure, encapsulation may be substantial, complete or partial. The term "substantially encapsu- 65 lated" means that at least greater than 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.9 or greater than 99.999% of the

pharmaceutical composition or compound of the disclosure may be enclosed, surrounded or encased within the delivery agent. "Partially encapsulation" means that less than 10, 10, 20, 30, 40 50 or less of the pharmaceutical composition or compound of the disclosure may be enclosed, surrounded or encased within the delivery agent. Advantageously, encapsulation may be determined by measuring the escape or the activity of the pharmaceutical composition or compound of the disclosure using fluorescence and/or electron micrograph. For example, at least 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.99 or greater than 99.99% of the pharmaceutical composition or compound of the disclosure are encapsulated in the delivery agent.

In some embodiments, the controlled release formulation a non-limiting example, the formulation may include two different types of tri-block co-polymers (International Pub. No. WO2012131104 and WO2012131106, the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccines may be encapsulated into a lipid nanoparticle or a rapidly eliminated lipid nanoparticle and the lipid nanoparticles or a rapidly eliminated lipid nanoparticle may then be encapsulated into a polymer, hydrogel and/or surgical sealant described herein and/or known in the art. As a non-limiting example, the polymer, hydrogel or surgical sealant may be PLGA, ethylene vinyl acetate (EVAc), poloxamer, GELSITE® (Nanotherapeutics, Inc. Alachua, Fla.), HYL-ENEX® (Halozyme Therapeutics, San Diego Calif.), surgical sealants such as fibrinogen polymers (Ethicon Inc. Cornelia, Ga.), TISSELL® (Baxter International, Inc Deerfield, Ill.), PEG-based sealants, and COSEAL® (Baxter International, Inc Deerfield, Ill.).

In some embodiments, the lipid nanoparticle may be encapsulated into any polymer known in the art which may form a gel when injected into a subject. As another nonlimiting example, the lipid nanoparticle may be encapsulated into a polymer matrix which may be biodegradable.

In some embodiments, the RNA (e.g., mRNA) vaccine formulation for controlled release and/or targeted delivery may also include at least one controlled release coating. Controlled release coatings include, but are not limited to, OPADRY®, polyvinylpyrrolidone/vinyl acetate copolymer, polyvinylpyrrolidone, hydroxypropyl methylcellulose, hydroxyethyl hydroxypropyl cellulose, cellulose. EUDRAGIT RL®, EUDRAGIT RS® and cellulose derivatives such as ethylcellulose aqueous dispersions (AQUA-COAT® and SURELEASE®).

In some embodiments, the RNA (e.g., mRNA) vaccine controlled release and/or targeted delivery formulation may comprise at least one degradable polyester which may contain polycationic side chains. Degradeable polyesters include, but are not limited to, poly(serine ester), poly(Llactide-co-L-lysine), poly(4-hydroxy-L-proline ester), and combinations thereof. In some embodiments, the degradable polyesters may include a PEG conjugation to form a PEGylated polymer.

In some embodiments, the RNA (e.g., mRNA) vaccine controlled release and/or targeted delivery formulation comprising at least one polynucleotide may comprise at least one PEG and/or PEG related polymer derivatives as described in U.S. Pat. No. 8,404,222, the contents of which are incorporated herein by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccine controlled release delivery formulation comprising at least one polynucleotide may be the controlled release polymer system described in US20130130348, the contents of which are incorporated herein by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure may be encapsulated in a therapeutic nanoparticle, referred to herein as "therapeutic nanoparticle⁵ RNA (e.g., mRNA) vaccines." Therapeutic nanoparticles may be formulated by methods described herein and known in the art such as, but not limited to, International Pub Nos. WO2010005740, WO2010030763, WO2010005721, WO2010005723, WO2012054923, U.S. Publication Nos. US20110262491, US20100104645, US20100087337, US20100068285, US20110274759, US20100068286, US20120288541, US20130123351 and US20130230567 and U.S. Pat. Nos. 8,206,747, 8,293,276, 8,318,208 and 15 8,318,211; the contents of each of which are herein incorporated by reference in their entirety. In some embodiments, therapeutic polymer nanoparticles may be identified by the methods described in US Pub No. US20120140790, the contents of which are herein incorporated by reference in 20 their entirety.

In some embodiments, the therapeutic nanoparticle RNA (e.g., mRNA) vaccine may be formulated for sustained release. As used herein, "sustained release" refers to a pharmaceutical composition or compound that conforms to 25 a release rate over a specific period of time. The period of time may include, but is not limited to, hours, days, weeks, months and years. As a non-limiting example, the sustained release nanoparticle may comprise a polymer and a therapeutic agent such as, but not limited to, the polynucleotides 30 of the present disclosure (see International Pub No. 2010075072 and US Pub No. US20100216804, US20110217377 and US20120201859, the contents of each of which are incorporated herein by reference in their entirety). In another non-limiting example, the sustained 35 release formulation may comprise agents which permit persistent bioavailability such as, but not limited to, crystals, macromolecular gels and/or particulate suspensions (see U.S. Patent Publication No US20130150295, the contents of each of which are incorporated herein by reference in their 40 entirety).

In some embodiments, the therapeutic nanoparticle RNA (e.g., mRNA) vaccines may be formulated to be target specific. As a non-limiting example, the therapeutic nanoparticles may include a corticosteroid (see International Pub. 45 No. WO2011084518, the contents of which are incorporated herein by reference in their entirety). As a non-limiting example, the therapeutic nanoparticles may be formulated in nanoparticles described in International Pub No. WO2008121949, WO2010005726, WO2010005725, so WO2011084521 and US Pub No. US20100069426, US20120004293 and US20100104655, the contents of each of which are incorporated herein by reference in their entirety.

In some embodiments, the nanoparticles of the present 55 disclosure may comprise a polymeric matrix. As a nonlimiting example, the nanoparticle may comprise two or more polymers such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, polyac- 60 etals, polyethers, polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polycyanoacrylates, polyureas, polystyrenes, polyamines, polylysine, poly(ethylene imine), poly(serine ester), poly(L- 65 lactide-co-L-lysine), poly(4-hydroxy-L-proline ester) or combinations thereof.

In some embodiments, the therapeutic nanoparticle comprises a diblock copolymer. In some embodiments, the diblock copolymer may include PEG in combination with a polymer such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, polyacetals, polyethers, polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polycyanoacrylates, polyureas, polystyrenes, polyamines, polylysine, poly(ethylene imine), poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester) or combinations thereof. In yet another embodiment, the diblock copolymer may be a high-X diblock copolymer such as those described in International Patent Publication No. WO2013120052, the contents of which are incorporated herein by reference in their entirety.

As a non-limiting example the therapeutic nanoparticle comprises a PLGA-PEG block copolymer (see U.S. Publication No. US20120004293 and U.S. Pat. No. 8,236,330, each of which is herein incorporated by reference in their entirety). In another non-limiting example, the therapeutic nanoparticle is a stealth nanoparticle comprising a diblock copolymer of PEG and PLA or PEG and PLGA (see U.S. Pat. No. 8,246,968 and International Publication No. WO2012166923, the contents of each of which are herein incorporated by reference in their entirety). In yet another non-limiting example, the therapeutic nanoparticle is a stealth nanoparticle or a target-specific stealth nanoparticle as described in U.S. Patent Publication No. US20130172406, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the therapeutic nanoparticle may comprise a multiblock copolymer (see e.g., U.S. Pat. Nos. 8,263,665 and 8,287,910 and U.S. Patent Pub. No. US20130195987, the contents of each of which are herein incorporated by reference in their entirety).

In yet another non-limiting example, the lipid nanoparticle comprises the block copolymer PEG-PLGA-PEG (see e.g., the thermosensitive hydrogel (PEG-PLGA-PEG) was used as a TGF-beta1 gene delivery vehicle in Lee et al. Thermosensitive Hydrogel as a Tgf-ß1 Gene Delivery Vehicle Enhances Diabetic Wound Healing. Pharmaceutical Research, 2003 20(12): 1995-2000; as a controlled gene delivery system in Li et al. Controlled Gene Delivery System Based on Thermosensitive Biodegradable Hydrogel. Pharmaceutical Research 2003 20(6):884-888; and Chang et al., Non-ionic amphiphilic biodegradable PEG-PLGA-PEG copolymer enhances gene delivery efficiency in rat skeletal muscle. J Controlled Release. 2007 118:245-253, the contents of each of which are herein incorporated by reference in their entirety). The RNA (e.g., mRNA) vaccines of the present disclosure may be formulated in lipid nanoparticles comprising the PEG-PLGA-PEG block copolymer.

In some embodiments, the therapeutic nanoparticle may comprise a multiblock copolymer (see e.g., U.S. Pat. Nos. 8,263,665 and 8,287,910 and U.S. Patent Pub. No. US20130195987, the contents of each of which are herein incorporated by reference in their entirety).

In some embodiments, the block copolymers described herein may be included in a polyion complex comprising a non-polymeric micelle and the block copolymer. (see e.g., U.S. Publication No. 20120076836, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the therapeutic nanoparticle may comprise at least one acrylic polymer. Acrylic polymers include but are not limited to, acrylic acid, methacrylic acid,

25

acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, amino alkyl methacrylate copolymer, poly (acrylic acid), poly(methacrylic acid), polycyanoacrylates and combinations thereof.

In some embodiments, the therapeutic nanoparticles may comprise at least one poly(vinyl ester) polymer. The poly (vinyl ester) polymer may be a copolymer such as a random copolymer. As a non-limiting example, the random copolymer may have a structure such as those described in Inter- 10 national Application No. WO2013032829 or U.S. Patent Publication No US20130121954, the contents of each of which are herein incorporated by reference in their entirety. In some embodiments, the poly(vinyl ester) polymers may be conjugated to the polynucleotides described herein.

In some embodiments, the therapeutic nanoparticle may comprise at least one diblock copolymer. The diblock copolymer may be, but it not limited to, a poly(lactic) acid-poly (ethylene)glycol copolymer (see, e.g., International Patent Publication No. WO2013044219, the contents of which are 20 herein incorporated by reference in their entirety).

As a non-limiting example, the therapeutic nanoparticle may be used to treat cancer (see International publication No. WO2013044219, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the therapeutic nanoparticles may comprise at least one cationic polymer described herein and/or known in the art.

In some embodiments, the therapeutic nanoparticles may comprise at least one amine-containing polymer such as, but 30 not limited to polylysine, polyethylene imine, poly(amidoamine) dendrimers, poly(beta-amino esters) (see, e.g., U.S. Pat. No. 8,287,849, the contents of which are herein incorporated by reference in their entirety) and combinations thereof.

In some embodiments, the nanoparticles described herein may comprise an amine cationic lipid such as those described in International Patent Application No. WO2013059496, the contents of which are herein incorporated by reference in their entirety. In some embodiments, 40 the cationic lipids may have an amino-amine or an aminoamide moiety.

In some embodiments, the therapeutic nanoparticles may comprise at least one degradable polyester which may contain polycationic side chains. Degradeable polyesters 45 include, but are not limited to, poly(serine ester), poly(Llactide-co-L-lysine), poly(4-hydroxy-L-proline ester), and combinations thereof. In some embodiments, the degradable polyesters may include a PEG conjugation to form a PEGylated polymer. 50

In some embodiments, the synthetic nanocarriers may contain an immunostimulatory agent to enhance the immune response from delivery of the synthetic nanocarrier. As a non-limiting example, the synthetic nanocarrier may comprise a Th1 immunostimulatory agent, which may enhance 55 a Th1-based response of the immune system (see International Pub No. WO2010123569 and U.S. Publication No. US20110223201, the contents of each of which are herein incorporated by reference in their entirety).

In some embodiments, the synthetic nanocarriers may be 60 formulated for targeted release. In some embodiments, the synthetic nanocarrier is formulated to release the polynucleotides at a specified pH and/or after a desired time interval. As a non-limiting example, the synthetic nanoparticle may be formulated to release the RNA (e.g., mRNA) vaccines 65 after 24 hours and/or at a pH of 4.5 (see International Publication Nos. WO2010138193 and WO2010138194 and

US Pub Nos. US20110020388 and US20110027217, each of which is herein incorporated by reference in their entireties).

In some embodiments, the synthetic nanocarriers may be formulated for controlled and/or sustained release of the polynucleotides described herein. As a non-limiting example, the synthetic nanocarriers for sustained release may be formulated by methods known in the art, described herein and/or as described in International Pub No. WO2010138192 and US Pub No. 20100303850, each of which is herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccine may be formulated for controlled and/or sustained release wherein the formulation comprises at least one polymer that is a crystalline side chain (CYSC) polymer. CYSC polymers are described in U.S. Pat. No. 8,399,007, herein incorporated by reference in its entirety.

In some embodiments, the synthetic nanocarrier may be formulated for use as a vaccine. In some embodiments, the synthetic nanocarrier may encapsulate at least one polynucleotide which encode at least one antigen. As a nonlimiting example, the synthetic nanocarrier may include at least one antigen and an excipient for a vaccine dosage form (see International Publication No. WO2011150264 and U.S. Publication No. US20110293723, the contents of each of which are herein incorporated by reference in their entirety). As another non-limiting example, a vaccine dosage form may include at least two synthetic nanocarriers with the same or different antigens and an excipient (see International Publication No. WO2011150249 and U.S. Publication No. US20110293701, the contents of each of which are herein incorporated by reference in their entirety). The vaccine dosage form may be selected by methods described herein, known in the art and/or described in International Publica-35 tion No. WO2011150258 and U.S. Publication No. US20120027806, the contents of each of which are herein incorporated by reference in their entirety).

In some embodiments, the synthetic nanocarrier may comprise at least one polynucleotide which encodes at least one adjuvant. As non-limiting example, the adjuvant may comprise dimethyldioctadecylammonium-bromide, dimethyldioctadecylammonium-chloride, dimethyldioctadecylammonium-phosphate or dimethyldioctadecylammonium-acetate (DDA) and an apolar fraction or part of said apolar fraction of a total lipid extract of a mycobacterium (see, e.g., U.S. Pat. No. 8,241,610, the content of which is herein incorporated by reference in its entirety). In some embodiments, the synthetic nanocarrier may comprise at least one polynucleotide and an adjuvant. As a non-limiting example, the synthetic nanocarrier comprising and adjuvant may be formulated by the methods described in International Publication No. WO2011150240 and U.S. Publication No. US20110293700, the contents of each of which are herein incorporated by reference in their entirety.

In some embodiments, the synthetic nanocarrier may encapsulate at least one polynucleotide that encodes a peptide, fragment or region from a virus. As a non-limiting example, the synthetic nanocarrier may include, but is not limited to, any of the nanocarriers described in International WO2012024621, WO201202629. Publication No. WO2012024632 and U.S. Publication No. US20120064110, US20120058153 and US20120058154, the contents of each of which are herein incorporated by reference in their entirety.

In some embodiments, the synthetic nanocarrier may be coupled to a polynucleotide which may be able to trigger a humoral and/or cytotoxic T lymphocyte (CTL) response

(see, e.g., International Publication No. WO2013019669, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccine may be encapsulated in, linked to and/or associated with 5 zwitterionic lipids. Non-limiting examples of zwitterionic lipids and methods of using zwitterionic lipids are described in U.S. Patent Publication No. US20130216607, the contents of which are herein incorporated by reference in their entirety.

In some aspects, the zwitterionic lipids may be used in the liposomes and lipid nanoparticles described herein.

In some embodiments, the RNA (e.g., mRNA) vaccine may be formulated in colloid nanocarriers as described in U.S. Patent Publication No. US20130197100, the contents 15 of which are herein incorporated by reference in their entirety.

In some embodiments, the nanoparticle may be optimized for oral administration. The nanoparticle may comprise at least one cationic biopolymer such as, but not limited to, 20 chitosan or a derivative thereof. As a non-limiting example, the nanoparticle may be formulated by the methods described in U.S. Publication No. 20120282343, the contents of which are herein incorporated by reference in their entirety. 25

In some embodiments, LNPs comprise the lipid KL52 (an amino-lipid disclosed in U.S. Application Publication No. 2012/0295832, the contents of which are herein incorporated by reference in their entirety. Activity and/or safety (as measured by examining one or more of ALT/AST, white 30 blood cell count and cytokine induction, for example) of LNP administration may be improved by incorporation of such lipids. LNPs comprising KL52 may be administered intravenously and/or in one or more doses. In some embodiments, administration of LNPs comprising KL52 results in 35 equal or improved mRNA and/or protein expression as compared to LNPs comprising MC3.

In some embodiments, RNA (e.g., mRNA) vaccine may be delivered using smaller LNPs. Such particles may comprise a diameter from below 0.1 um up to 100 nm such as, 40 but not limited to, less than 0.1 um, less than 1.0 um, less than 5 um, less than 10 um, less than 15 um, less than 20 um, less than 25 um, less than 30 um, less than 35 um, less than 40 um, less than 50 um, less than 55 um, less than 60 um, less than 65 um, less than 70 um, less than 75 um, less than 45 80 um, less than 85 um, less than 90 um, less than 95 um, less than 100 um, less than 125 um, less than 150 um, less than 175 um, less than 200 um, less than 225 um, less than 250 um, less than 275 um, less than 300 um, less than 325 um, less than 350 um, less than 375 um, less than 400 um, 50 less than 425 um, less than 450 um, less than 475 um, less than 500 um, less than 525 um, less than 550 um, less than 575 um, less than 600 um, less than 625 um, less than 650 um, less than 675 um, less than 700 um, less than 725 um, less than 750 um, less than 775 um, less than 800 um, less 55 than 825 um, less than 850 um, less than 875 um, less than 900 um, less than 925 um, less than 950 um, less than 975 um, or less than 1000 um.

In some embodiments, RNA (e.g., mRNA) vaccines may be delivered using smaller LNPs, which may comprise a 60 diameter from about 1 nm to about 100 nm, from about 1 nm to about 10 nm, about 1 nm to about 20 nm, from about 1 nm to about 30 nm, from about 1 nm to about 40 nm, from about 1 nm to about 50 nm, from about 1 nm to about 60 nm, from about 1 nm to about 70 nm, from about 1 nm to about 65 80 nm, from about 1 nm to about 90 nm, from about 5 nm to about from 100 nm, from about 5 nm to about 10 nm,

96

about 5 nm to about 20 nm, from about 5 nm to about 30 nm, from about 5 nm to about 40 nm, from about 5 nm to about 50 nm, from about 5 nm to about 60 nm, from about 5 nm to about 70 nm, from about 5 nm to about 80 nm, from about 5 nm to about 90 nm, about 10 to about 50 nm, from about 20 to about 50 nm, from about 30 to about 50 nm, from about 40 to about 50 nm, from about 20 to about 60 nm, from about 30 to about 60 nm, from about 40 to about 60 nm, from about 20 to about 70 nm, from about 30 to about 70 nm, from about 40 to about 70 nm, from about 50 to about 70 nm, from about 60 to about 70 nm, from about 20 to about 80 nm, from about 30 to about 80 nm, from about 40 to about 80 nm, from about 50 to about 80 nm, from about 60 to about 80 nm, from about 20 to about 90 nm, from about 30 to about 90 nm, from about 40 to about 90 nm, from about 50 to about 90 nm, from about 60 to about 90 nm and/or from about 70 to about 90 nm.

In some embodiments, such LNPs are synthesized using methods comprising microfluidic mixers. Examples of microfluidic mixers may include, but are not limited to, a slit interdigital micromixer including, but not limited to those manufactured by Microinnova (Allerheiligen bei Wildon, Austria) and/or a staggered herringbone micromixer (SHM) (Zhigaltsev, I. V. et al., Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing have been published (Langmuir. 2012. 28:3633-40; Belliveau, N. M. et al., Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Molecular Therapy-Nucleic Acids. 2012. 1:e37; Chen, D. et al., Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J Am Chem Soc. 2012. 134(16):6948-51, the contents of each of which are herein incorporated by reference in their entirety). In some embodiments, methods of LNP generation comprising SHM, further comprise the mixing of at least two input streams wherein mixing occurs by microstructureinduced chaotic advection (MICA). According to this method, fluid streams flow through channels present in a herringbone pattern causing rotational flow and folding the fluids around each other. This method may also comprise a surface for fluid mixing wherein the surface changes orientations during fluid cycling. Methods of generating LNPs using SHM include those disclosed in U.S. Application Publication Nos. 2004/0262223 and 2012/0276209, the contents of each of which are herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccine of the present disclosure may be formulated in lipid nanoparticles created using a micromixer such as, but not limited to, a Slit Interdigital Microstructured Mixer (SIMM-V2) or a Standard Slit Interdigital Micro Mixer (SSIMM) or Caterpillar (CPMM) or Impinging-jet (IJMM) from the Institut fiir Mikrotechnik Mainz GmbH, Mainz Germany).

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure may be formulated in lipid nanoparticles created using microfluidic technology (see, e.g., Whitesides, George M. The Origins and the Future of Microfluidics. Nature, 2006 442: 368-373; and Abraham et al. Chaotic Mixer for Microchannels. Science, 2002 295: 647-651; each of which is herein incorporated by reference in its entirety). As a non-limiting example, controlled microfluidic formulation includes a passive method for mixing streams of steady pressure-driven flows in micro channels at a low Reynolds number (see, e.g., Abraham et al. Chaotic Mixer for Microchannels. Science, 2002 295: 647-651, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the RNA (e.g., mRNA) vaccines of the present disclosure may be formulated in lipid nanoparticles created using a micromixer chip such as, but not limited to, those from Harvard Apparatus (Holliston, Mass.) or Dolomite Microfluidics (Royston, UK). A micromixer 5 chip can be used for rapid mixing of two or more fluid streams with a split and recombine mechanism.

In some embodiments, the RNA (e.g., mRNA) vaccines of the disclosure may be formulated for delivery using the drug encapsulating microspheres described in International Pat-10 ent Publication No. WO2013063468 or U.S. Pat. No. 8,440, 614, the contents of each of which are herein incorporated by reference in their entirety. The microspheres may comprise a compound of the formula (I), (II), (II), (IV), (V) or (VI) as described in International Patent Publication No. 15 WO2013063468, the contents of which are herein incorporated by reference in their entirety. In some embodiments, the amino acid, peptide, polypeptide, lipids (APPL) are useful in delivering the RNA (e.g., mRNA) vaccines of the disclosure to cells (see International Patent Publication No. 20 WO2013063468, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccines of the disclosure may be formulated in lipid nanoparticles having a diameter from about 10 to about 100 nm such as, 25 but not limited to, about 10 to about 20 nm, about 10 to about 30 nm, about 10 to about 40 nm, about 10 to about 50 nm, about 10 to about 60 nm, about 10 to about 70 nm, about 10 to about 80 nm, about 10 to about 90 nm, about 20 to about 30 nm, about 20 to about 40 nm, about 20 to about 50 nm, 30 about 20 to about 60 nm, about 20 to about 70 nm, about 20 to about 80 nm, about 20 to about 90 nm, about 20 to about 100 nm, about 30 to about 40 nm, about 30 to about 50 nm, about 30 to about 60 nm, about 30 to about 70 nm, about 30 to about 80 nm, about 30 to about 90 nm, about 30 to about 35 100 nm, about 40 to about 50 nm, about 40 to about 60 nm, about 40 to about 70 nm, about 40 to about 80 nm, about 40 to about 90 nm, about 40 to about 100 nm, about 50 to about 60 nm, about 50 to about 70 nm about 50 to about 80 nm, about 50 to about 90 nm, about 50 to about 100 nm, about 40 60 to about 70 nm, about 60 to about 80 nm, about 60 to about 90 nm, about 60 to about 100 nm, about 70 to about 80 nm, about 70 to about 90 nm, about 70 to about 100 nm, about 80 to about 90 nm, about 80 to about 100 nm and/or about 90 to about 100 nm.

In some embodiments, the lipid nanoparticles may have a diameter from about 10 to 500 nm.

In some embodiments, the lipid nanoparticle may have a diameter greater than 100 nm, greater than 150 nm, greater than 200 nm, greater than 250 nm, greater than 300 nm, 50 greater than 350 nm, greater than 400 nm, greater than 450 nm, greater than 500 nm, greater than 550 nm, greater than 600 nm, greater than 650 nm, greater than 750 nm, greater than 550 nm, greater 550 nm, greater 550 nm, greater 550 nm, greater 550 nm, grea

In some embodiments, the lipid nanoparticle may be a limit size lipid nanoparticle described in International Patent Publication No. WO2013059922, the contents of which are herein incorporated by reference in their entirety. The limit 60 size lipid nanoparticle may comprise a lipid bilayer surrounding an aqueous core or a hydrophobic core; where the lipid bilayer may comprise a phospholipid such as, but not limited to, diacylphosphatidylcholine, a diacylphosphatidylethanolamine, a ceramide, a sphingomyelin, a dihy- 65 drosphingomyelin, a cephalin, a cerebroside, a C8-C20 fatty acid diacylphophatidylcholine, and 1-palmitoyl-2-oleoyl

phosphatidylcholine (POPC). In some embodiments, the limit size lipid nanoparticle may comprise a polyethylene glycol-lipid such as, but not limited to, DLPE-PEG, DMPE-PEG, DPPC-PEG and DSPE-PEG.

In some embodiments, the RNA (e.g., mRNA) vaccines may be delivered, localized and/or concentrated in a specific location using the delivery methods described in International Patent Publication No. WO2013063530, the contents of which are herein incorporated by reference in their entirety. As a non-limiting example, a subject may be administered an empty polymeric particle prior to, simultaneously with or after delivering the RNA (e.g., mRNA) vaccines to the subject. The empty polymeric particle undergoes a change in volume once in contact with the subject and becomes lodged, embedded, immobilized or entrapped at a specific location in the subject.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in an active substance release system (see, e.g., U.S. Patent Publication No. US20130102545, the contents of which are herein incorporated by reference in their entirety). The active substance release system may comprise 1) at least one nanoparticle bonded to an oligonucleotide inhibitor strand which is hybridized with a catalytically active nucleic acid and 2) a compound bonded to at least one substrate molecule bonded to a therapeutically active substance (e.g., polynucleotides described herein), where the therapeutically active substance is released by the cleavage of the substrate molecule by the catalytically active nucleic acid.

In some embodiments, the RNA (e.g., mRNA) vaccines may be formulated in a nanoparticle comprising an inner core comprising a non-cellular material and an outer surface comprising a cellular membrane. The cellular membrane may be derived from a cell or a membrane derived from a virus. As a non-limiting example, the nanoparticle may be made by the methods described in International Patent Publication No. WO2013052167, the contents of which are herein incorporated by reference in their entirety. As another non-limiting example, the nanoparticle described in International Patent Publication No. WO2013052167, the contents of which are herein incorporated by reference in their entirety, may be used to deliver the RNA (e.g., mRNA) vaccines described herein.

In some embodiments, the RNA (e.g., mRNA) vaccines 45 may be formulated in porous nanoparticle-supported lipid bilayers (protocells). Protocells are described in International Patent Publication No. WO2013056132, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccines described herein may be formulated in polymeric nanoparticles as described in or made by the methods described in U.S. Pat. Nos. 8,420,123 and 8,518,963 and European Patent No. EP2073848B1, the contents of each of which are herein incorporated by reference in their entirety. As a non-limiting example, the polymeric nanoparticle may have a high glass transition temperature such as the nanoparticles described in U.S. Pat. No. 8,518,963, the contents of which are herein incorporated by reference in their entirety. As another non-limiting example, the polymer nanoparticle for oral and parenteral formulations may be made by the methods described in European Patent No. EP2073848B1, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the RNA (e.g., mRNA) vaccines described herein may be formulated in nanoparticles used in imaging. The nanoparticles may be liposome nanoparticles

15

such as those described in U.S. Patent Publication No US20130129636, herein incorporated by reference in its entirety. As a non-limiting example, the liposome may comprise gadolinium(III)2-{4,7-bis-carboxymethyl-10-[(N, N-distearylamidomethyl-N'-amido-methyl]-1,4,7,10-tetra-azacyclododec-1-yl}-acetic acid and a neutral, fully saturated phospholipid component (see, e.g., U.S. Patent Publication No US20130129636, the contents of which are herein incorporated by reference in their entirety).

In some embodiments, the nanoparticles which may be used in the present disclosure are formed by the methods described in U.S. Patent Application No. US20130130348, the contents of which are herein incorporated by reference in their entirety.

The nanoparticles of the present disclosure may further include nutrients such as, but not limited to, those which deficiencies can lead to health hazards from anemia to neural tube defects (see, e.g., the nanoparticles described in International Patent Publication No WO2013072929, the con-20 tents of which are herein incorporated by reference in their entirety). As a non-limiting example, the nutrient may be iron in the form of ferrous, ferric salts or elemental iron, iodine, folic acid, vitamins or micronutrients.

In some embodiments, the RNA (e.g., mRNA) vaccines of 25 the present disclosure may be formulated in a swellable nanoparticle. The swellable nanoparticle may be, but is not limited to, those described in U.S. Pat. No. 8,440,231, the contents of which are herein incorporated by reference in their entirety. As a non-limiting embodiment, the swellable 30 nanoparticle may be used for delivery of the RNA (e.g., mRNA) vaccines of the present disclosure to the pulmonary system (see, e.g., U.S. Pat. No. 8,440,231, the contents of which are herein incorporated by reference in their entirety).

The RNA (e.g., mRNA) vaccines of the present disclosure 35 may be formulated in polyanhydride nanoparticles such as, but not limited to, those described in U.S. Pat. No. 8,449, 916, the contents of which are herein incorporated by reference in their entirety.

The nanoparticles and microparticles of the present dis- 40 closure may be geometrically engineered to modulate macrophage and/or the immune response. In some embodiments, the geometrically engineered particles may have varied shapes, sizes and/or surface charges in order to incorporated the polynucleotides of the present disclosure for targeted 45 delivery such as, but not limited to, pulmonary delivery (see, e.g., International Publication No WO2013082111, the contents of which are herein incorporated by reference in their entirety). Other physical features the geometrically engineering particles may have include, but are not limited to, 50 fenestrations, angled arms, asymmetry and surface roughness, charge which can alter the interactions with cells and tissues. As a non-limiting example, nanoparticles of the present disclosure may be made by the methods described in International Publication No WO2013082111, the contents 55 of which are herein incorporated by reference in their entirety.

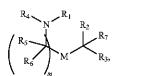
In some embodiments, the nanoparticles of the present disclosure may be water soluble nanoparticles such as, but not limited to, those described in International Publication 60 No. WO2013090601, the contents of which are herein incorporated by reference in their entirety. The nanoparticles may be inorganic nanoparticles which have a compact and zwitterionic ligand in order to exhibit good water solubility. The nanoparticles may also have small hydrodynamic diam-65 eters (HD), stability with respect to time, pH, and salinity and a low level of non-specific protein binding.

In some embodiments the nanoparticles of the present disclosure may be developed by the methods described in U.S. Patent Publication No. US20130172406, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the nanoparticles of the present disclosure are stealth nanoparticles or target-specific stealth nanoparticles such as, but not limited to, those described in U.S. Patent Publication No. US20130172406, the contents of which are herein incorporated by reference in their entirety. The nanoparticles of the present disclosure may be made by the methods described in U.S. Patent Publication No. US20130172406, the contents of which are herein incorporated by reference in their entirety.

In some embodiments, the stealth or target-specific stealth nanoparticles may comprise a polymeric matrix. The polymeric matrix may comprise two or more polymers such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, polyacetals, polyethers, polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polycyanoacrylates, polystyrenes, polyamines, polyesters, polyanhydrides, polyethers, polyurethanes, polymethacrylates, polyacrylates, polyurethanes, polymethacrylates, polyacrylates, polycyanoacrylates, polycyanoacrylates, polycyanoacrylates or combinations thereof.

In some embodiments, the nanoparticle may be a nanoparticle-nucleic acid hybrid structure having a high density nucleic acid layer. As a non-limiting example, the nanoparticle-nucleic acid hybrid structure may made by the methods described in U.S. Patent Publication No. US20130171646, the contents of which are herein incorporated by reference in their entirety. The nanoparticle may comprise a nucleic acid such as, but not limited to, polynucleotides described herein and/or known in the art.


At least one of the nanoparticles of the present disclosure may be embedded in in the core a nanostructure or coated with a low density porous 3-D structure or coating which is capable of carrying or associating with at least one payload within or on the surface of the nanostructure. Non-limiting examples of the nanostructures comprising at least one nanoparticle are described in International Patent Publication No. WO2013123523, the contents of which are herein incorporated by reference in their entirety.

In some embodiments the RNA (e.g., mRNA) vaccine may be associated with a cationic or polycationic compounds, including protamine, nucleoline, spermine or spermidine, or other cationic peptides or proteins, such as poly-L-lysine (PLL), polyarginine, basic polypeptides, cell penetrating peptides (CPPs), including HIV-binding peptides, HIV-1 Tat (HIV), Tat-derived peptides, Penetratin, VP²² derived or analog peptides, Pestivirus Erns, HSV, VP²² (Herpes simplex), MAP, KALA or protein transduction domains (PTDs), PpT620, prolin-rich peptides, arginine-rich peptides, lysine-rich peptides, MPG-peptide(s), Pep-1, L-oligomers, Calcitonin peptide(s), Antennapedia-derived peptides (particularly from Drosophila antennapedia), pAntp, pIsl, FGF, Lactoferrin, Transportan, Buforin-2, Bac715-24, SynB, SynB(1), pVEC, hCT-derived peptides, SAP, histones, cationic polysaccharides, for example chitosan, polybrene, cationic polymers, e.g. polyethyleneimine (PEI), cationic lipids, e.g. DOTMA: [1-(2,3-sioleyloxy) propyl)]-N,N,N-trimethylammonium chloride, DMRIE, di-C14-amidine, DOTIM, SAINT, DC-Chol, BGTC, CTAP, DOPC, DODAP, DOPE: Dioleyl phosphatidylethanolamine, DOSPA, DODAB, DOIC, DMEPC, DOGS: Dioctadecylamidoglicylspermin, DIMRI: Dimyristooxypropyl

dimethyl hydroxyethyl ammonium bromide, DOTAP: dioleoyloxy-3-(trimethylammonio)propane, DC-6-14: O,Oditetradecanoyl-N-.alpha.-trimethylammonioacetyl)diethanolamine chloride, CLIP 1: rac-[(2,3-dioctadecyloxypropyl) (2-hydroxyethyl)]-dimethylammonium chloride, CLIP6: 5 rac-[2(2,3-dihexadecvloxvpropyloxymethyloxy)ethyl]trimethylammonium, CLIP9: rac-[2(2,3-dihexadecvloxypropyloxysuccinyloxy)ethyl]-trimethylammonium, oligofectamine, or cationic or polycationic polymers, e.g. modified polyaminoacids, such as beta-aminoacid-polymers or reversed polyamides, etc., modified polyethylenes, such as PVP (poly(N-ethyl-4-vinylpyridinium bromide)), etc., modified acrylates, such as pDMAEMA (poly(dimethylaminoethyl methylacrylate)), etc., modified amidoamines such as pAMAM (poly(amidoamine)), etc., modified polybetaminoester (PBAE), such as diamine end modified 1,4 butanediol diacrylate-co-5-amino-1-pentanol polymers, etc., dendrimers, such as polypropylamine dendrimers or pAMAM based dendrimers, etc., polyimine(s), such as PEI: 20 poly(ethyleneimine), poly(propyleneimine), etc., polyallylamine, sugar backbone based polymers, such as cyclodextrin based polymers, dextran based polymers, chitosan, etc., silan backbone based polymers, such as PMOXA-PDMS copolymers, etc., blockpolymers consisting of a combina- 25 tion of one or more cationic blocks (e.g. selected from a cationic polymer as mentioned above) and of one or more hydrophilic or hydrophobic blocks (e.g. polyethyleneglycole), etc.

In other embodiments the RNA (e.g., mRNA) vaccine is not associated with a cationic or polycationic compounds.

In some embodiments, a nanoparticle comprises compounds of Formula (I):

or a salt or isomer thereof, wherein:

 R_1 is selected from the group consisting of C_{5-30} alkyl, 45 C₅₋₂₀ alkenyl, -R*YR", -YR", and -R"M'R';

 \mathbf{R}_2 and \mathbf{R}_3 are independently selected from the group consisting of H, C_{1-14} alkyl, C_{2-14} alkenyl, -R*YR", -YR", and -R*OR", or R_2 and R_3 , together with the atom to which they are attached, form a heterocycle or carbocycle; 50 R₄ is selected from the group consisting of a C₃₋₆ carbo-

cycle, $-(CH_2)_n Q$, $-(CH_2)_n CHQR$,

-CHQR, --CQ(R)₂, and unsubstituted C₁₋₆ alkyl, where Q is selected from a carbocycle, heterocycle, -OR, $-O(CH_2)_n N(R)_2$, -C(O)OR, -OC(O)R, —CX₃, 55 $-CX_2H, -CXH_2, -CN, -N(R)_2, -C(O)N(R)_2, -N(R)$ C(O)R, $-N(R)S(O)_2R$, $-N(R)C(O)N(R)_2$, -N(R)C(S)N $(R)_{2}, -N(R)R_{8}, -O(CH_{2})_{\mu}OR, -N(R)C(=NR_{9})N(R)_{2},$ $-N(R)C(=CHR_9)N(R)_2$, $-OC(O)N(R)_2$, -N(R)C(O)OR, -N(OR)C(O)R, $-N(OR)S(O)_2R$, -N(OR)C(O)OR, 60 ing of C_{1-3} alkyl, C_{2-3} alkenyl, and H; $-N(OR)C(O)N(R)_2$, $-N(OR)C(S)N(R)_2$, -N(OR)C $(=NR_9)N(R)_2, -N(OR)C(=CHR_9)N(R)_2, -C(=NR_9)N(R)_2$ $(R)_2$, $-C(=NR_9)R$, -C(O)N(R)OR, and $-C(R)N(R)_2C$ (O)OR, and each n is independently selected from 1, 2, 3, 4, and 5; 65

each R5 is independently selected from the group consisting of C₁₋₃ alkyl, C₂₋₃ alkenyl, and H;

102

each R₆ is independently selected from the group consisting of C₁₋₃ alkyl, C₂₋₃ alkenyl, and H;

M and M' are independently selected from -C(O)O, -OC(O), -C(O)N(R'),

-N(R')C(O), -C(O), -C(S), -C(S)S, -SC(S)--, --CH(OH)--, --P(O)(OR')O--, --S(O)₂--, --S--

S—, an aryl group, and a heteroaryl group; R_7 is selected from the group consisting of $\rm C_{1-3}$ alkyl, $\rm C_{2-3}$

alkenyl, and H; R₈ is selected from the group consisting of C_{3-6} carbocycle and heterocycle;

 R_9 is selected from the group consisting of H, CN, NO₂, C_{1-6} alkyl, -OR, $-S(O)_2R$, $-S(O)_2N(R)_2$, C_{2-6} alkenyl, C_{3-6} carbocycle and heterocycle;

each R is independently selected from the group consist-15 ing of C₁₋₃ alkyl, C₂₋₃ alkenyl, and H;

each R' is independently selected from the group consisting of C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, —R*YR", —YR", and H; each R" is independently selected from the group con-

sisting of C₃₋₁₄ alkyl and C₃₋₁₄ alkenyl; each R* is independently selected from the group consisting of C₁₋₁₂ alkyl and C₂₋₁₂ alkenyl;

each Y is independently a C_{3-6} carbocycle;

each X is independently selected from the group consisting of F, Cl, Br, and I; and

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13.

In some embodiments, a subset of compounds of Formula (I) includes those in which when R_4 is $-(CH_2)_n Q$, $-(CH_2)_n$ CHQR, —CHQR, or $-CQ(R)_2$, then (i) Q is not $-N(R)_2$ when n is 1, 2, 3, 4 or 5, or (ii) Q is not 5, 6, or 7-membered heterocycloalkyl when n is 1 or 2.

In some embodiments, another subset of compounds of Formula (I) includes those in which

 $R_{\rm 1}$ is selected from the group consisting of $C_{\rm 5-30}$ alkyl, C₅₋₂₀ alkenyl, ---R*YR", ---YR", and ----R"M'R';

 R_2 and R_3 are independently selected from the group consisting of H, C_{1-14} alkyl, C_{2-14} alkenyl, -R*YR", -YR", and -R*OR", or R_2 and R_3 , together with the atom to which they are attached, form a heterocycle or carbocycle; R_4 is selected from the group consisting of a C_{3-6} carbo-40 cycle, $-(CH_2)_n Q$, $-(CH_2)_n CHQR$,

-CHQR, -CQ(R)2, and unsubstituted C1-6 alkyl, where Q is selected from a C₃₋₆ carbocycle, a 5- to 14-membered heteroaryl having one or more heteroatoms selected from N, O, and S, -OR,

 $\begin{array}{l} - O(CH_2)N(R)_2, - C(O)OR, - OC(O)R, - CX_3, - CX_2H, \\ - CXH_2, - CN, - C(O)N(R)_2, - N(R)C(O)R, - N(R)S \end{array}$ $(O)_2 R$, $-N(R)C(O)N(R)_2$, $-N(R)C(S)N(R)_2$, $-CRN(R)_2$ $C(O)OR, -N(R)R_8, -O(CH_2)_nOR, -N(R)C(=NR_9)N$ $(R)_{2}, -N(R)C(=CHR_{9})N(R)_{2}, -OC(O)N(R)_{2}, -N(R)C(R)C(R)_{2}, -N(R)C(R)C(R)C(R)_{2}, -N(R)C(R)C(R)C(R)_{2}, -N(R)C(R)C(R)C(R)_{2}, -N(R)C(R)C(R)C(R)C(R)_{2}, -N(R)C(R)C(R)C(R)C(R)C(R))$ $(O)OR, -N(OR)C(O)R, -N(OR)S(O)_2R, -N(OR)C(O)$ $(=NR_9)N(R)_2, -N(OR)C(=CHR_9)N(R)_2, -C(=NR_9)N(R)_2$ $(R)_2$, $-C(=NR_9)R$, -C(O)N(R)O R, and a 5- to 14-membered heterocycloalkyl having one or more heteroatoms selected from N, O, and S which is substituted with one or more substituents selected from oxo (=O), OH, amino, mono- or di-alkylamino, and $\mathrm{C}_{1\text{-}3}$ alkyl, and each n is independently selected from 1, 2, 3, 4, and 5;

each R5 is independently selected from the group consist-

each R₆ is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

M and M' are independently selected from -C(O)O-, -OC(O), -C(O)N(R'), -N(R')C(O), -C(O), -C(S), -C(S)S, -SC(S), -CH(OH), -P(O)(OR')O-, $-S(O)_2$, -S-S-, an aryl group, and a heteroaryl group;

(I)

35

25

55

R7 is selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H;

 R_8 is selected from the group consisting of C_{3-6} carbocycle and heterocycle;

 R_9 is selected from the group consisting of H, CN, NO₂, ⁵ C_{1-6} alkyl, -OR, $-S(O)_2R$, $-S(O)_2N(R)_2$, C_{2-6} alkenyl, C3-6 carbocycle and heterocycle;

each R is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

each R' is independently selected from the group consisting of C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, -R*YR", -YR", and H;

each R" is independently selected from the group consisting of C₃₋₁₄ alkyl and C₃₋₁₄ alkenyl;

each R* is independently selected from the group con- $_{15}$ sisting of C_{1-12} alkyl and C_{2-12} alkenyl;

each Y is independently a C_{3-6} carbocycle;

each X is independently selected from the group consisting of F, Cl, Br, and I; and

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.

In some embodiments, another subset of compounds of Formula (I) includes those in which

 $R_{\rm 1}$ is selected from the group consisting of $C_{\text{5-30}}$ alkyl, C₅₋₂₀ alkenyl, —R*YR", —YR", and —R"M'R';

R₂ and R₃ are independently selected from the group consisting of H, C_{1-14} alkyl, C_{2-14} alkenyl, -R*YR", -YR", and -R*OR", or R_2 and R_3 , together with the atom

to which they are attached, form a heterocycle or carbocycle; R_{Δ} is selected from the group consisting of a C_{3-6} carbo- 30

cycle, $-(CH_2)_n Q$, $-(CH_2)_n CHQR$,

-CHQR, -CQ(R)₂, and unsubstituted C₁₋₆ alkyl, where Q is selected from a C_{3-6} carbocycle, a 5- to 14-membered heterocycle having one or more heteroatoms selected from N, O, and S, -OR,

 $-O(CH_2)_n N(R)_2$ -C(O)OR,-OC(O)R, ----CX,, $-CX_2H$, $-CXH_2$, -CN, $-C(O)N(R)_2$, -N(R)C(O)R,

 $-N(\overline{R})S(O)_2R$, $-N(R)C(O)N(R)_2$, $-N(R)C(S)N(R)_2$,

 $-CRN(R)_2C(O)OR, -N(R)R_8,$

 $-N(R)C(=NR_9)N(R)_2,$ $-O(CH_2)_nOR$, -N(R)C 40 -N(R)C(O)OR, $(=CHR_9)N(R)_2$ $-OC(O)N(R)_2$ $-N(OR)S(O)_2R$, -N(OR)C(O)OR, -N(OR)C(O)R $-N(OR)C(O)N(R)_2$, $-N(OR)C(S)N(R)_2,$ -N(OR)C $(=NR_9)N(R)_2, -N(OR)C(=CHR_9)N(R)_2, -C(=NR_9)R,$ C(O)N(R)OR, and $-C(=NR_9)N(R)_2$, and each n is 45 independently selected from 1, 2, 3, 4, and 5; and when Q is a 5- to 14-membered heterocycle and (i) R_4 is $-(CH_2)_n Q$ in which n is 1 or 2, or (ii) R_4 is $-(CH_2)_n$ CHQR in which n is 1, or (iii) R_4 is —CHQR, and —CQ(R)₂, then Q is either

a 5- to 14-membered heteroaryl or 8- to 14-membered 50 heterocycloalkyl;

each R₅ is independently selected from the group consisting of C₁₋₃ alkyl, C₂₋₃ alkenyl, and H;

each R₆ is independently selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H;

M and M' are independently selected from ---C(O)O---, -OC(O), -C(O)N(R'), -N(R')C(O), -C(O)--C(S), -C(S)S, -SC(S), -CH(OH), -P(O)(OR)O, $-S(O)_2$, -S, an aryl group, and a heteroaryl group;

R7 is selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H;

 R_8 is selected from the group consisting of C_{3-6} carbocycle and heterocycle;

R₉ is selected from the group consisting of H, CN, NO₂, 65 ing of F, Cl, Br, and I; and C_{1-6} alkyl, -OR, $-S(O)_2R$, $-S(O)_2N(R)_2$, C_{2-6} alkenyl, C_{3-6} carbocycle and heterocycle;

104

each R is independently selected from the group consisting of C₁₋₃ alkyl, C₂₋₃ alkenyl, and H;

each R' is independently selected from the group consisting of C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, ---R*YR", ---YR", and H;

each R" is independently selected from the group consisting of C₃₋₁₄ alkyl and C₃₋₁₄ alkenyl;

each R* is independently selected from the group consisting of C₁₋₁₂ alkyl and C₂₋₁₂ alkenyl;

each Y is independently a C3-6 carbocycle;

each X is independently selected from the group consisting of F, Cl, Br, and I; and

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13,

or salts or isomers thereof. In some embodiments, another subset of compounds of

Formula (I) includes those in which

 R_1 is selected from the group consisting of C_{5-30} alkyl, C₅₋₂₀ alkenyl, —R*YR", —YR", and —R"M'R';

 R_2 and R_3 are independently selected from the group 20 consisting of H, C1-14 alkyl, C2-14 alkenyl, -R*YR",

-YR", and -R*OR", or R₂ and R₃, together with the atom to which they are attached, form a heterocycle or carbocycle;

 R_4 is selected from the group consisting of a C_{3-6} carbocycle, $-(CH_2)_n Q$, $-(CH_2)_n CHQR$,

-CHQR, $-CQ(R)_2$, and unsubstituted C_{1-6} alkyl, where Q is selected from a C3-6 carbocycle, a 5- to 14-membered heteroaryl having one or more heteroatoms selected from N, O, and S, -OR,

 $-O(CH_2)_n N(R)_2,$ —C(O)OR, -OC(O)R, ----CX3, $-CX_2H$, $-CXH_2$, -CN, $-C(O)N(R)_2$, -N(R)C(O)R, $-N(R)C(O)N(R)_2$, $-N(R)C(S)N(R)_2$, $-N(R)S(O)_2R$ $-CRN(R)_2C(O)OR, -N(R)R_8, -O(CH_2)_nOR, -N(R)C$ $(=NR_9)N(R)_2, -N(R)C(=CHR_9)N(R)_2, -OC(O)N(R)_2,$ -N(R)C(O)OR, -N(OR)C(O)R, $-N(OR)S(O)_2R$ 35 -N(OR)C(O)OR, $-N(OR)C(O)N(R)_2$, -N(OR)C(S)N $(R)_2, -N(OR)C(=NR_9)N(R)_2, -N(OR)C(=CHR_9)N(R)$ $_{2}$, $-C(=NR_{9})R$, -C(O)N(R)OR, and $-C(=NR_{9})N(R)_{2}$, and each n is independently selected from 1, 2, 3, 4, and 5; each R5 is independently selected from the group consisting of C₁₋₃ alkyl, C₂₋₃ alkenyl, and H;

each R₆ is independently selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

M and M' are independently selected from -C(O)O-, -OC(O), -C(O)N(R'), -N(R')C(O), -C(O)--C(S), -C(S)S, -SC(S), -CH(OH), -P(O)(OR')O, $-S(O)_2$, -S, an aryl group, and a heteroaryl group;

 R_7 is selected from the group consisting of C_{1-3} alkyl, C_{2-3} alkenyl, and H;

 R_8 is selected from the group consisting of C_{3-6} carbocycle and heterocycle;

 R_9 is selected from the group consisting of H, CN, NO₂, C_{1-6} alkyl, -OR, $-S(O)_2R$, $-S(O)_2N(R)_2$, C_{2-6} alkenyl, C_{3-6} carbocycle and heterocycle;

each R is independently selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H;

each R' is independently selected from the group consisting of C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, ---R*YR", ---YR", and H; each R" is independently selected from the group con-

60 sisting of C_{3-14} alkyl and C_{3-14} alkenyl; each R* is independently selected from the group consisting of C_{1-12} alkyl and C_{2-12} alkenyl;

each Y is independently a C_{3-6} carbocycle;

each X is independently selected from the group consist-

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.

In some embodiments, another subset of compounds of Formula (I) includes those in which

 R_1 is selected from the group consisting of C_{5-30} alkyl, C_{5-20} alkenyl, -R*YR'', -YR'', and -R''M'R';

R₂ and R₃ are independently selected from the group -5 consisting of H, C2-14 alkyl, C2-14 alkenyl, -R*YR",

-YR", and —R*OR", or R₂ and R₃, together with the atom to which they are attached, form a heterocycle or carbocycle;

 R_4 is $-(CH_2)_n Q$ or $-(CH_2)_n CHQR$, where Q is -N(R)2, and n is selected from 3, 4, and 5; 10

each R5 is independently selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H;

each R₆ is independently selected from the group consisting of C₁₋₃ alkyl, C₂₋₃ alkenyl, and H;

M and M are independently selected from -C(O)O-, 15

-OC(O)-, -C(O)N(R')-, -N(R')C(O)-, -C(O)-, -C(S)-, -C(S)S-, -SC(S)-, -CH(OH)-, -P(O)(OR')O-, $-S(O)_2-$, -S-S-, an aryl group, and a heteroaryl group;

 R_7 is selected from the group consisting of C_{1-3} alkyl, C_{2-3} 20 alkenyl, and H;

each R is independently selected from the group consisting of C₁₋₃ alkyl, C₂₋₃ alkenyl, and H;

each R' is independently selected from the group consist-

ing of C_{1-18} alkyl, C_{2-18} alkenyl, -R*YR", -YR", and H; 25 each R" is independently selected from the group consisting of C_{3-14} alkyl and C_{3-14} alkenyl;

each R* is independently selected from the group consisting of C_{1-12} alkyl and C_{1-12} alkenyl;

each Y is independently a C_{3-6} carbocycle;

each X is independently selected from the group consisting of F, Cl, Br, and I; and

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13, or salts or isomers thereof.

In some embodiments, another subset of compounds of 35 Formula (I) includes those in which

 $R_{\rm 1}$ is selected from the group consisting of $C_{\rm 5\text{-}30}$ alkyl, C_{5-20} alkenyl, -R*YR'', -YR'', and -R''M'R';

 $\overline{R_2}$ and $\overline{R_3}$ are independently selected from the group consisting of C1-14 alkyl, C2-14 alkenyl, -R*YR", -YR", 40 and -R*OR", or R_2 and R_3 , together with the atom to which

they are attached, form a heterocycle or carbocycle;

 R_4 is selected from the group consisting of $-(CH_2)_n Q$, $-(CH_2)_n CHQR$, --CHQR, and $--CQ(R)_2$, where Q is

 $-N(R)_2$, and n is selected from 1, 2, 3, 4, and 5;

each R5 is independently selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H;

each R₆ is independently selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H;

M and M are independently selected from ---C(O)O---, 50 -OC(O), -C(O)N(R'), -N(R')C(O), -C(O)-C(S), -C(S)S, -SC(S), -CH(OH), -P(O)(OR')O, $-S(O)_2$, -S, an aryl group, and a heteroaryl group;

 R_7 is selected from the group consisting of C_{1-3} alkyl, C_{2-3} 55 alkenyl, and H;

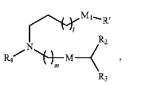
each R is independently selected from the group consisting of C₁₋₃ alkyl, C₂₋₃ alkenyl, and H;

each R' is independently selected from the group consist-

ing of C_{1-18} alkyl, C_{2-18} alkenyl, --R*YR", --YR", and H; 60 each R" is independently selected from the group consisting of C3-14 alkyl and C3-14 alkenyl;

each R* is independently selected from the group consisting of C_{1-12} alkyl and C_{1-12} alkenyl;

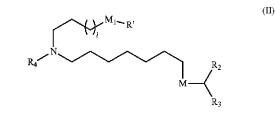
each Y is independently a C₃₋₆ carbocycle;


each X is independently selected from the group consist-

ing of F, Cl, Br, and I; and

m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13,

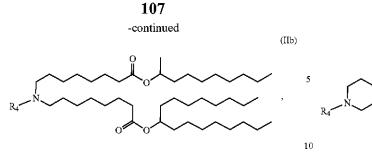
or salts or isomers thereof.

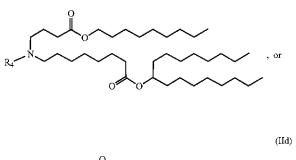

In some embodiments, a subset of compounds of Formula (I) includes those of Formula (IA):

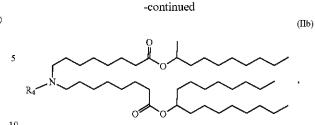
or a salt or isomer thereof, wherein 1 is selected from 1, 2, 3, 4, and 5; m is selected from 5, 6, 7, 8, and 9; M_1 is a bond or M'; R_4 is unsubstituted C_{1-3} alkyl, or $-(CH_2)_n Q$, in which Q is OH, --NHC(S)N(R)2, --NHC(O)N(R)2, --N(R) $C(O)R, -N(R)S(O)_2R, -N(R)R_8, -NHC(=NR_9)N(R)_2,$ $-NHC(=CHR_9)N(R)_2$, $-OC(O)N(R)_2$, -N(R)C(O)OR, heteroaryl or heterocycloalkyl; M and M' are independently selected

from -C(O)O-, -OC(O)-, -C(O)N(R')-, -P(O)(OR')O-, -S-S-, an aryl group, and a heteroaryl group; and R_2 and R_3 are independently selected from the group consisting of H, C_{1-14} alkyl, and C_{2-14} alkenyl.

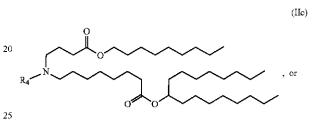
In some embodiments, a subset of compounds of Formula ₃₀ (I) includes those of Formula (II):



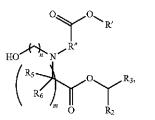

or a salt or isomer thereof, wherein 1 is selected from 1, 2, 3, 4, and 5; M_1 is a bond or M'; R_4 is unsubstituted C_{1-3} alkyl, or $-(CH_2)_n Q$, in which n is 2, 3, or 4, and Q is OH, -NHC(S)N(R)₂, -NHC(O)N(R)₂, -N(R)C(O)R, -N(R) $-N(R)R_8$, $-NHC(=NR_9)N(R)_2$, $S(O)_{2}R_{1}$ ----NHC $(=CHR_9)N(R)_2$, $-OC(O)N(R)_2$, -N(R)C(O)OR, heteroaryl or heterocycloalkyl; M and M' are independently selected


from -C(O)O, -OC(O), -C(O)N(R'), -P(O)(OR')O—, —S—S—, an aryl group, and a heteroaryl group; and R2 and R3 are independently selected from the group consisting of H, C1-14 alkyl, and C2-14 alkenyl.

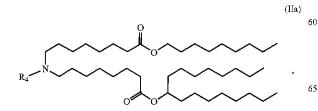
In some embodiments, a subset of compounds of Formula (I) includes those of Formula (IIa), (IIb), (IIc), or (IIe):

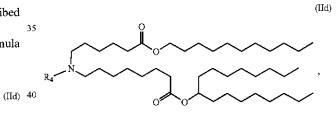


(IIc)


15

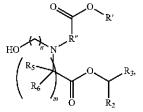
30


or a salt or isomer thereof, wherein R_4 is as described herein.

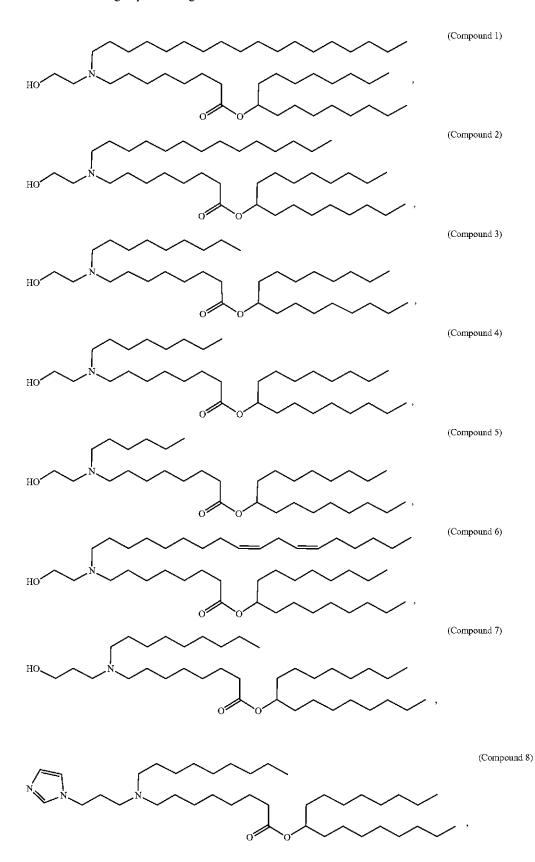

In some embodiments, a subset of compounds of Formula (I) includes those of Formula (IId):

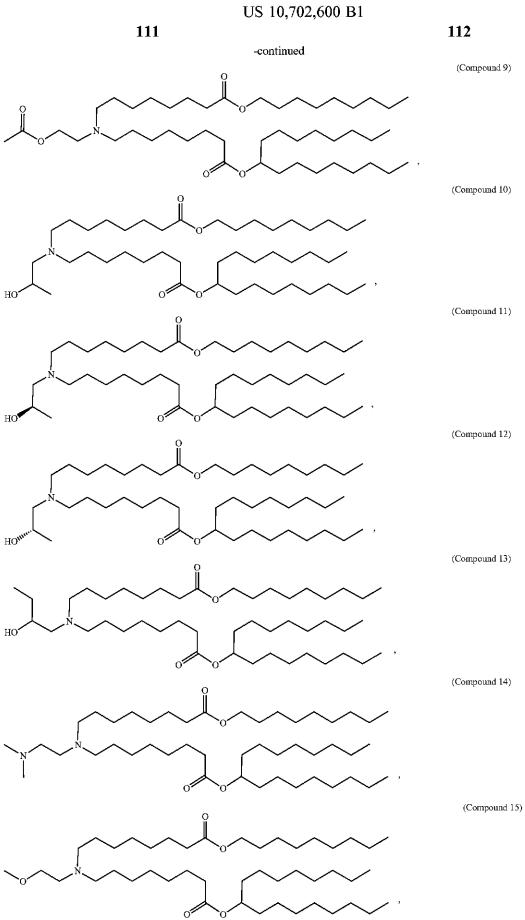
or a salt or isomer thereof, wherein n is 2, 3, or 4; and m, R', R", and R₂ through R₆ are as described herein. For example, each of R₂ and R₃ may be independently selected from the group consisting of C_{5-14} alkyl and C_{5-14} alkenyl.

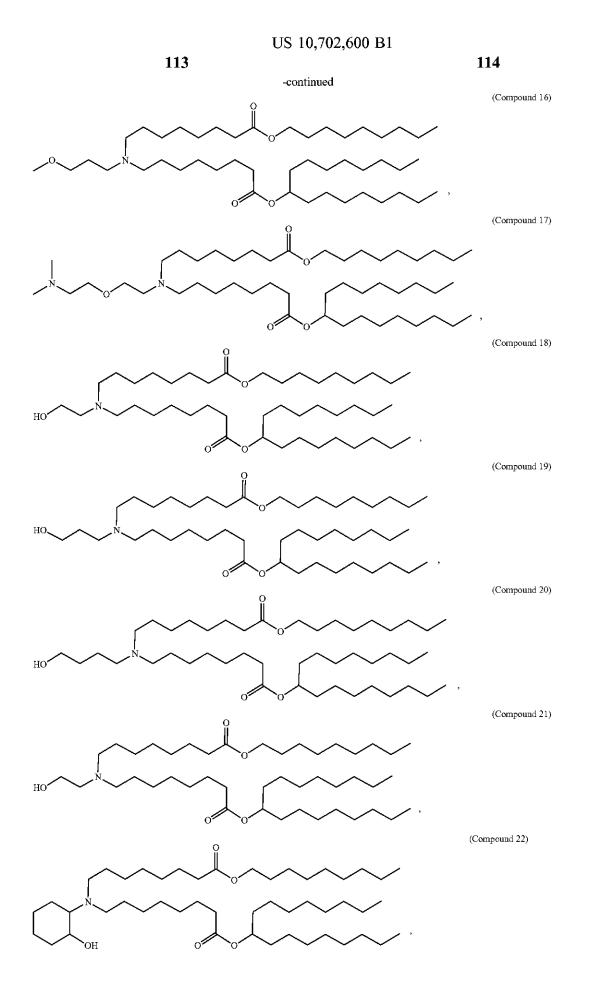
In some embodiments, a subset of compounds of Formula ⁵⁵ (I) includes those of Formula (IIa), (IIb), (IIc), or (IIe):

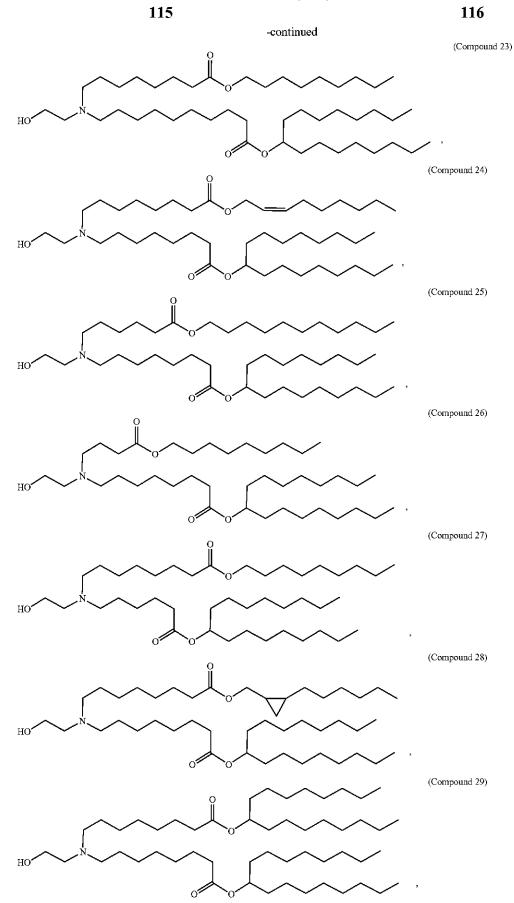


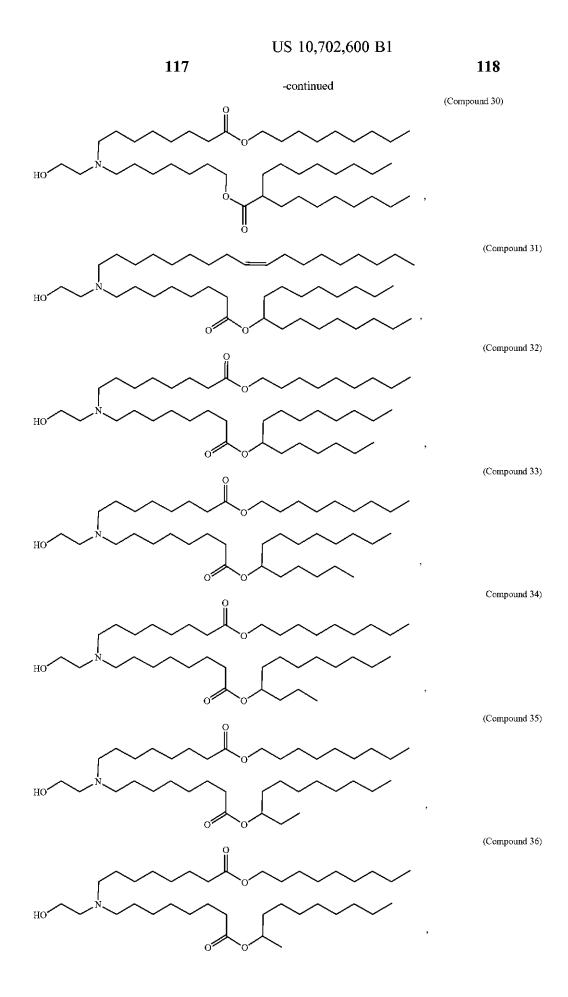
or a salt or isomer thereof, wherein R_4 is as described herein. $^{\rm 45}$

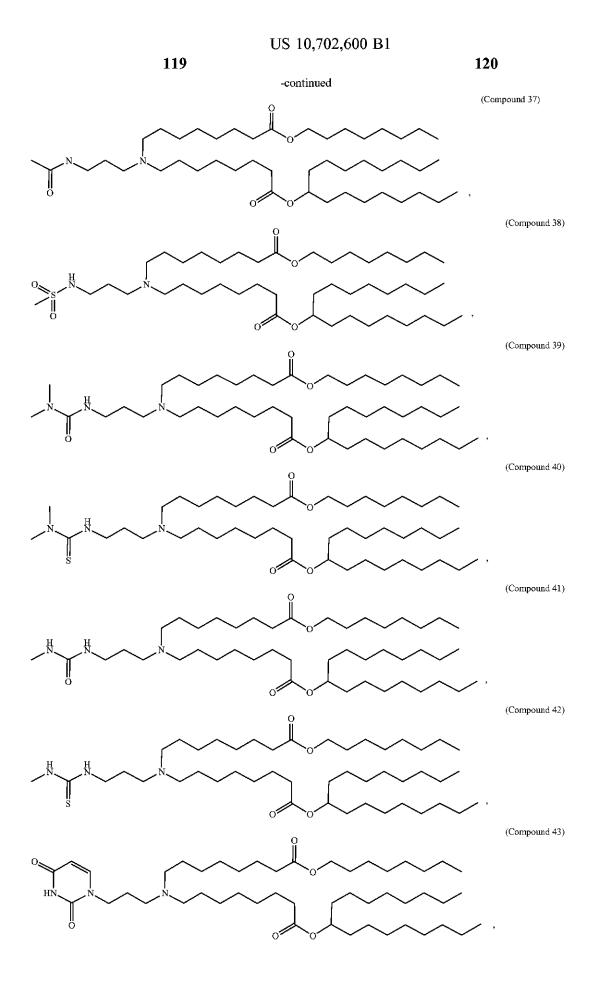

In some embodiments, a subset of compounds of Formula (I) includes those of Formula (IId):

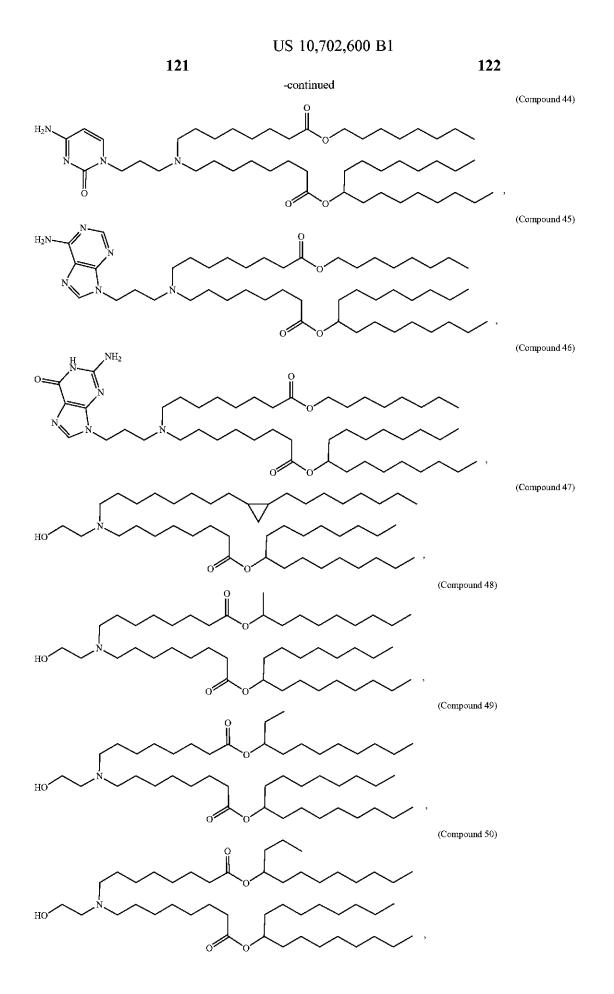

(IId)

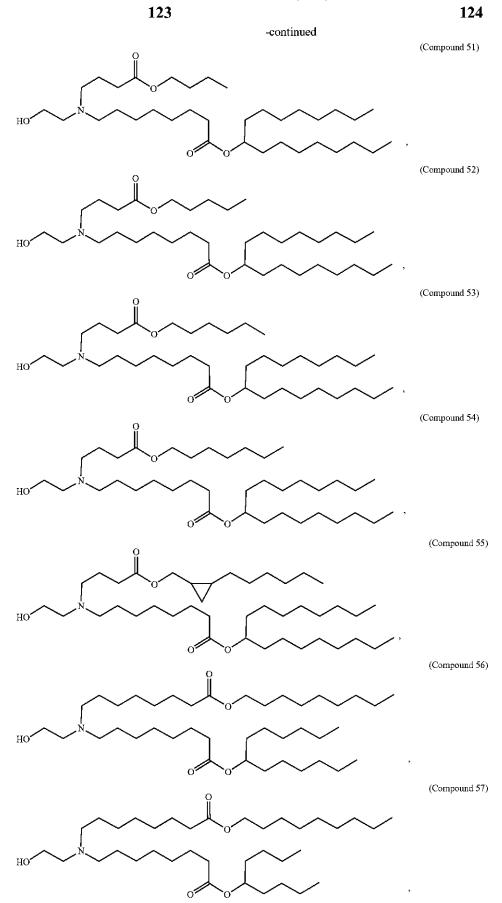


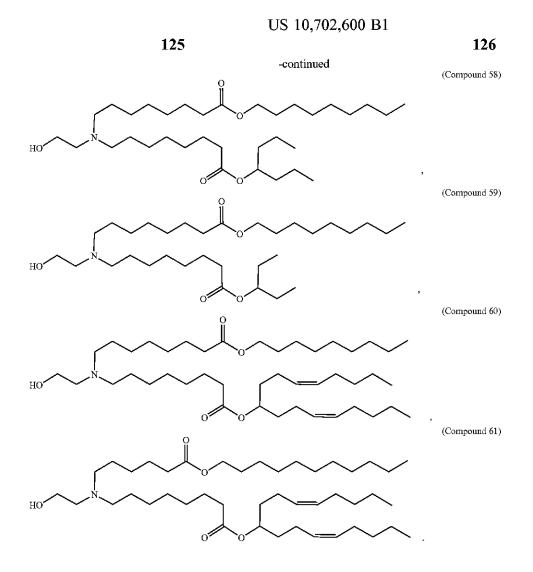

or a salt or isomer thereof, wherein n is 2, 3, or 4; and m, 65 R', R", and R₂ through R₆ are as described herein. For example, each of R₂ and R₃ may be independently selected from the group consisting of C_{5-14} alkyl and C_{5-14} alkenyl.

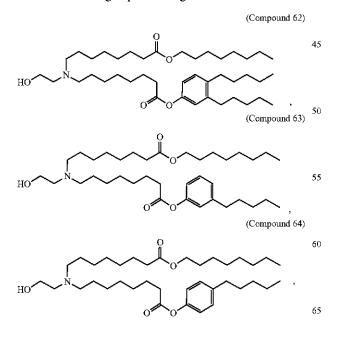

109 In some embodiments, the compound of Formula (I) is selected from the group consisting of:



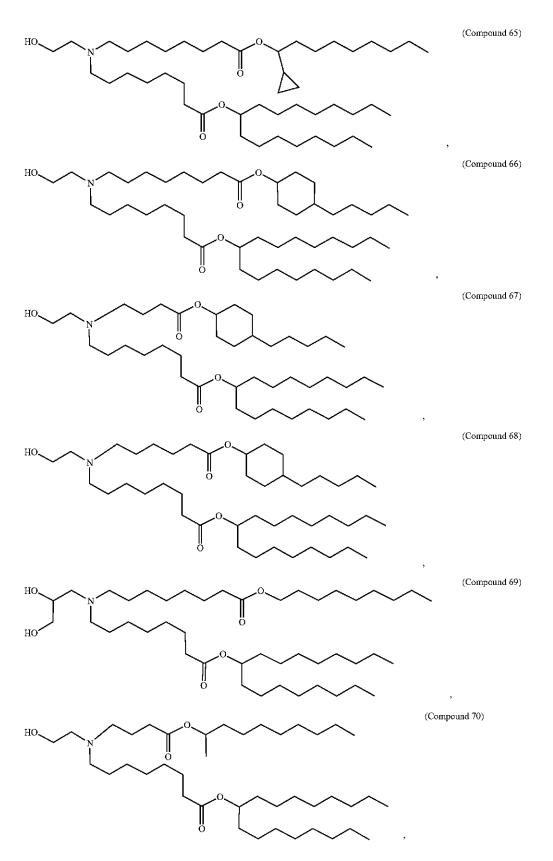


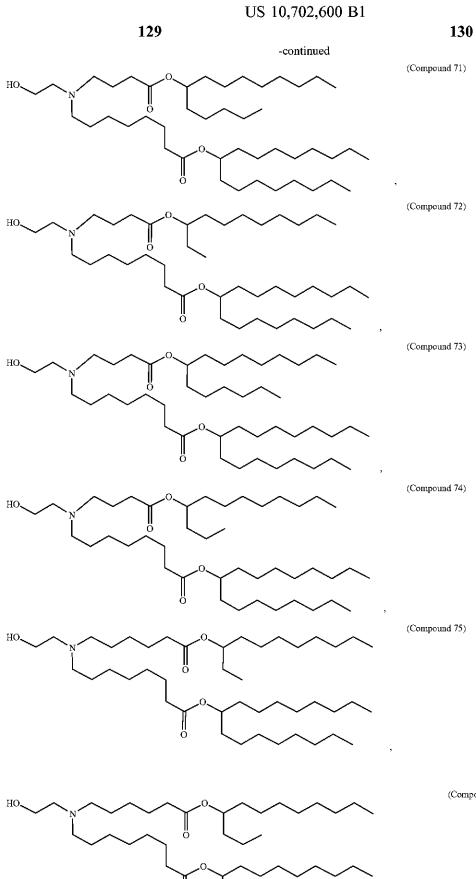




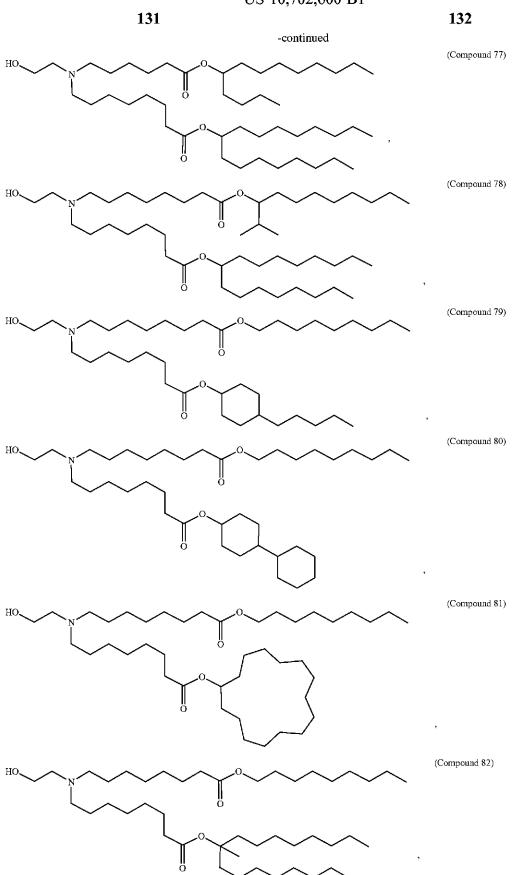


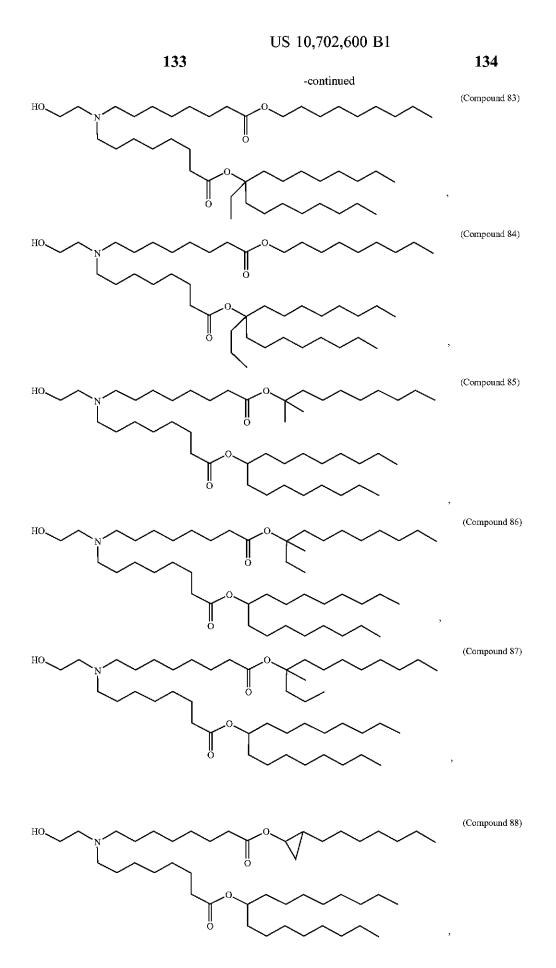


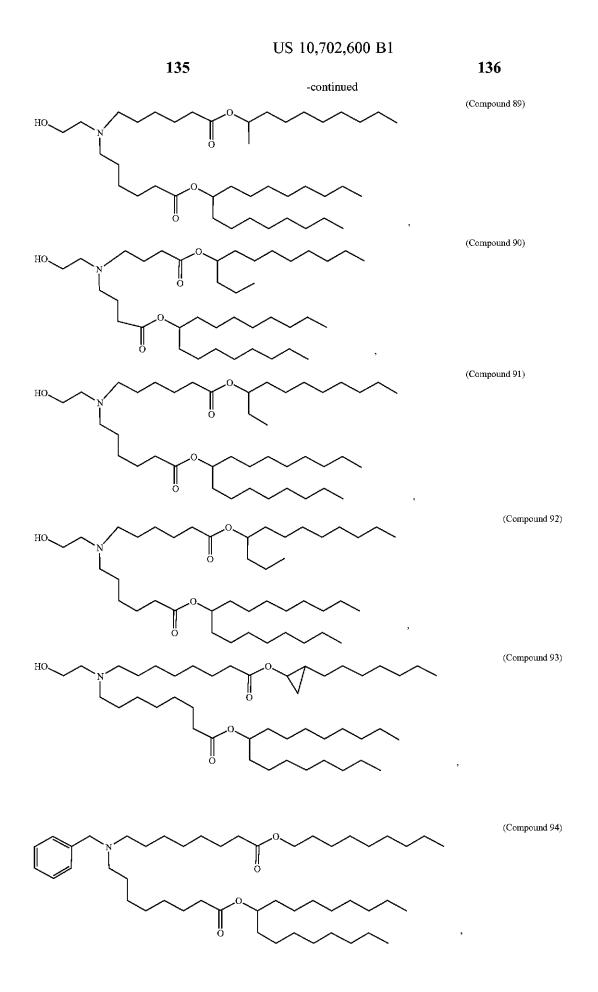


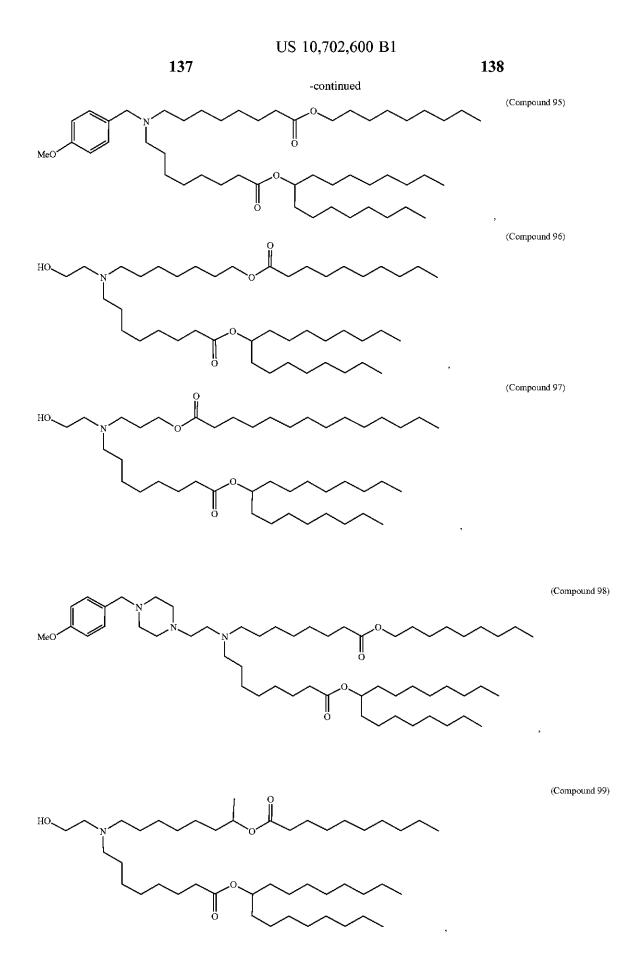


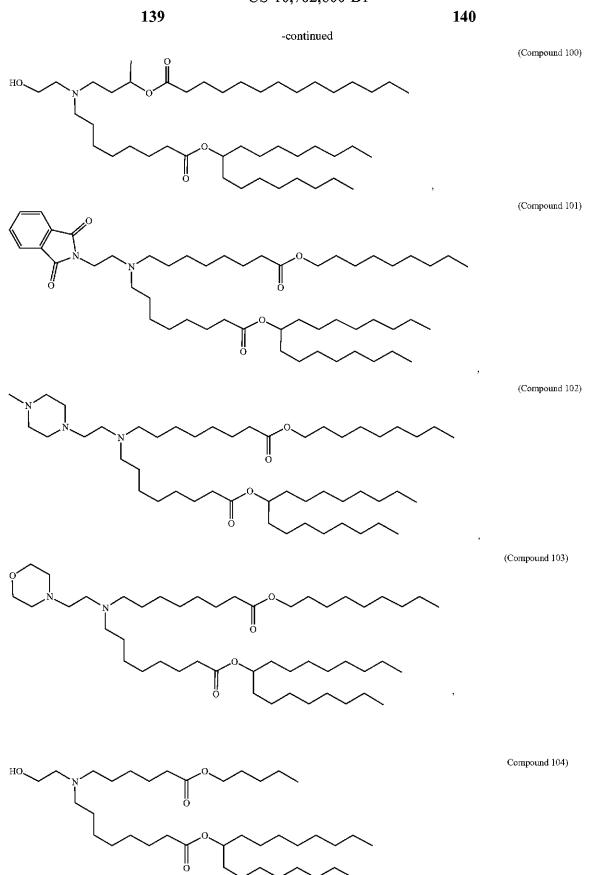
In further embodiments, the compound of Formula (I) is 40 selected from the group consisting of:



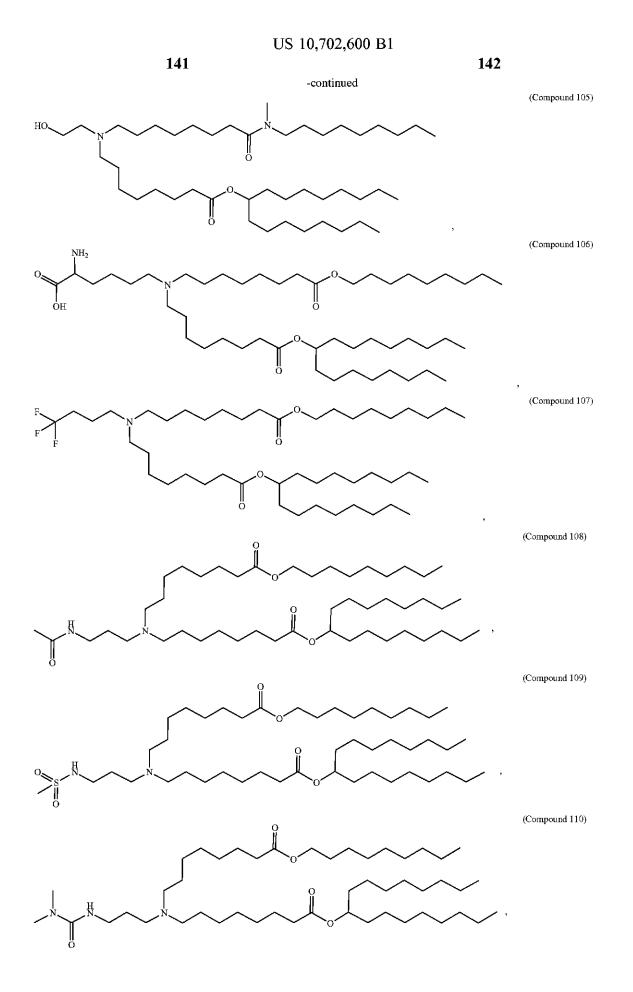


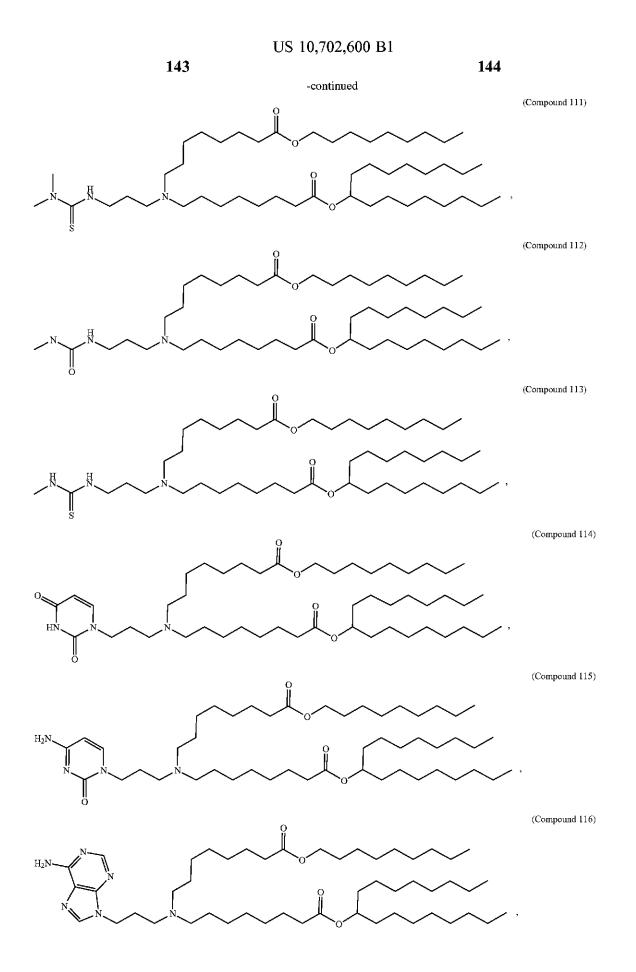

∥ 0

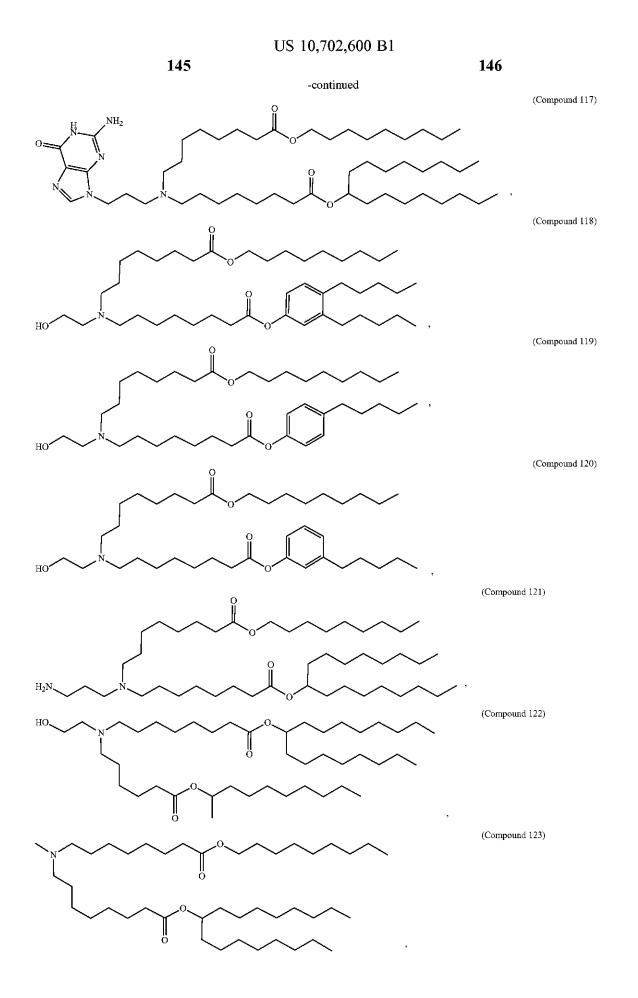

(Compound 76)

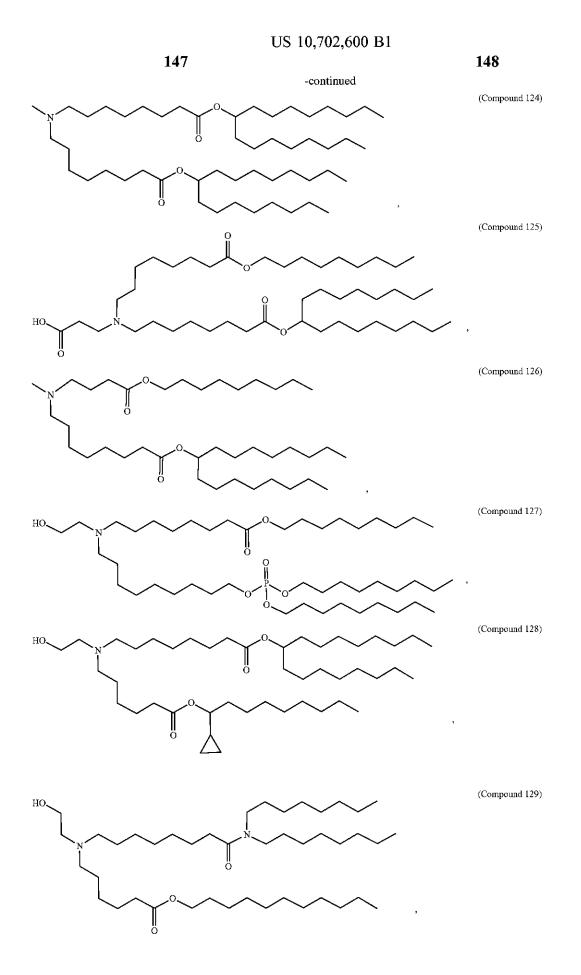


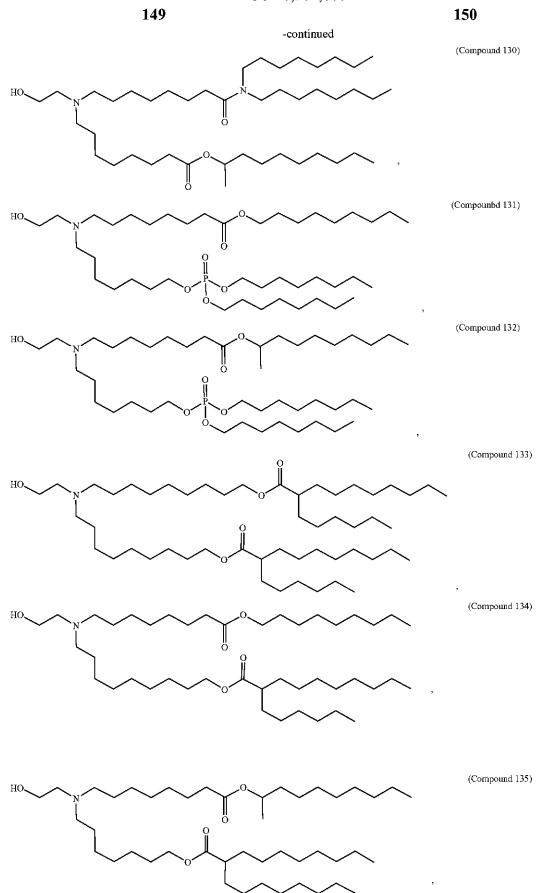
US 10,702,600 B1

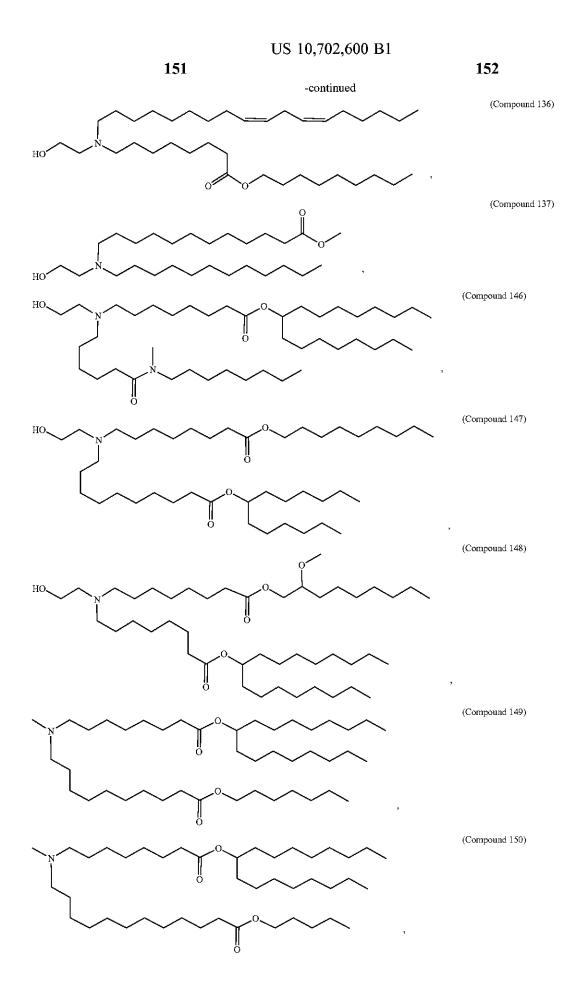


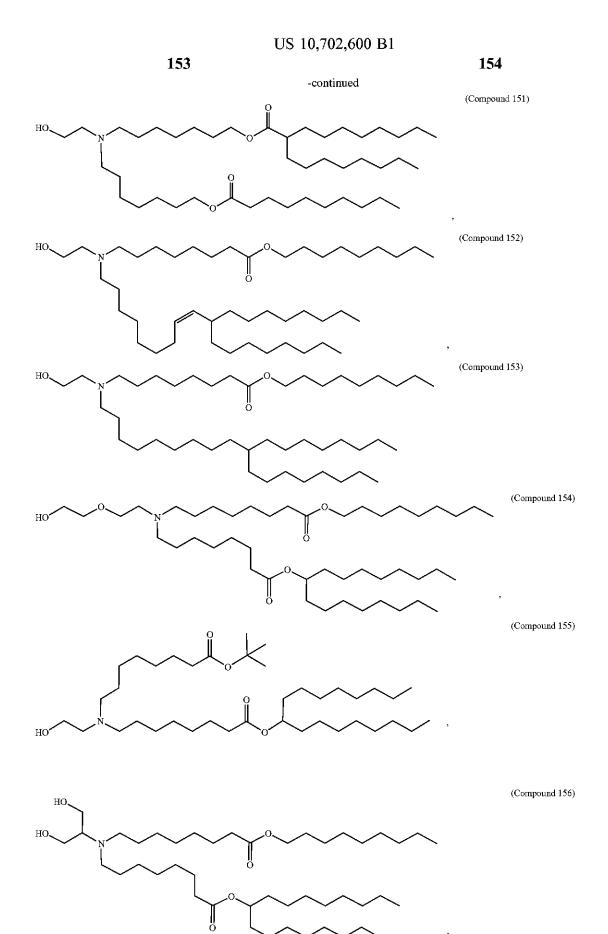


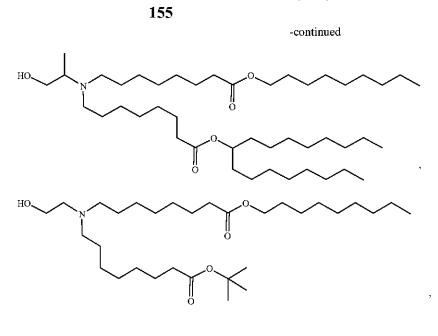


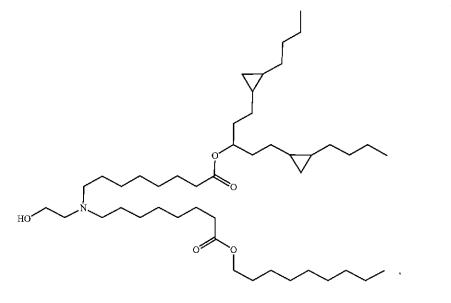



US 10,702,600 B1



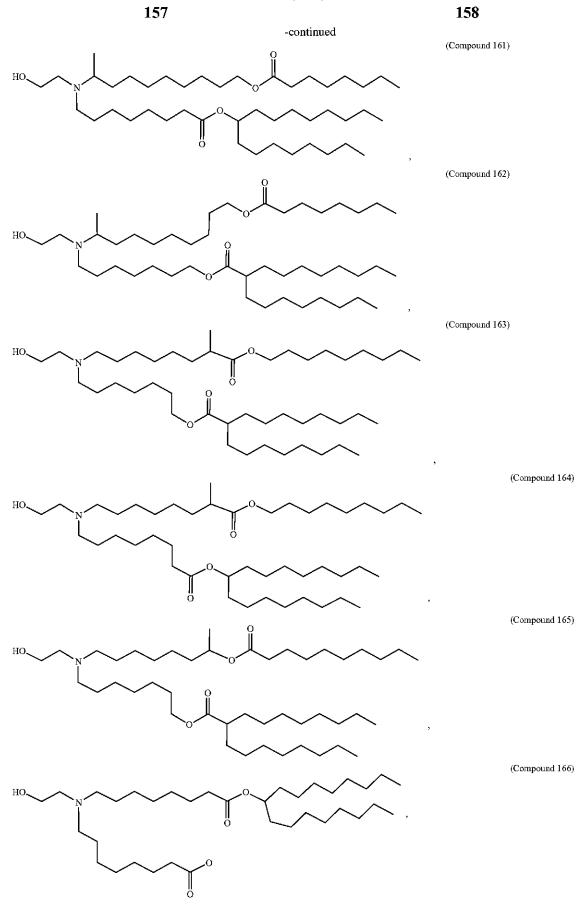


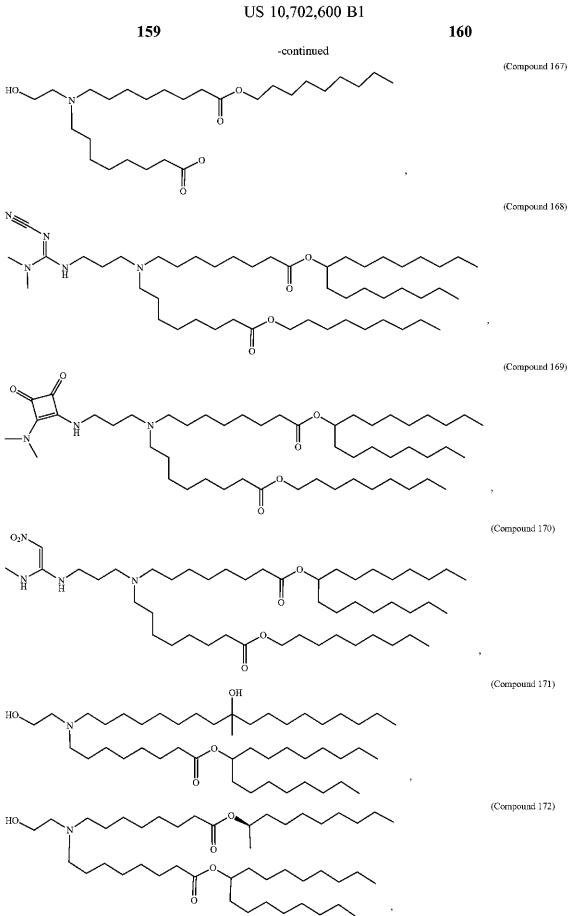


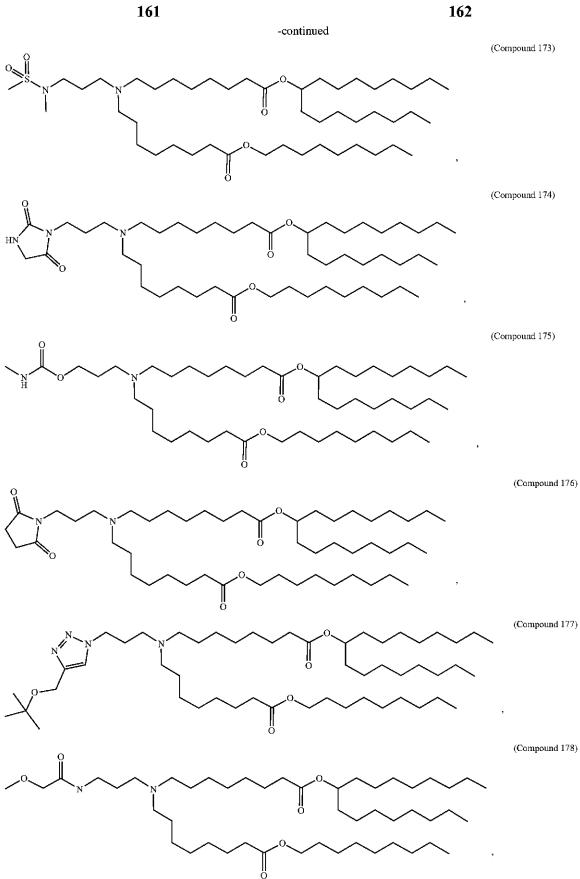


(Compound 158)

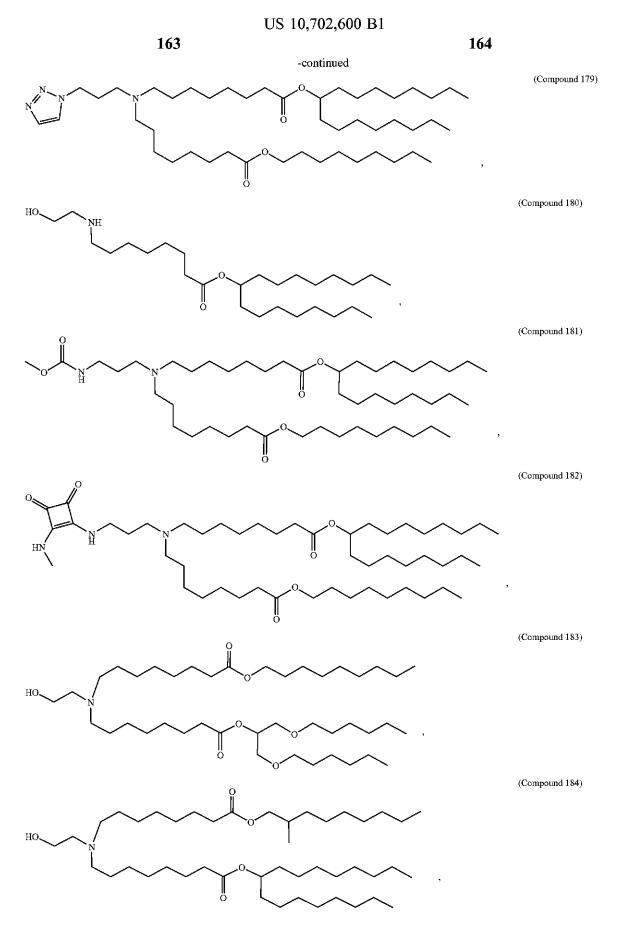
(Compound 157)

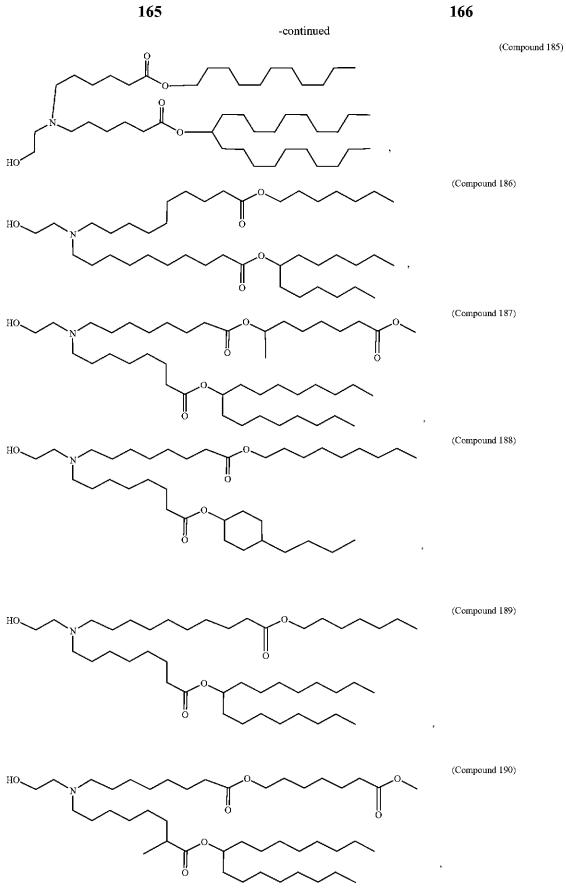

156

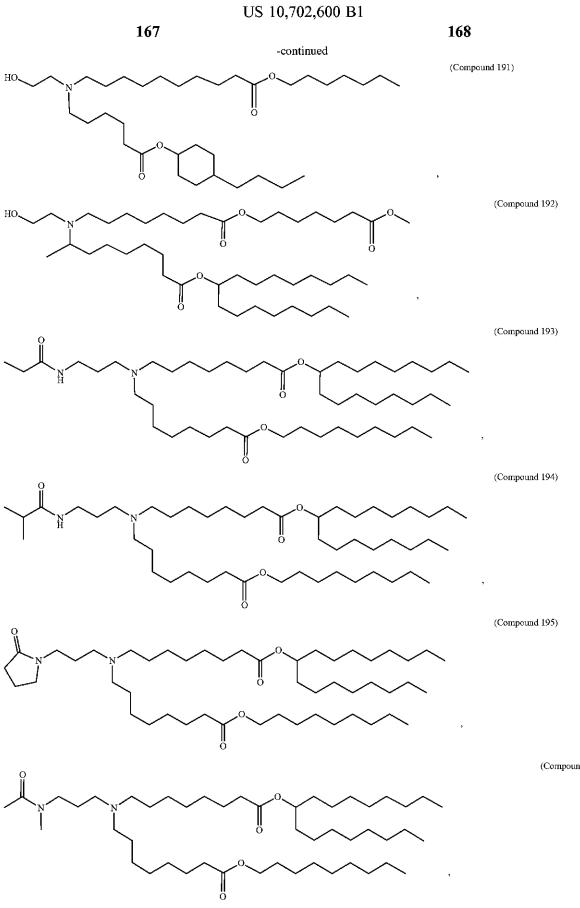

(Compound 159)

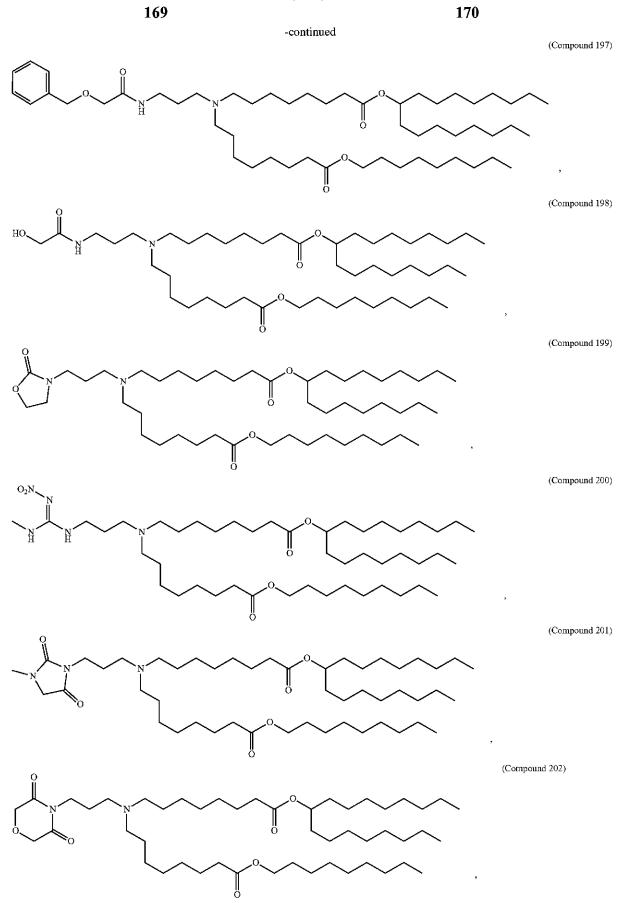


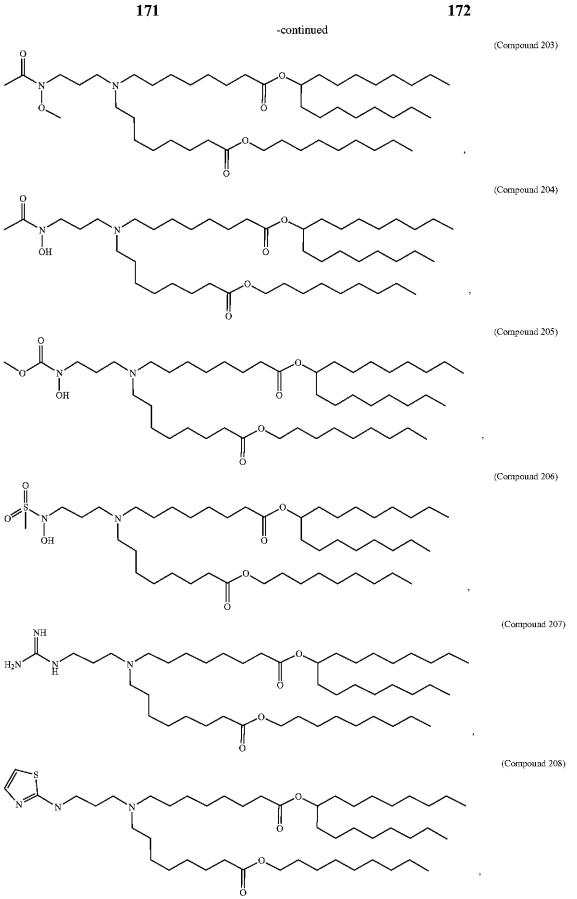
(Compound 160)

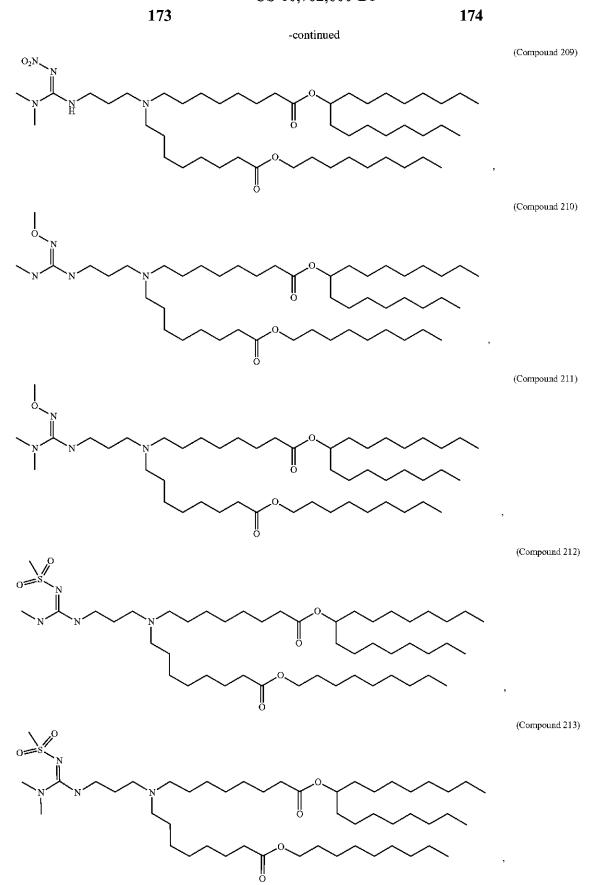

,



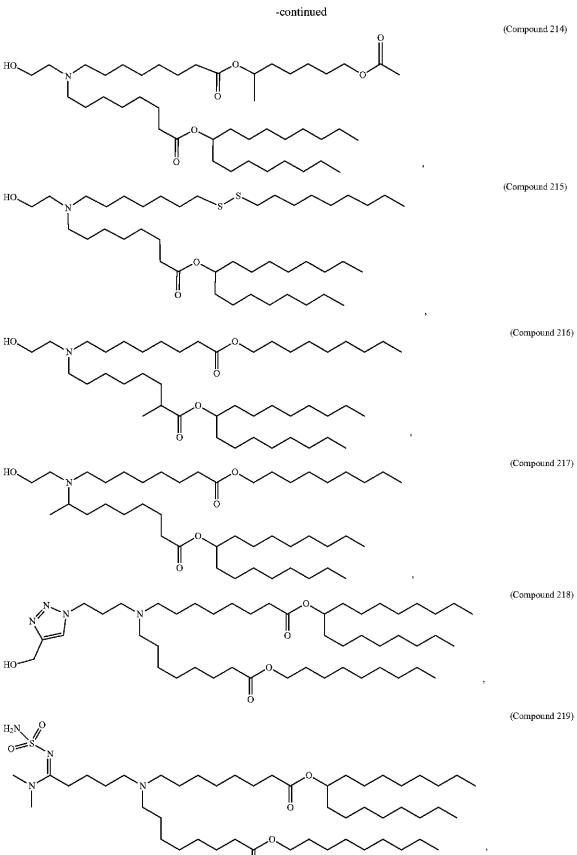


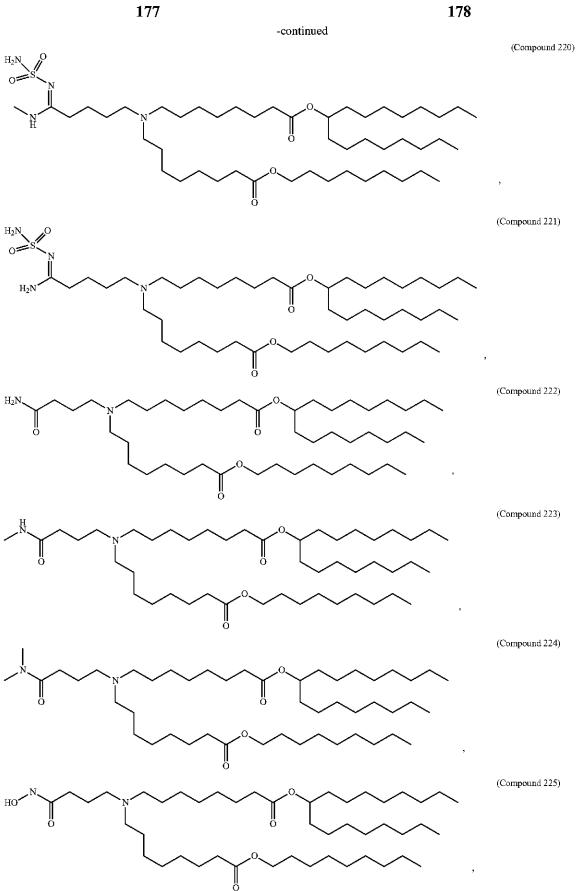


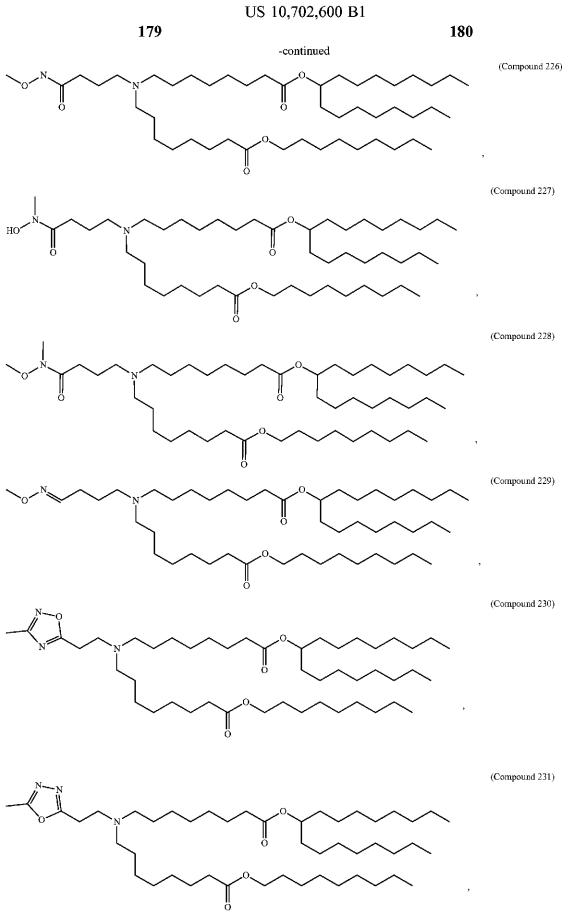


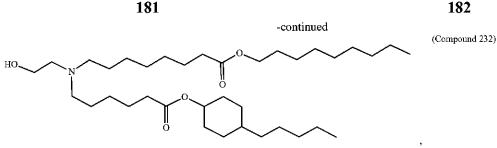


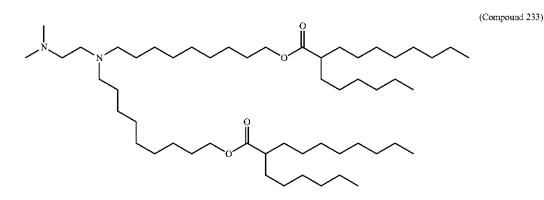
(Compound 196)








US 10,702,600 B1



and salts and isomers thereof.

In some embodiments, a nanoparticle comprises the following compound:

ing the cell with a nanoparticle composition including (i) a lipid component including a phospholipid (such as a polyunsaturated lipid), a PEG lipid, a structural lipid, and a

35

or salts and isomers thereof.

In some embodiments, the disclosure features a nanoparticle composition including a lipid component comprising a compound as described herein (e.g., a compound according to Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe)).

In some embodiments, the disclosure features a pharmaceutical composition comprising a nanoparticle composition $_{\Delta 0}$ according to the preceding embodiments and a pharmaceutically acceptable carrier. For example, the pharmaceutical composition is refrigerated or frozen for storage and/or shipment (e.g., being stored at a temperature of 4° C. or lower, such as a temperature between about -150° C. and 45 about 0° C. or between about -80° C. and about -20° C. (e.g., about -5° C., -10° C., -15° C., -20° C., -25° C., -30° C., -40° C., -50° C., -60° C., -70° C., -80° C., -90° C., -130° C. or -150° C.). For example, the pharmaceutical composition is a solution that is refrigerated for storage 50 and/or shipment at, for example, about -20° C., -30° C., -40° C., -50° C., -60° C., -70° C., or -80° C.

In some embodiments, the disclosure provides a method of delivering a therapeutic and/or prophylactic (e.g., RNA, such as mRNA) to a cell (e.g., a mammalian cell). This 55 method includes the step of administering to a subject (e.g., a mammal, such as a human) a nanoparticle composition including (i) a lipid component including a phospholipid (such as a polyunsaturated lipid), a PEG lipid, a structural lipid, and a compound of Formula (I), (IA), (II), (IIa), (IIb), 60 (IIc), (IId) or (IIe) and (ii) a therapeutic and/or prophylactic, in which administering involves contacting the cell with the nanoparticle composition, whereby the therapeutic and/or prophylactic is delivered to the cell.

In some embodiments, the disclosure provides a method 65 of producing a polypeptide of interest in a cell (e.g., a mammalian cell). The method includes the step of contact-

compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) and (ii) an mRNA encoding the polypeptide of interest, whereby the mRNA is capable of being translated in the cell to produce the polypeptide.

In some embodiments, the disclosure provides a method of treating a disease or disorder in a mammal (e.g., a human) in need thereof. The method includes the step of administering to the mammal a therapeutically effective amount of a nanoparticle composition including (i) a lipid component including a phospholipid (such as a polyunsaturated lipid), a PEG lipid, a structural lipid, and a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) and (ii) a therapeutic and/or prophylactic (e.g., an mRNA).

In some embodiments, the disease or disorder is characterized by dysfunctional or aberrant protein or polypeptide activity. For example, the disease or disorder is selected from the group consisting of rare diseases, infectious diseases, cancer and proliferative diseases, genetic diseases (e.g., cystic fibrosis), autoimmune diseases, diabetes, neurodegenerative diseases, cardio- and reno-vascular diseases, and metabolic diseases.

In some embodiments, the disclosure provides a method of delivering (e.g., specifically delivering) a therapeutic and/or prophylactic to a mammalian organ (e.g., a liver, spleen, lung, or femur). This method includes the step of administering to a subject (e.g., a mammal) a nanoparticle composition including (i) a lipid component including a phospholipid, a PEG lipid, a structural lipid, and a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe) and (ii) a therapeutic and/or prophylactic (e.g., an mRNA), in which administering involves contacting the cell with the nanoparticle composition, whereby the therapeutic and/or prophylactic is delivered to the target organ (e.g., a liver, spleen, lung, or femur).

In some embodiments, the disclosure features a method for the enhanced delivery of a therapeutic and/or prophylactic (e.g., an mRNA) to a target tissue (e.g., a liver, spleen, lung, or femur). This method includes administering to a subject (e.g., a mammal) a nanoparticle composition, the 5 composition including (i) a lipid component including a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe), a phospholipid, a structural lipid, and a PEG lipid; and (ii) a therapeutic and/or prophylactic, the administering including contacting the target tissue with the nanoparticle 10 composition, whereby the therapeutic and/or prophylactic is delivered to the target tissue.

In some embodiments, the disclosure features a method of lowering immunogenicity comprising introducing the nanoparticle composition of the disclosure into cells, wherein the 15 nanoparticle composition reduces the induction of the cellular immune response of the cells to the nanoparticle composition, as compared to the induction of the cellular immune response in cells induced by a reference composition which comprises a reference lipid instead of a com- 20 pound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe). For example, the cellular immune response is an innate immune response, an adaptive immune response, or both.

The disclosure also includes methods of synthesizing a compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) 25 or (IIe) and methods of making a nanoparticle composition including a lipid component comprising the compound of Formula (I), (IA), (II), (IIa), (IIb), (IIc), (IId) or (IIe). Modes of Vaccine Administration

Respiratory virus RNA (e.g. mRNA) vaccines may be 30 administered by any route which results in a therapeutically effective outcome. These include, but are not limited, to intradermal, intramuscular, and/or subcutaneous administration. The present disclosure provides methods comprising administering RNA (e.g., mRNA) vaccines to a subject in 35 need thereof. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like. Respiratory virus RNA (e.g., 40 mRNA) vaccines compositions are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of RNA (e.g., mRNA) vaccine compositions may be decided by the attending physician within the scope of sound 45 medical judgment. The specific therapeutically effective, prophylactically effective, or appropriate imaging dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound 50 employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with 55 5 years later, or Day 0 and 10 years later) at a total dose of the specific compound employed; and like factors well known in the medical arts.

In some embodiments, respiratory virus RNA (e.g. mRNA) vaccines compositions may be administered at dosage levels sufficient to deliver 0.0001 mg/kg to 100 60 mg/kg, 0.001 mg/kg to 0.05 mg/kg, 0.005 mg/kg to 0.05 mg/kg, 0.001 mg/kg to 0.005 mg/kg, 0.05 mg/kg to 0.5 mg/kg, 0.01 mg/kg to 50 mg/kg, 0.1 mg/kg to 40 mg/kg, 0.5 mg/kg to 30 mg/kg, 0.01 mg/kg to 10 mg/kg, 0.1 mg/kg to 10 mg/kg, or 1 mg/kg to 25 mg/kg, of subject body weight 65 per day, one or more times a day, per week, per month, etc. to obtain the desired therapeutic, diagnostic, prophylactic, or

imaging effect (see, e.g., the range of unit doses described in International Publication No WO2013078199, the contents of which are herein incorporated by reference in their entirety). The desired dosage may be delivered three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, every four weeks, every 2 months, every three months, every 6 months, etc. In some embodiments, the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations). When multiple administrations are employed, split dosing regimens such as those described herein may be used. In exemplary embodiments, respiratory virus RNA (e.g., mRNA) vaccines compositions may be administered at dosage levels sufficient to deliver 0.0005 mg/kg to 0.01 mg/kg, e.g., about 0.0005 mg/kg to about 0.0075 mg/kg, e.g., about 0.0005 mg/kg, about 0.001 mg/kg, about 0.002 mg/kg, about 0.003 mg/kg, about 0.004 mg/kg or about 0.005 mg/kg.

In some embodiments, respiratory virus RNA (e.g., mRNA) vaccine compositions may be administered once or twice (or more) at dosage levels sufficient to deliver 0.025 mg/kg to 0.250 mg/kg, 0.025 mg/kg to 0.500 mg/kg, 0.025 mg/kg to 0.750 mg/kg, or 0.025 mg/kg to 1.0 mg/kg.

In some embodiments, respiratory virus RNA (e.g., mRNA) vaccine compositions may be administered twice (e.g., Day 0 and Day 7, Day 0 and Day 14, Day 0 and Day 21, Day 0 and Day 28, Day 0 and Day 60, Day 0 and Day 90, Day 0 and Day 120, Day 0 and Day 150, Day 0 and Day 180, Day 0 and 3 months later, Day 0 and 6 months later, Day 0 and 9 months later, Day 0 and 12 months later, Day 0 and 18 months later, Day 0 and 2 years later, Day 0 and 5 years later, or Day 0 and 10 years later) at a total dose of or at dosage levels sufficient to deliver a total dose of 0.0100 mg, 0.025 mg, 0.050 mg, 0.075 mg, 0.100 mg, 0.125 mg, 0.150 mg, 0.175 mg, 0.200 mg, 0.225 mg, 0.250 mg, 0.275 mg, 0.300 mg, 0.325 mg, 0.350 mg, 0.375 mg, 0.400 mg, 0.425 mg, 0.450 mg, 0.475 mg, 0.500 mg, 0.525 mg, 0.550 mg, 0.575 mg, 0.600 mg, 0.625 mg, 0.650 mg, 0.675 mg, 0.700 mg, 0.725 mg, 0.750 mg, 0.775 mg, 0.800 mg, 0.825 mg, 0.850 mg, 0.875 mg, 0.900 mg, 0.925 mg, 0.950 mg, 0.975 mg, or 1.0 mg. Higher and lower dosages and frequency of administration are encompassed by the present disclosure. For example, a respiratory virus RNA (e.g., mRNA) vaccine composition may be administered three or four times.

In some embodiments, respiratory virus RNA (e.g., mRNA) vaccine compositions may be administered twice (e.g., Day 0 and Day 7, Day 0 and Day 14, Day 0 and Day 21, Day 0 and Day 28, Day 0 and Day 60, Day 0 and Day 90, Day 0 and Day 120, Day 0 and Day 150, Day 0 and Day 180, Day 0 and 3 months later, Day 0 and 6 months later, Day 0 and 9 months later, Day 0 and 12 months later, Day 0 and 18 months later, Day 0 and 2 years later, Day 0 and or at dosage levels sufficient to deliver a total dose of 0.010 mg, 0.025 mg, 0.100 mg or 0.400 mg.

In some embodiments, the respiratory virus RNA (e.g., mRNA) vaccine for use in a method of vaccinating a subject is administered to the subject as a single dosage of between 10 µg/kg and 400 µg/kg of the nucleic acid vaccine (in an effective amount to vaccinate the subject). In some embodiments the RNA (e.g., mRNA) vaccine for use in a method of vaccinating a subject is administered to the subject as a single dosage of between 10 μ g and 400 μ g of the nucleic acid vaccine (in an effective amount to vaccinate the subject). In some embodiments, a respiratory virus RNA (e.g.,

mRNA) vaccine for use in a method of vaccinating a subject is administered to the subject as a single dosage of 25-1000 μg (e.g., a single dosage of mRNA encoding hMPV, PIV3, RSV, MeV and/or BetaCoV antigen). In some embodiments, a respiratory virus RNA (e.g., mRNA) vaccine is adminis- 5 tered to the subject as a single dosage of 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 µg. For example, a respiratory virus RNA (e.g., mRNA) vaccine may be administered to a subject as a single dose of 25-100, 25-500, 50-100, 50-500, 10 50-1000, 100-500, 100-1000, 250-500, 250-1000, or 500-1000 µg. In some embodiments, a respiratory virus RNA (e.g., mRNA) vaccine for use in a method of vaccinating a subject is administered to the subject as two dosages, the combination of which equals 25-1000 µg of the respiratory 15 virus RNA (e.g., mRNA) vaccine.

A respiratory virus RNA (e.g. mRNA) vaccine pharmaceutical composition described herein can be formulated into a dosage form described herein, such as an intranasal, intratracheal, or injectable (e.g., intravenous, intraocular, 20 intravitreal, intramuscular, intradermal, intracardiac, intraperitoneal, and subcutaneous).

Respiratory Virus RNA (e.g., mRNA) Vaccine Formulations and Methods of Use

Some aspects of the present disclosure provide formula- 25 tions of the respiratory virus RNA (e.g., mRNA) vaccine, wherein the RNA (e.g., mRNA) vaccine is formulated in an effective amount to produce an antigen specific immune response in a subject (e.g., production of antibodies specific to an hMPV, PIV3, RSV, MeV and/or BetaCoV antigenic 30 polypeptide). "An effective amount" is a dose of an RNA (e.g., mRNA) vaccine effective to produce an antigenspecific immune response. Also provided herein are methods of inducing an antigen-specific immune response in a subject. 35

In some embodiments, the antigen-specific immune response is characterized by measuring an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide antibody titer produced in a subject administered a respiratory virus RNA (e.g., mRNA) vaccine as 40 provided herein. An antibody titer is a measurement of the amount of antibodies within a subject, for example, antibodies that are specific to a particular antigen (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) or epitope of an antigen. 45 Antibody titer is typically expressed as the inverse of the greatest dilution that provides a positive result. Enzymelinked immunosorbent assay (ELISA) is a common assay for determining antibody titers, for example.

In some embodiments, an antibody titer is used to assess 50 whether a subject has had an infection or to determine whether immunizations are required. In some embodiments, an antibody titer is used to determine the strength of an autoimmune response, to determine whether a booster immunization is needed, to determine whether a previous 55 vaccine was effective, and to identify any recent or prior infections. In accordance with the present disclosure, an antibody titer may be used to determine the strength of an immune response induced in a subject by the respiratory virus RNA (e.g., mRNA) vaccine. 60

In some embodiments, an anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject is increased by at least 1 log relative to a control. For example, anti-antigenic polypeptide antibody titer pro-65 duced in a subject may be increased by at least 1.5, at least 2, at least 2.5, or at least 3 log relative to a control. In some

embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased by 1, 1.5, 2, 2.5 or 3 log relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased by 1-3 log relative to a control. For example, the anti-antigenic polypeptide antibody titer produced in a subject may be increased by 1-1.5, 1-2, 1-2.5, 1-3, 1.5-2, 1.5-2.5, 1.5-3, 2-2.5, 2-3, or 2.5-3 log relative to a control.

In some embodiments, the anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject is increased at least 2 times relative to a control. For example, the anti-antigenic polypeptide antibody titer produced in a subject may be increased at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, or at least 10 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is increased 2, 3, 4, 5, 6, 7, 8, 9, or 10 times relative to a control. In some embodiments, the anti-antigenic polypeptide antibody titer produced in a subject is increased 2-10 times relative to a control. For example, the anti-antigenic polypeptide antibody titer produced in a subject may be increased 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-10, 3-9, 3-8, 3-7, 3-6, 3-5, 3-4, 4-10, 4-9, 4-8, 4-7, 4-6, 4-5, 5-10, 5-9, 5-8, 5-7, 5-6, 6-10, 6-9, 6-8, 6-7, 7-10, 7-9, 7-8, 8-10, 8-9, or 9-10 times relative to a control.

A control, in some embodiments, is the anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject who has not been administered a respiratory virus RNA (e.g., mRNA) vaccine of the present disclosure. In some embodiments, a control is an antiantigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject who has been administered a live attenuated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine. An attenuated vaccine is a vaccine produced by reducing the virulence of a viable (live). An attenuated virus is altered in a manner that renders it harmless or less virulent relative to live, unmodified virus. In some embodiments, a control is an anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject administered inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine. In some embodiments, a control is an anti-antigenic polypeptide (e.g., an antihMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject administered a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. Recombinant protein vaccines typically include protein antigens that either have been produced in a heterologous expression system (e.g., bacteria or yeast) or purified from large amounts of the pathogenic organism. In some embodiments, a control is an anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject who has been administered an hMPV, PIV3, RSV, MeV and/or BetaCoV virus-like particle (VLP) vaccine. For example, an hMPV VLP vaccine used as a control may be a hMPV VLPs, comprising (or consisting of) viral matrix (M) and fusion (F) proteins, generated by expressing viral proteins in suspension-adapted human embryonic kidney epithelial (293-F) cells (see, e.g., Cox R G et al., J Virol. 2014 June; 88(11): 6368-6379, the contents of which are herein incorporated by reference).

In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose that is reduced compared to the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. A "standard of care," as provided herein, refers to 5 a medical or psychological treatment guideline and can be general or specific. "Standard of care" specifies appropriate treatment based on scientific evidence and collaboration between medical professionals involved in the treatment of a given condition. It is the diagnostic and treatment process 10 that a physician/clinician should follow for a certain type of patient, illness or clinical circumstance. A "standard of care dose," as provided herein, refers to the dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, or a live attenuated or inactivated hMPV, 15 PIV3, RSV, MeV and/or BetaCoV vaccine, that a physician/ clinician or other medical professional would administer to a subject to treat or prevent hMPV, PIV3, RSV, MeV and/or BetaCoV, or a hMPV-, PIV3-, RSV-, MeV- and/or BetaCoVrelated condition, while following the standard of care 20 guideline for treating or preventing hMPV, PIV3, RSV, MeV and/or BetaCoV, or a hMPV-, PIV3-, RSV-, MeV- and/or BetaCoV-related condition.

In some embodiments, the anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or 25 anti-BetaCoV antigenic polypeptide) antibody titer produced in a subject administered an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is equivalent to an anti-antigenic polypeptide (e.g., an anti-hMPV, anti-PIV3, anti-RSV, anti-MeV and/or anti-BetaCoV antigenic 30 polypeptide) antibody titer produced in a control subject administered a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine.

In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to an at least 2-fold reduction in a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. For example, an effective amount 40 9 to 300-, 9 to 200-, 9 to 100-, 9 to 90-, 9 to 80-, 9 to 70-, of a respiratory virus RNA (e.g., mRNA) vaccine may be a dose equivalent to an at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold reduction in a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or 45 BetaCoV protein vaccine. In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to an at least at least 100-fold, at least 500-fold, or at least 1000-fold reduction in a standard of care dose of a recombinant or purified hMPV, PIV3, RSV, 50 MeV and/or BetaCoV protein vaccine. In some embodiments, an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to a 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 20-, 50-, 100-, 250-, 500-, or 1000-fold reduction in a standard of care dose of a recombinant or 55 purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. In some embodiments, the anti-antigenic polypeptide antibody titer produced in a subject administered an effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is equivalent to an anti-antigenic polypeptide anti- 60 body titer produced in a control subject administered the standard of care dose of a recombinant or protein hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine. In some embodiments, an effective 65 amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to a 2-fold to 1000-fold (e.g., 2-fold to

100-fold, 10-fold to 1000-fold) reduction in the standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine, wherein the antiantigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine.

In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a dose equivalent to a 2 to 1000-, 2 to 900-, 2 to 800-, 2 to 700-, 2 to 600-, 2 to 500-, 2 to 400-, 2 to 300-, 2 to 200-, 2 to 100-, 2 to 90-, 2 to 80-, 2 to 70-, 2 to 60-, 2 to 50-, 2 to 40-, 2 to 30-, 2 to 20-, 2 to 10-, 2 to 9-, 2 to 8-, 2 to 7-, 2 to 6-, 2 to 5-, 2 to 4-, 2 to 3-, 3 to 1000-, 3 to 900-, 3 to 800-, 3 to 700-, 3 to 600-, 3 to 500-, 3 to 400-, 3 to 3 to 00-, 3 to 200-, 3 to 100-, 3 to 90-, 3 to 80-, 3 to 70-, 3 to 60-, 3 to 50-, 3 to 40-, 3 to 30-, 3 to 20-, 3 to 10-, 3 to 9-, 3 to 8-, 3 to 7-, 3 to 6-, 3 to 5-, 3 to 4-, 4 to 1000-, 4 to 900-, 4 to 800-, 4 to 700-, 4 to 600-, 4 to 500-, 4 to 400-, 4 to 4 to 00-, 4 to 200-, 4 to 100-, 4 to 90-, 4 to 80-, 4 to 70-, 4 to 60-, 4 to 50-, 4 to 40-, 4 to 30-, 4 to 20-, 4 to 10-, 4 to 9-, 4 to 8-, 4 to 7-, 4 to 6-, 4 to 5-, 4 to 4-, 5 to 1000-, 5 to 900-, 5 to 800-, 5 to 700-, 5 to 600-, 5 to 500-, 5 to 400-, 5 to 300-, 5 to 200-, 5 to 100-, 5 to 90-, 5 to 80-, 5 to 70-, 5 to 60-, 5 to 50-, 5 to 40-, 5 to 30-, 5 to 20-, 5 to 10-, 5 to 9-, 5 to 8-, 5 to 7-, 5 to 6-, 6 to 1000-, 6 to 900-, 6 to 800-, 6 to 700-, 6 to 600-, 6 to 500-, 6 to 400-, 6 to 300-, 6 to 200-, 6 to 100-, 6 to 90-, 6 to 80-, 6 to 70-, 6 to 60-, 6 to 50-, 6 to 40-, 6 to 30-, 6 to 20-, 6 to 10-, 6 to 9-, 6 to 8-, 6 to 7-, 7 to 1000-, 7 to 900-, 7 to 800-, 7 to 700-, 7 to 600-, 7 to 500-, 7 to 400-, 7 to 300-, 7 to 200-, 7 to 100-, 7 to 90-, 7 to 80-, 7 to 70-, 7 to 60-, 7 to 50-, 7 to 40-, 7 to 30-, 7 to 20-, 7 to 10-, 7 to 9-, 7 to 8-, 8 to 1000-, 8 to 900-, 8 to 800-, 8 to 700-, 8 to 600-, 8 to 500-, 8 to 400-, 8 to 300-, 8 to 200-, 8 to 100-, 8 to 90-, 8 to 80-, 8 to 70-, 8 to 60-, 8 to 50-, 8 to 40-, 8 to 30-, 8 to 20-, 8 to 10-, 8 to 9-, 9 to 1000-, 9 to 900-, 9 to 800-, 9 to 700-, 9 to 600-, 9 to 500-, 9 to 400-, 9 to 60-, 9 to 50-, 9 to 40-, 9 to 30-, 9 to 20-, 9 to 10-, 10 to 1000-, 10 to 900-, 10 to 800-, 10 to 700-, 10 to 600-, 10 to 500-, 10 to 400-, 10 to 300-, 10 to 200-, 10 to 100-, 10 to 90-, 10 to 80-, 10 to 70-, 10 to 60-, 10 to 50-, 10 to 40-, 10 to 30-, 10 to 20-, 20 to 1000-, 20 to 900-, 20 to 800-, 20 to 700-, 20 to 600-, 20 to 500-, 20 to 400-, 20 to 300-, 20 to 200-, 20 to 100-, 20 to 90-, 20 to 80-, 20 to 70-, 20 to 60-, 20 to 50-, 20 to 40-, 20 to 30-, 30 to 1000-, 30 to 900-, 30 to 800-, 30 to 700-, 30 to 600-, 30 to 500-, 30 to 400-, 30 to 300-, 30 to 200-, 30 to 100-, 30 to 90-, 30 to 80-, 30 to 70-, 30 to 60-, 30 to 50-, 30 to 40-, 40 to 1000-, 40 to 900-, 40 to 800-, 40 to 700-, 40 to 600-, 40 to 500-, 40 to 400-, 40 to 300-, 40 to 200-, 40 to 100-, 40 to 90-, 40 to 80-, 40 to 70-, 40 to 60-, 40 to 50-, 50 to 1000-, 50 to 900-, 50 to 800-, 50 to 700-, 50 to 600-, 50 to 500-, 50 to 400-, 50 to 300-, 50 to 200-, 50 to 100-, 50 to 90-, 50 to 80-, 50 to 70-, 50 to 60-, 60 to 1000-, 60 to 900-, 60 to 800-, 60 to 700-, 60 to 600-, 60 to 500-, 60 to 400-, 60 to 300-, 60 to 200-, 60 to 100-, 60 to 90-, 60 to 80-, 60 to 70-, 70 to 1000-, 70 to 900-, 70 to 800-, 70 to 700-, 70 to 600-, 70 to 500-, 70 to 400-, 70 to 300-, 70 to 200-, 70 to 100-, 70 to 90-, 70 to 80-, 80 to 1000-, 80 to 900-, 80 to 800-, 80 to 700-, 80 to 600-, 80 to 500-, 80 to 400-, 80 to 300-, 80 to 200-, 80 to 100-, 80 to 90-, 90 to 1000-, 90 to 900-, 90 to 800-, 90 to 700-, 90 to 600-, 90 to 500-, 90 to 400-, 90 to 300-, 90 to 200-, 90 to 100-, 100 to 1000-, 100 to 900-, 100 to 800-, 100 to 700-, 100 to 600-, 100 to 500-, 100 to 400-, 100 to 300-, 100 to 200-, 200 to

1000-, 200 to 900-, 200 to 800-, 200 to 700-, 200 to 600-, 200 to 500-, 200 to 400-, 200 to 300-, 300 to 1000-, 300 to 900-, 300 to 800-, 300 to 700-, 300 to 600-, 300 to 500-, 300 to 400-, 400 to 1000-, 400 to 900-, 400 to 800-, 400 to 700-, 400 to 600-, 400 to 500-, 500 to 1000-, 500 to 900-, 500 to 5 800-, 500 to 700-, 500 to 600-, 600 to 1000-, 600 to 900-, 600 to 800-, 600 to 700-, 700 to 1000-, 700 to 900-, 700 to 800-, 800 to 1000-, 800 to 900-, or 900 to 1000-fold reduction in the standard of care dose of a recombinant hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine. 10 In some embodiments, the anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified hMPV, PIV3, RSV, MeV and/or 15 encompassed by the following numbered paragraphs: BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine. In some embodiments, the effective amount is a dose equivalent to (or equivalent to an at least) 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 20-, 30-, 40-, 50-, 60-, 70-, 80-, 90-, 100-, 110-, 120-, 130-, 20 140-, 150-, 160-, 170-, 1280-, 190-, 200-, 210-, 220-, 230-, 240-, 250-, 260-, 270-, 280-, 290-, 300-, 310-, 320-, 330-, 340-, 350-, 360-, 370-, 380-, 390-, 400-, 410-, 420-, 430-, 440-, 450-, 4360-, 470-, 480-, 490-, 500-, 510-, 520-, 530-, 540-, 550-, 560-, 5760-, 580-, 590-, 600-, 610-, 620-, 630-, 25 640-, 650-, 660-, 670-, 680-, 690-, 700-, 710-, 720-, 730-, 740-, 750-, 760-, 770-, 780-, 790-, 800-, 810-, 820-, 830-, 840-, 850-, 860-, 870-, 880-, 890-, 900-, 910-, 920-, 930-, 940-, 950-, 960-, 970-, 980-, 990-, or 1000-fold reduction in the standard of care dose of a recombinant hMPV, PIV3, 30 RSV, MeV and/or BetaCoV protein vaccine. In some embodiments, an anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or 35 purified hMPV, PIV3, RSV, MeV and/or BetaCoV protein vaccine or a live attenuated or inactivated hMPV, PIV3, RSV, MeV and/or BetaCoV vaccine.

In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a total dose of 40 hMPV antigenic polypeptide comprises an amino acid 50-1000 µg. In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a total dose of 50-1000, 50-900, 50-800, 50-700, 50-600, 50-500, 50-400, 50-300, 50-200, 50-100, 50-90, 50-80, 50-70, 50-60, 60-1000, 60-900, 60-800, 60-700, 60-600, 60-500, 45 60-400, 60-300, 60-200, 60-100, 60-90, 60-80, 60-70, 70-1000, 70-900, 70-800, 70-700, 70-600, 70-500, 70-400, 70-300, 70-200, 70-100, 70-90, 70-80, 80-1000, 80-900, 80-800, 80-700, 80-600, 80-500, 80-400, 80-300, 80-200, 80-100, 80-90, 90-1000, 90-900, 90-800, 90-700, 90-600, 50 90-500, 90-400, 90-300, 90-200, 90-100, 100-1000, 100-900, 100-800, 100-700, 100-600, 100-500, 100-400, 100-300, 100-200, 200-1000, 200-900, 200-800, 200-700, 200-600, 200-500, 200-400, 200-300, 300-1000, 300-900, 300-800, 300-700, 300-600, 300-500, 300-400, 400-1000, 400- 55 reading frame encoding a hMPV antigenic polypeptide or an 900, 400-800, 400-700, 400-600, 400-500, 500-1000, 500-900, 500-800, 500-700, 500-600, 600-1000, 600-900, 600-900, 600-700, 700-1000, 700-900, 700-800, 800-1000, 800-900, or 900-1000 µg. In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is 60 a total dose of 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 µg. In some embodiments, the effective amount is a dose of 25-500 µg administered to the subject a total of two times. In some embodiments, the effective amount of a respiratory 65 virus RNA (e.g., mRNA) vaccine is a dose of 25-500, 25-400, 25-300, 25-200, 25-100, 25-50, 50-500, 50-400,

50-300, 50-200, 50-100, 100-500, 100-400, 100-300, 100-200, 150-500, 150-400, 150-300, 150-200, 200-500, 200-400, 200-300, 250-500, 250-400, 250-300, 300-500, 300-400, 350-500, 350-400, 400-500 or 450-500 µg administered to the subject a total of two times. In some embodiments, the effective amount of a respiratory virus RNA (e.g., mRNA) vaccine is a total dose of 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 µg administered to the subject a total of two times.

EXAMPLES OF ADDITIONAL EMBODIMENTS OF THE DISCLOSURE

Additional embodiments of the present disclosure are

1. A respiratory virus vaccine, comprising: at least one ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one, at least two, at least three, at least four or at least five antigenic polypeptides selected from human metapneumovirus (hMPV) antigenic polypeptides or immunogenic fragments thereof, human parainfluenza virus type 3 (PIV3) antigenic polypeptides or immunogenic fragments thereof, respiratory syncytial virus (RSV) antigenic polypeptides or immunogenic fragments thereof, measles virus (MeV) antigenic polypeptides or immunogenic fragments thereof, and betacoronavirus (Beta-CoV) antigenic polypeptides or immunogenic fragments thereof.

2. The respiratory virus vaccine of paragraph 1, comprising: at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and a PIV3 antigenic polypeptide or an immunogenic fragment thereof; or at least two RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof.

3. The respiratory virus vaccine of paragraph 2, wherein the sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13.

4. The respiratory virus vaccine of paragraph 1, comprising: at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and a RSV antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open immunogenic fragment thereof and one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof.

5. The respiratory virus vaccine of paragraph 4, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8.

6. The respiratory virus vaccine of paragraph 1, comprising: at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and MeV antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and one having an open 5 reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

7. The respiratory virus vaccine of paragraph 6, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an 10 amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at 15 least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.

8. The respiratory virus vaccine of paragraph 1, comprising: at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immu- 20 nogenic fragment thereof and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof and one having an open 25 reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

9. The respiratory virus vaccine of paragraph 8, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an 30 amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at 35 least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

10. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading 40 frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and a RSV antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an 45 immunogenic fragment thereof and one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof.

11. The respiratory virus vaccine of paragraph 10, wherein the PIV3 antigenic polypeptide comprises an amino acid 50 sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13.

12. The respiratory virus vaccine of paragraph 1, compris- 55 ing:

at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and a MeV antigenic polypeptide or an immunogenic fragment thereof; or 60

at least two RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

13. The respiratory virus vaccine of paragraph 12, wherein the PIV3 antigenic polypeptide comprises an amino acid

sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.

14. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

- 15. The respiratory virus vaccine of paragraph 14, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID
- NO: 12-13, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

16. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof and a MeV antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

17. The respiratory virus vaccine of paragraph 16, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50.

18. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

19. The respiratory virus vaccine of paragraph 18, wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

20. The respiratory virus vaccine of paragraph 1, comprising:

65

at least one RNA polynucleotide having an open reading frame encoding a MeV antigenic polypeptide or an immu-

nogenic fragment thereof and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two RNA polynucleotides, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof and one having an open 5 reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

21. The respiratory virus vaccine of paragraph 20, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an 10 amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at 15 least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

22. The respiratory virus vaccine of paragraph 1, comprising

at least one RNA polynucleotide having an open reading 20 frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and a RSV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an 25 open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a RSV antigenic polypeptide or an 30 immunogenic fragment thereof.

23. The respiratory virus vaccine of paragraph 22, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to 35 an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence 40 open reading frame encoding a hMPV antigenic polypeptide identified by any one of SEQ ID NO: 12-13.

24. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immu- 45 nogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and a MeV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide 50 or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

25. The respiratory virus vaccine of paragraph 24, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID 60 NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the MeV anti- 65 genic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid

sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50. 26. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

27. The respiratory virus vaccine of paragraph 26, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13 and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34. 28. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a MeV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

29. The respiratory virus vaccine of paragraph 28, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence 55 identified by any one of SEQ ID NO: 47-50.

30. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open

reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

31. The respiratory virus vaccine of paragraph 30, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an 5 amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEO ID NO: 5-8, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34.

32. The respiratory virus vaccine of paragraph 1, comprising

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open 25 reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

33. The respiratory virus vaccine of paragraph 32, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an 30 amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% 35 or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino 40 acid sequence identified by any one of SEQ ID NO: 23-34. 34. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immu- 45 nogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a MeV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide 50 or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

35. The respiratory virus vaccine of paragraph 34, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID 60 NO: 12-13, and/or wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50. 65

36. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

37. The respiratory virus vaccine of paragraph 36, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one 20 of SEO ID NO: 23-34 or an amino acid sequence having at

least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34.

38. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

39. The respiratory virus vaccine of paragraph 38, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34.

40. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two or three RNA polynucleotides, one having an 55 open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

41. The respiratory virus vaccine of paragraph 40, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ

ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 23-34 or an amino acid 5 sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 23-34. 42. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading 10 frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, and a MeV antigenic polypeptide or an immunogenic fragment thereof; 15 having an open reading frame encoding a hMPV antigenic or

at least two, three or four RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic 20 polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof.

43. The respiratory virus vaccine of paragraph 42, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID 30 NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the MeV anti- 35 genic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50. 44. The respiratory virus vaccine of paragraph 1, compris- 40 ing:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic poly- 45 peptide or an immunogenic fragment thereof, and a Beta-CoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two, three or four RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic 50 polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, and one hav- 55 ing an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

45. The respiratory virus vaccine of paragraph 44, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an 60 amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% 65 or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, and/or wherein the BetaCoV

antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34. 46. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a Beta-CoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two, three or four RNA polynucleotides, one polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

47. The respiratory virus vaccine of paragraph 46, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEO ID NO: 5-8 or an 25 amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

48. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two, three or four RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

49. The respiratory virus vaccine of paragraph 48, wherein the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90%

or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino 5 acid sequence identified by any one of SEQ ID NO: 24-34. 50. The respiratory virus vaccine of paragraph 1, comprising:

at least one RNA polynucleotide having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or 15

at least two, three or four RNA polynucleotides, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, one having an 20 open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

51. The respiratory virus vaccine of paragraph 50, wherein 25 the PIV3 antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, wherein the MeV antigenic polypeptide com- 30 prises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence 35 identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34. 52. The respiratory virus vaccine of paragraph 1, compris-40 ing:

at least one RNA polynucleotide having an open reading frame encoding a hMPV antigenic polypeptide or an immunogenic fragment thereof, a PIV3 antigenic polypeptide or an immunogenic fragment thereof, a RSV antigenic polypeptide or an immunogenic fragment thereof, a MeV antigenic polypeptide or an immunogenic fragment thereof, and a BetaCoV antigenic polypeptide or an immunogenic fragment thereof; or

at least two, three, four or five RNA polynucleotides, one having an open reading frame encoding a hMPV antigenic 50 polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a PIV3 antigenic polypeptide or an immunogenic fragment thereof, one having an open reading frame encoding a RSV antigenic polypeptide or an immunogenic fragment thereof, one having an 55 open reading frame encoding a MeV antigenic polypeptide or an immunogenic fragment thereof, and one having an open reading frame encoding a BetaCoV antigenic polypeptide or an immunogenic fragment thereof.

53. The respiratory virus vaccine of paragraph 52, wherein 60 the hMPV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 5-8 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 5-8, wherein the PIV3 antigenic polypeptide comprises 65 an amino acid sequence identified by any one of SEQ ID NO: 12-13 or an amino acid sequence having at least 90%

or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 12-13, wherein the MeV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 47-50 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 47-50, and/or wherein the BetaCoV antigenic polypeptide comprises an amino acid sequence identified by any one of SEQ ID NO: 24-34 or an amino acid sequence having at least 90% or 95% identity to an amino acid sequence identified by any one of SEQ ID NO: 24-34.

54. The vaccine of any one of paragraphs 1-53, wherein at least one RNA polynucleotide has less than 80% identity to wild-type mRNA sequence.

- 55. The vaccine of any one of paragraphs 1-53, wherein at least one RNA polynucleotide has at least 80% identity to wild-type mRNA sequence, but does not include wild-type mRNA sequence.
- 56. The vaccine of any one of paragraphs 1-55, wherein at least one antigenic polypeptide has membrane fusion activity, attaches to cell receptors, causes fusion of viral and cellular membranes, and/or is responsible for binding of the virus to a cell being infected.
- 57. The vaccine of any one of paragraphs 1-56, wherein at least one RNA polynucleotide comprises at least one chemical modification.
- 58. The vaccine of paragraph 57, wherein the chemical modification is selected from pseudouridine, N1-methylpseudouridine, N1-ethylpseudouridine, 2-thiouridine, 4'-thiouridine, 5-methylcyto sine, 5-methyluridine, 2-thio-1methyl-1-deaza-pseudouridine, 2-thio-1-methylpseudouridine, 2-thio-5-aza-uridine, 2-thiodihydropseudouridine, 2-thio-dihydrouridine, 2-thio-
- pseudouridine, 4-methoxy-2-thio-pseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl-pseudouridine, 4-thio-pseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine and 2'-O-methyl uridine.
- 59. The vaccine of paragraph 57 or 58, wherein the chemical modification is in the 5-position of the uracil.

60. The vaccine of any one of paragraphs 57-59, wherein the chemical modification is a N1-methylpseudouridine or N1-ethylpseudouridine.

61. The vaccine of any one of paragraphs 57-60, wherein at least 80%, at least 90% or 100% of the uracil in the open reading frame have a chemical modification.

62. The vaccine of any one of paragraphs 1-61, wherein at least one RNA polynucleotide further encodes at least one 5' terminal cap, optionally wherein the 5' terminal cap is 7mG(5')ppp(5')NImpNp.

63. The vaccine of any one of paragraphs 1-62, wherein at least one antigenic polypeptide or immunogenic fragment thereof is fused to a signal peptide selected from: a HuIgGk signal peptide (METPAQLLFLLLWLPDTTG; SEQ ID NO: 15); IgE heavy chain epsilon-1 signal peptide (MD-WTWILFLVAAATRVHS; SEQ ID NO: 16); Japanese encephalitis PRM signal sequence (MLGSNSGQRV-VFTILLLLVAPAYS; SEQ ID NO: 17), VSVg protein signal sequence (MKCLLYLAFLFIGVNCA; SEQ ID NO: 18) and Japanese encephalitis JEV signal sequence (MWLVS-LAIVTACAGA; SEQ ID NO: 19).

64. The vaccine of paragraph 63, wherein the signal peptide is fused to the N-terminus or the C-terminus of at least one antigenic polypeptide.

65. The vaccine of any one of paragraphs 1-64, wherein the antigenic polypeptide or immunogenic fragment thereof comprises a mutated N-linked glycosylation site.

66. The vaccine of any one of paragraphs 1-65 formulated in a nanoparticle, optionally a a lipid nanoparticle.

67. The vaccine of paragraph 66, wherein the lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid; optionally wherein the lipid 5 nanoparticle carrier comprises a molar ratio of about 20-60% cationic lipid, 0.5-15% PEG-modified lipid, 25-55% sterol, and 25% non-cationic lipid; optionally wherein the cationic lipid is an ionizable cationic lipid and the non-cationic lipid is a neutral lipid, and the sterol is a 10 cholesterol; and optionally wherein the cationic lipid is selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate 15 (L319). Formula (II) 68. The vaccine of paragraph 66 or 67, wherein the nanoparticle (e.g., lipid nanoparticle) comprises a compound of Formula (I) and/or Formula (II), optionally Compound 3, 18, 20, 25, 26, 29, 30, 60, 108-112, or 122. 69. The vaccine of any one of paragraphs 1-68 further 20 comprising an adjuvant, optionally a flagellin protein or peptide that optionally comprises an amino acid sequence identified by any one of SEQ ID NO: 54-56.

70. The vaccine of any one of paragraphs 1-69, wherein the open reading frame is codon-optimized.

71. The vaccine of any one of paragraphs 1-70 formulated in an effective amount to produce an antigen-specific immune response.

72. A method of inducing an immune response in a subject, the method comprising administering to the subject the 30 vaccine of any one of paragraphs 1-71 in an amount effective to produce an antigen-specific immune response in the subject.

73. The method of paragraph 72, wherein the subject is administered a single dose of the vaccine, or wherein the 35 subject is administered a first dose and then a booster dose of the vaccine.

74. The method of paragraph 72 or 73, wherein the vaccine is administered to the subject by intradermal injection or intramuscular injection.

75. The method of any one of paragraphs 72-74, wherein an anti-antigenic polypeptide antibody titer produced in the subject is increased by at least 1 log relative to a control, and/or wherein the anti-antigenic polypeptide antibody titer produced in the subject is increased at least 2 times relative 45 to a control.

76. The method of any one of paragraphs 72-75, wherein the control is an anti-antigenic polypeptide antibody titer produced in a subject who has not been administered a vaccine against the virus, and/or wherein the control is an anti- 50 antigenic polypeptide antibody titer produced in a subject who has been administered a live attenuated vaccine or an inactivated vaccine against the virus, and/or, wherein the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a recombinant 55 protein vaccine or purified protein vaccine against the virus, and/or wherein the control is an anti-antigenic polypeptide antibody titer produced in a subject who has been administered a VLP vaccine against the virus.

77. The method of any one of paragraphs 72-76, wherein the 60 effective amount is a dose equivalent to an at least 2-fold reduction in the standard of care dose of a recombinant protein vaccine or a purified protein vaccine against the virus, and wherein an anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-anti- 65 genic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant

202

protein vaccine or a purified protein vaccine against the virus, respectively; and/or wherein the effective amount is a dose equivalent to an at least 2-fold reduction in the standard of care dose of a live attenuated vaccine or an inactivated vaccine against the virus, and wherein an anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a live attenuated vaccine or an inactivated vaccine against the virus, respectively; and/or wherein the effective amount is a dose equivalent to an at least 2-fold reduction in the standard of care dose of a VLP vaccine against the virus, and wherein an anti-antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a VLP vaccine against the virus.

78. The method of any one of paragraphs 72-77, wherein the effective amount is a total dose of 50 µg-1000 µg, optionally wherein the effective amount is a dose of 25 μ g, 100 μ g, 400 μ g, or 500 μ g administered to the subject a total of two times. 79. The method of any one of paragraphs 72-78, wherein the efficacy of the vaccine against the virus is greater than 65%; and/or wherein the vaccine immunizes the subject against the virus for up to 2 years or wherein the vaccine immunizes the subject against the virus for more than 2 years.

80. The method of any one of paragraphs 72-79, wherein the subject has an age of about 5 years old or younger or wherein the subject has an age of about 60 years old or older; and/or wherein the subject has a chronic pulmonary disease; and/or the subject has been exposed to the virus, wherein the subject is infected with the virus, or wherein the subject is at risk of infection by the virus; and/or wherein the subject is immunocompromised.

81. The respiratory virus vaccine of any one of paragraphs 1-71, comprising at least one (e.g., at least two, at least three, at least four, or at least five) RNA polynucleotide having an 40 open reading frame encoding at least one (e.g., at least two, at least three, at least four, or at least five) antigenic polypeptide selected from hMPV antigenic polypeptides (SEQ ID NO: 5-8), PIV3 antigenic polypeptides (SEQ ID NO: 12-13), RSV antigenic polypeptides, MeV antigenic polypeptides (SEQ ID NO: 47-50) and BetaCoV antigenic polypeptides (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1; (SEQ ID NO: 24-34)), formulated in a cationic lipid nanoparticle

(a) having a molar ratio of about 20-60% cationic lipid, about 5-25% non-cationic lipid, about 25-55% sterol, and about 0.5-15% PEG-modified lipid, and/or

(b) comprising a compound of Formula (I) and/or Formula (II),

wherein the at least one (e.g., at least two, at least three, at least four, or at least five) RNA polynucleotide comprises at least one chemical modification.

82. The respiratory virus vaccine of any one of paragraphs 1-71, comprising at least one (e.g., at least two, at least three, at least four, or at least five) RNA polynucleotide having an open reading frame encoding at least one (e.g., at least two, at least three, at least four, or at least five) antigenic polypeptide selected from hMPV antigenic polypeptides (SEQ ID NO: 5-8), PIV3 antigenic polypeptides (SEQ ID NO: 12-13), RSV antigenic polypeptides, MeV antigenic polypeptides (SEQ ID NO: 47-50) and BetaCoV antigenic polypeptides (e.g., MERS-CoV, SARS-CoV, HCoV-OC43,

HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1; (SEQ ID NO: 24-34)), formulated in a cationic lipid nanoparticle

(a) having a molar ratio of about 20-60% cationic lipid, about 5-25% non-cationic lipid, about 25-55% sterol, and 5 about 0.5-15% PEG-modified lipid, and/or

(b) comprising at least one (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14) Compound selected from Compounds 3, 18, 20, 25, 26, 29, 30, 60, 108-112 and 122. 83. The respiratory virus vaccine of paragraphs 81 or 82, wherein the at least one antigenic polypeptide is selected from hMPV antigentic polypeptides (e.g., SEQ ID NO: 5-8). 84. The respiratory virus vaccine of any one of paragraphs 81-83, wherein the at least one antigenic polypeptide is 15 selected from PIV3 antigentic polypeptides (e.g., SEQ ID NO: 12-13).

85. The respiratory virus vaccine of any one of paragraphs 81-84, wherein the at least one antigenic polypeptide is selected from RSV antigentic polypeptides.

86. The respiratory virus vaccine of any one of paragraphs 81-85, wherein the at least one antigenic polypeptide is selected from MeV antigentic polypeptides (e.g., SEQ ID NO: 47-50).

87. The respiratory virus vaccine of any one of paragraphs 25 81-86, wherein the at least one antigenic polypeptide is selected from BetaCoV antigentic polypeptides (e.g., SEQ ID NO: 24-34).

88. The respiratory virus vaccine of paragraph 87, wherein the BetaCoV antigentic polypeptides are MERS antigentic polypeptides.

89. The respiratory virus vaccine of paragraph 87, wherein the BetaCoV antigentic polypeptides are SARS antigentic polypeptides.

35 90. The respiratory virus vaccine of any one of paragraphs 81-89, wherein the at least one (e.g., at least two, at least three, at least four, or at least five) RNA polynucleotide comprises at least one chemical modification (e.g., selected from pseudouridine, N1-methylpseudouridine, N1-ethylp- 40 seudouridine, 2-thiouridine, 4'-thiouridine, 5-methylcvtosine, 5-methyluridine, 2-thio-1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-4-methoxy-2-thio-pseudouridine, 45 pseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl-pseudouridine, 4-thio-pseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine and 2'-O-methyl uridine).

91. A respiratory virus vaccine, comprising:

at least one messenger ribonucleic acid (mRNA) poly- 50 nucleotide having a 5' terminal cap, an open reading frame encoding at least one respiratory virus antigenic polypeptide, and a 3' polyA tail.

92. The vaccine of paragraph 91, wherein the at least one mRNA polynucleotide comprises a sequence identified by 55 any one of SEQ ID NO: 57-80.

93. The vaccine of paragraph 91 or 92, wherein the 5' terminal cap is or comprises 7mG(5')ppp(5')NlmpNp. 94. The vaccine of any one of paragraphs 91-93, wherein 100% of the uracil in the open reading frame is modified to 60 include N1-methyl pseudouridine at the 5-position of the uracil.

95. The vaccine of any one of paragraphs 91-94, wherein the vaccine is formulated in a lipid nanoparticle comprising: DLin-MC3-DMA; cholesterol; 1,2-Distearoyl-sn-glycero-3- 65 phosphocholine (DSPC); and polyethylene glycol (PEG) 2000-DMG.

96. The vaccine of paragraph 95, wherein the lipid nanoparticle further comprises trisodium citrate buffer, sucrose and water.

97. A respiratory syncytial virus (RSV) vaccine, comprising: at least one messenger ribonucleic acid (mRNA) polynucleotide having a 5' terminal cap 7mG(5')ppp(5')NlmpNp, a sequence identified by any one of SEO ID NO: 57-80 and a 3' polyA tail, formulated in a lipid nanoparticle comprising DLin-MC3-DMA, cholesterol, 1,2-Distearoyl-sn-glycero-3phosphocholine (DSPC), and polyethylene glycol (PEG) 2000-DMG, wherein the uracil nucleotides of the sequence identified by any one of SEQ ID NO: 57-80 are modified to include N1-methyl pseudouridine at the 5-position of the uracil nucleotide.

This disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The disclosure is capable of other embodiments 20 and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of "including," "comprising," or "having," "containing," "involving," and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.

EXAMPLES

Example 1: Manufacture of Polynucleotides

According to the present disclosure, the manufacture of polynucleotides and/or parts or regions thereof may be accomplished utilizing the methods taught in International Publication WO2014/152027, entitled "Manufacturing Methods for Production of RNA Transcripts," the contents of which is incorporated herein by reference in its entirety.

Purification methods may include those taught in International Publication WO2014/152030 and International Publication WO2014/152031, each of which is incorporated herein by reference in its entirety.

Detection and characterization methods of the polynucleotides may be performed as taught in International Publication WO2014/144039, which is incorporated herein by reference in its entirety.

Characterization of the polynucleotides of the disclosure may be accomplished using polynucleotide mapping, reverse transcriptase sequencing, charge distribution analysis, detection of RNA impurities, or any combination of two or more of the foregoing. "Characterizing" comprises determining the RNA transcript sequence, determining the purity of the RNA transcript, or determining the charge heterogeneity of the RNA transcript, for example. Such methods are taught in, for example, International Publication WO2014/ 144711 and International Publication WO2014/144767, the content of each of which is incorporated herein by reference in its entirety.

Example 2: Chimeric Polynucleotide Synthesis

According to the present disclosure, two regions or parts of a chimeric polynucleotide may be joined or ligated using triphosphate chemistry. A first region or part of 100 nucleotides or less is chemically synthesized with a 5' monophosphate and terminal 3'desOH or blocked OH, for example. If the region is longer than 80 nucleotides, it may be synthesized as two strands for ligation.

20

50

If the first region or part is synthesized as a non-positionally modified region or part using in vitro transcription (IVT), conversion the 5'monophosphate with subsequent capping of the 3' terminus may follow.

Monophosphate protecting groups may be selected from 5 any of those known in the art.

The second region or part of the chimeric polynucleotide may be synthesized using either chemical synthesis or IVT methods. IVT methods may include an RNA polymerase that can utilize a primer with a modified cap. Alternatively, a cap of up to 130 nucleotides may be chemically synthesized and coupled to the IVT region or part.

For ligation methods, ligation with DNA T4 ligase, followed by treatment with DNase should readily avoid con-15 catenation.

The entire chimeric polynucleotide need not be manufactured with a phosphate-sugar backbone. If one of the regions or parts encodes a polypeptide, then such region or part may comprise a phosphate-sugar backbone.

Ligation is then performed using any known click chemistry, orthoclick chemistry, solulink, or other bioconjugate chemistries known to those in the art.

Synthetic Route

The chimeric polynucleotide may be made using a series ²⁵ of starting segments. Such segments include:

(a) a capped and protected 5' segment comprising a normal 3'OH (SEG. 1)

(b) a 5' triphosphate segment, which may include the coding region of a polypeptide and a normal 3'OH (SEG. 2) ³⁰

(c) a 5' monophosphate segment for the 3' end of the chimeric polynucleotide (e.g., the tail) comprising cordycepin or no 3'OH (SEG. 3)

After synthesis (chemical or IVT), segment 3 (SEG. 3) may be treated with cordycepin and then with pyrophos- ³⁵ phatase to create the 5' monophosphate.

Segment 2 (SEG. 2) may then be ligated to SEG. 3 using RNA ligase. The ligated polynucleotide is then purified and treated with pyrophosphatase to cleave the diphosphate.

The treated SEG.2-SEG. 3 construct may then be purified 40 and SEG. 1 is ligated to the 5' terminus. A further purification step of the chimeric polynucleotide may be performed.

Where the chimeric polynucleotide encodes a polypeptide, the ligated or joined segments may be represented as: 5'UTR (SEG. 1), open reading frame or ORF (SEG. 2) and 45 3'UTR+PolyA (SEG. 3).

The yields of each step may be as much as 90-95%.

Example 3: PCR for cDNA Production

PCR procedures for the preparation of cDNA may be performed using $2\times$ KAPA HIFITM HotStart ReadyMix by Kapa Biosystems (Woburn, Mass.). This system includes $2\times$ KAPA ReadyMix 12.5 µl; Forward Primer (10 µM) 0.75 µl; Reverse Primer (10 PM) 0.75 µl; Template cDNA 100 ng; 55 and dH₂O diluted to 25.0 µl. The reaction conditions may be at 95° C. for 5 min. The reaction may be performed for 25 cycles of 98° C. for 20 sec, then 58° C. for 15 sec, then 72° C. for 45 sec, then 72° C. for 5 min, then 4° C. to termination. 60

The reaction may be cleaned up using Invitrogen's PURELINKTM PCR Micro Kit (Carlsbad, Calif.) per manufacturer's instructions (up to 5 μ g). Larger reactions may require a cleanup using a product with a larger capacity. Following the cleanup, the cDNA may be quantified using 65 the NANODROPTM and analyzed by agarose gel electrophoresis to confirm that the cDNA is the expected size. The

cDNA may then be submitted for sequencing analysis before proceeding to the in vitro transcription reaction.

Example 4: In Vitro Transcription (IVT)

The in vitro transcription reaction generates RNA polynucleotides. Such polynucleotides may comprise a region or part of the polynucleotides of the disclosure, including chemically modified RNA (e.g., mRNA) polynucleotides. The chemically modified RNA polynucleotides can be uniformly modified polynucleotides. The in vitro transcription reaction utilizes a custom mix of nucleotide triphosphates (NTPs). The NTPs may comprise chemically modified NTPs, or a mix of natural and chemically modified NTPs, or natural NTPs.

A typical in vitro transcription reaction includes the following:

1)	Template cDNA	1.0 µg
2)	10x transcription buffer	2.0 μl
	(400 mM Tris-HCl pH 8.0, 190 mM	
	MgCl ₂ , 50 mM DTT, 10 mM Spermidine)	
3)	Custom NTPs (25 mM each)	0.2 μl
4)	RNase Inhibitor	20 U
5)	T7 RNA polymerase	3000 U
6)	dH ₂ 0	up to $20.0 \ \mu$ l. and
7)	Incubation at 37° C. for 3 hr-5 hrs.	

The crude IVT mix may be stored at 4° C. overnight for cleanup the next day. 1 U of RNase-free DNase may then be used to digest the original template. After 15 minutes of incubation at 37° C., the mRNA may be purified using Ambion's MEGACLEARTM Kit (Austin, Tex.) following the manufacturer's instructions. This kit can purify up to 500 μ g of RNA. Following the cleanup, the RNA polynucleotide may be quantified using the NanoDrop and analyzed by agarose gel electrophoresis to confirm the RNA polynucle-otide is the proper size and that no degradation of the RNA has occurred.

Example 5: Enzymatic Capping

Capping of a RNA polynucleotide is performed as follows where the mixture includes: IVT RNA 60 μ g-180 μ g and dH₂O up to 72 μ l. The mixture is incubated at 65° C. for 5 minutes to denature RNA, and then is transferred immediately to ice.

The protocol then involves the mixing of $10\times$ Capping Buffer (0.5 M Tris-HCl (pH 8.0), 60 mM KCl, 12.5 mM MgCl₂) (10.0 µl); 20 mM GTP (5.0 µl); 20 mM S-Adenosyl Methionine (2.5 µl); RNase Inhibitor (100 U); 2'-O-Methyltransferase (400U); Vaccinia capping enzyme (Guanylyl transferase) (40 U); dH₂O (Up to 28 µl); and incubation at 37° C. for 30 minutes for 60 µg RNA or up to 2 hours for 180 µg of RNA.

The RNA polynucleotide may then be purified using Ambion's MEGACLEAR[™] Kit (Austin, Tex.) following
⁵⁵ the manufacturer's instructions. Following the cleanup, the RNA may be quantified using the NANODROP[™] (ThermoFisher, Waltham, Mass.) and analyzed by agarose gel electrophoresis to confirm the RNA polynucleotide is the proper size and that no degradation of the RNA has
⁶⁰ occurred. The RNA polynucleotide product may also be sequenced by running a reverse-transcription-PCR to generate the cDNA for sequencing.

Example 6: PolyA Tailing Reaction

Without a poly-T in the cDNA, a poly-A tailing reaction must be performed before cleaning the final product. This is

done by mixing capped IVT RNA (100 µl); RNase Inhibitor (20 U); 10x Tailing Buffer (0.5 M Tris-HCl (pH 8.0), 2.5 M NaCl, 100 mM MgCl₂) (12.0 µl); 20 mM ATP (6.0 µl); Poly-A Polymerase (20 U); dH₂O up to 123.5 µl and incubation at 37° C. for 30 min. If the poly-A tail is already 5 in the transcript, then the tailing reaction may be skipped and proceed directly to cleanup with Ambion's MEGA-CLEAR™ kit (Austin, Tex.) (up to 500 µg). Poly-A Polymerase may be a recombinant enzyme expressed in yeast.

It should be understood that the processivity or integrity of the polyA tailing reaction may not always result in an exact size polyA tail. Hence, polyA tails of approximately between 40-200 nucleotides, e.g., about 40, 50, 60, 70, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 15 104, 105, 106, 107, 108, 109, 110, 150-165, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164 or 165 are within the scope of the present disclosure.

Example 7: Natural 5' Caps and 5' Cap Analogues

5'-capping of polynucleotides may be completed concomitantly during the in vitro-transcription reaction using the following chemical RNA cap analogs to generate the 5'-guanosine cap structure according to manufacturer pro- 25 tocols: 3'-O-Me-m7G(5')ppp(5') G [the ARCA cap];G(5') ppp(5')A; G(5')ppp(5')G; m7G(5')ppp(5')A; m7G(5')ppp (5')G (New England BioLabs, Ipswich, Mass.). 5'-capping of modified RNA may be completed post-transcriptionally using a Vaccinia Virus Capping Enzyme to generate the 30 "Cap 0" structure: m7G(5')ppp(5')G (New England Bio-Labs, Ipswich, Mass.). Cap 1 structure may be generated using both Vaccinia Virus Capping Enzyme and a 2'-O methyl-transferase to generate: m7G(5')ppp(5')G-2'-O-35 methyl. Cap 2 structure may be generated from the Cap 1 structure followed by the 2'-O-methylation of the 5'-antepenultimate nucleotide using a 2'-O methyl-transferase. Cap 3 structure may be generated from the Cap 2 structure followed by the 2'-O-methylation of the 5'-preantepenulti- $_{40}$ mate nucleotide using a 2'-0 methyl-transferase. Enzymes are preferably derived from a recombinant source.

When transfected into mammalian cells, the modified mRNAs have a stability of between 12-18 hours or more than 18 hours, e.g., 24, 36, 48, 60, 72 or greater than 72 45 hours

Example 8: Capping Assays

Protein Expression Assay

Polynucleotides (e.g., mRNA) encoding a polypeptide, containing any of the caps taught herein, can be transfected into cells at equal concentrations. The amount of protein secreted into the culture medium can be assayed by ELISA at 6, 12, 24 and/or 36 hours post-transfection. Synthetic 55 polynucleotides that secrete higher levels of protein into the medium correspond to a synthetic polynucleotide with a higher translationally-competent cap structure. Purity Analysis Synthesis

RNA (e.g., mRNA) polynucleotides encoding a polypep- 60 tide, containing any of the caps taught herein can be compared for purity using denaturing Agarose-Urea gel electrophoresis or HPLC analysis. RNA polynucleotides with a single, consolidated band by electrophoresis correspond to the higher purity product compared to polynucleotides with 65 multiple bands or streaking bands. Chemically modified RNA polynucleotides with a single HPLC peak also corre-

208

spond to a higher purity product. The capping reaction with a higher efficiency provides a more pure polynucleotide population.

Cytokine Analysis

RNA (e.g., mRNA) polynucleotides encoding a polypeptide, containing any of the caps taught herein can be transfected into cells at multiple concentrations. The amount of pro-inflammatory cytokines, such as TNF-alpha and IFNbeta, secreted into the culture medium can be assayed by ELISA at 6, 12, 24 and/or 36 hours post-transfection. RNA polynucleotides resulting in the secretion of higher levels of pro-inflammatory cytokines into the medium correspond to a polynucleotides containing an immune-activating cap structure.

Capping Reaction Efficiency

RNA (e.g., mRNA) polynucleotides encoding a polypeptide, containing any of the caps taught herein can be analyzed for capping reaction efficiency by LC-MS after nucle-20 ase treatment. Nuclease treatment of capped polynucleotides yield a mixture of free nucleotides and the capped 5'-5triphosphate cap structure detectable by LC-MS. The amount of capped product on the LC-MS spectra can be expressed as a percent of total polynucleotide from the reaction and correspond to capping reaction efficiency. The cap structure with a higher capping reaction efficiency has a higher amount of capped product by LC-MS.

> Example 9: Agarose Gel Electrophoresis of Modified RNA or RT PCR Products

Individual RNA polynucleotides (200-400 ng in a 20 µl volume) or reverse transcribed PCR products (200-400 ng) may be loaded into a well on a non-denaturing 1.2% Agarose E-Gel (Invitrogen, Carlsbad, Calif.) and run for 12-15 minutes, according to the manufacturer protocol.

> Example 10: Nanodrop Modified RNA Quantification and UV Spectral Data

Chemically modified RNA polynucleotides in TE buffer (1 µl) are used for Nanodrop UV absorbance readings to quantitate the yield of each polynucleotide from an chemical synthesis or in vitro transcription reaction.

Example 11: Formulation of Modified mRNA Using Lipidoids

RNA (e.g., mRNA) polynucleotides may be formulated 50 for in vitro experiments by mixing the polynucleotides with the lipidoid at a set ratio prior to addition to cells. In vivo formulation may require the addition of extra ingredients to facilitate circulation throughout the body. To test the ability of these lipidoids to form particles suitable for in vivo work, a standard formulation process used for siRNA-lipidoid formulations may be used as a starting point. After formation of the particle, polynucleotide is added and allowed to integrate with the complex. The encapsulation efficiency is determined using a standard dye exclusion assays.

Example 12: Immunogenicity Study

The instant study is designed to test the immunogenicity in mice of candidate hMPV vaccines comprising a mRNA polynucleotide encoding Fusion (F) glycoprotein, major surface glycoprotein G, or a combination thereof, obtained from hMPV.

Mice are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) with candidate vaccines. Candidate vaccines are chemically modified or unmodified. A total of four immunizations are given at 3-week intervals (i.e., at weeks 0, 3, 6, and 9), and sera are collected after each ⁵ immunization until weeks 33-51. Serum antibody titers against Fusion (F) glycoprotein or major surface glycoprotein (G) protein are determined by ELISA. Sera collected from each mouse during weeks 10-16 are pooled, and total IgG purified. Purified antibodies are used for immunoelectron microscopy, antibody-affinity testing, and in vitro protection assays.

Example 13: hMPV Rodent Challenge

The instant study is designed to test the efficacy in cotton rats of candidate hMPV vaccines against a lethal challenge using an hMPV vaccine comprising mRNA encoding Fusion (F) glycoprotein, major surface glycoprotein G, or a combination of both antigens obtained from hMPV. Cotton rats are challenged with a lethal dose of the hMPV.

Animals are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) at week 0 and week 3 with candidate hMPV vaccines with and without adjuvant. Can-25 didate vaccines are chemically modified or unmodified. The animals are then challenged with a lethal dose of hMPV on week 7 via IV, IM or ID. Endpoint is day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by >30% weight loss, extreme lethargy or ³⁰ paralysis are euthanized. Body temperature and weight are assessed and recorded daily.

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios ³⁵ 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA (50 mol %) or DLin-MC3-DMA (50 mol %), the non-cationic lipid is DSPC (10 mol %), the PEG lipid is PEG-DOMG (1.5 mol %) and the structural lipid is cholesterol (38.5 mol %), for example. 40

Example 14: Immunogenicity of hMPV mRNA Vaccine in BALB/c Mice

The instant study was designed to test the immunogenic- 45 ity in BALB/c mice of hMPV vaccines comprising an mRNA polynucleotide encoding the hMPV Fusion (F) glycoprotein. The mRNA polynucleotide encodes the fulllength fusion protein and comprises the wild-type nucleotide sequence obtained from the hMPV A2a strain. Mice were 50 divided into 3 groups (n=8 for each group) and immunized intramuscularly (IM) with PBS, a 10 µg dose of mRNA vaccines encoding hMPV fusion protein, or a 2 µg dose of mRNA vaccines encoding hMPV fusion protein. A total of two immunizations were given at 3-week intervals (i.e., at 55 weeks 0, and 3 weeks), and sera were collected after each immunization according to the schedule described in Table 1. Serum antibody titers against hMPV fusion glycoprotein were determined by ELISA and antibodies were detected in the sera collected on day 14 onward. Both vaccine doses 60 tested induced comparable levels of immune response in mice (FIGS. 2A-2C).

Additionally, mice sera were used for IgG isotyping (FIGS. **3A-3**C). Both hMPV fusion protein-specific IgG1 and IgG2a were detected in mice sera. hMPV fusion protein 65 mRNA vaccine also induced Th1 and Th2 cytokine responses, with a Th1 bias.

Sera from mice immunized with either $10 \mu g$ or $2 \mu g$ doses of the hMPV fusion protein mRNA vaccine contain neutralizing antibodies. The ability of these antibodies to neutralize hMPV B2 strain was also tested. The antibody-containing sera successfully neutralized the hMPV B2 virus (FIG. 4).

Example 15: T-Cell Stimulation

The instant study was designed to test T-cell stimulation in the splenocytes of mice immunized with mRNA vaccines encoding hMPV fusion protein, as described herein. Immunization of BALB/c mice was performed as described in Example 14. The splenocytes for each group were pooled and split into two parts. One part of splenocytes from each group of mice was stimulated with hMPV-free media, Con-¹⁵ canavalin A or a hMPV fusion protein peptide pool comprising 15-mers (15 amino acids long); while the other part of splenocytes from each group of mice was stimulated with hMPV-free media, Concanavalin A or inactivated hMPV virus. Secreted mouse cytokines were measured using the 20 Meso Scale Discovery (MSD) assay.

Cytokines specific to Th1 or Th2 responses were measured. For Th1 response, IFN- γ , IL2 and IL12 were detected from splenocytes stimulated with the hMPV fusion protein peptide pool at a level comparable to that of Concanavalin A (FIGS. **5A-5**C). For a Th2 response, the hMPV fusion protein peptide pool induced the secretion of detectable IL10, TNF- α , IL4 and IL, but not IL5, while Concanavalin A stimulated the secretion of all the above-mentioned Th2 cytokines (FIGS. **6A-6**E) at a much higher level.

In contrast, inactivated hMPV virus only induced the secretion of IL2 in the Th1 response comparable to that of Concanavalin A (FIGS. 7A-7C). For the Th2 response, the inactivated hMPV virus induced the secretion of detectable IL10, TNF- α , IL4 and IL6, but not IL5, while Concanavalin A stimulated the secretion of all the above-mentioned Th2 cytokines (FIGS. 8A-8E) at a much higher level.

Example 16: hMPV Rodent Challenge in Cotton Rats Immunized with mRNA Vaccine Encoding hMPV Fusion Protein

The instant study was designed to test the efficacy in cotton rats of hMPV vaccines against a lethal challenge. mRNA vaccines encoding hMPV fusion protein were used. The mRNA polynucleotide encodes a full-length fusion protein and comprises the wild-type nucleotide sequence obtained from the hMPV A2a strain.

Cotton rats were immunized intramuscularly (IM) at week 0 and week 3 with the mRNA vaccines encoding hMPV fusion protein with either 2 μ g or 10 μ g doses for each immunization. The animals were then challenged with a lethal dose of hMPV in week 7 post initial immunization via IV, IM or ID. The endpoint was day 13 post infection, death or euthanasia. Viral titers in the noses and lungs of the cotton rats were measured. The results (FIGS. 9A and 9B) show that a 10 μ g dose of mRNA vaccine protected the cotton mice 100% in the lung and drastically reduced the viral titer in the nose after challenge (~2 log reduction). Moreover, a 2 μ g dose of mRNA vaccine showed a 1 log reduction in lung viral titer in the cotton mice challenged.

Further, the histopathology of the lungs of the cotton mice immunized and challenged showed no pathology associated with vaccine-enhanced disease (FIG. **10**).

Example 17: Immunogenicity Study

The instant study is designed to test the immunogenicity in mice of candidate PIV3 vaccines comprising a mRNA

polynucleotide encoding hemagglutinin-neuraminidase or fusion protein (F or F0) obtained from PIV3.

Mice are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) with candidate vaccines. Candidate vaccines are chemically modified or unmodified. A ⁵ total of four immunizations are given at 3-week intervals (i.e., at weeks 0, 3, 6, and 9), and sera are collected after each immunization until weeks 33-51. Serum antibody titers against hemagglutinin-neuraminidase or fusion protein (F or F0) are determined by ELISA. Sera collected from each ¹⁰ mouse during weeks 10-16 are, optionally, pooled, and total IgGs are purified. Purified antibodies are used for immunoelectron microscopy, antibody-affinity testing, and in vitro protection assays.

Example 18: PIV3 Rodent Challenge

The instant study is designed to test the efficacy in cotton rats of candidate PIV3 vaccines against a lethal challenge 20 using a PIV3 vaccine comprising mRNA encoding hemagglutinin-neuraminidase or fusion protein (F or F0) obtained from PIV3. Cotton rats are challenged with a lethal dose of the PIV3.

Animals are immunized intravenously (IV), intramuscu- 25 larly (IM), or intradermally (ID) at week 0 and week 3 with candidate PIV3 vaccines with and without adjuvant. Candidate vaccines are chemically modified or unmodified. The animals are then challenged with a lethal dose of PIV3 on week 7 via IV, IM or ID. Endpoint is day 13 post infection, ³⁰ death or euthanasia. Animals displaying severe illness as determined by >30% weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.

In experiments where a lipid nanoparticle (LNP) formu-³⁵ lation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA (50 mol %) or DLin-MC3-DMA (50 mol %), the non-cationic lipid is DSPC (10 mol %), the PEG lipid is PEG-DOMG (1.5 40 mol %) and the structural lipid is cholesterol (38.5 mol %), for example.

Example 19: hMPV/PIV Cotton Rat Challenge

The instant study was designed to test the efficacy in cotton rats of candidate hMPV mRNA vaccines, PIV3 mRNA vaccines, or hMPV/PIV combination mRNA vaccines against a lethal challenge using PIV3 strain or hMPV/A2 strain. The study design is shown in Table 9.

Cotton rats of 10-12 weeks old were divided into 12 groups (n=5), and each group was vaccinated with mRNA vaccines indicated in Table 9. The PIV3 vaccine comprises mRNA encoding hemagglutinin-neuraminidase or fusion protein (F or F0) obtained from PIV3. The hMPV mRNA 55 vaccine encodes the full-length hMPV fusion protein. The hMPV/PIV combination mRNA vaccine is a mixture of the PIV3 vaccine and hMPV vaccine at a 1:1 ratio.

Cotton rats were immunized intramuscularly (IM) at week 0 and week 3 with candidate vaccines with the doses 60 indicated in Table 9. Cotton rats immunized with hMPV mRNA vaccines or hMPV/PIV combination mRNA vaccines were challenged with a lethal dose of hMPV/A2 strain on week 7 via IM. Cotton rats immunized with PIV mRNA vaccines or hMPV/PIV combination mRNA vaccines were 65 challenged with a lethal dose of PIV3 strain on week 7 via IM.

The endpoint was day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by >30% weight loss, extreme lethargy or paralysis were euthanized. Body temperature and weight were assessed and recorded daily.

Lung and nose hMPV/A2 (FIG. 12) or PIV3 (FIG. 13) viral titers were assessed. Lung histopathology of the immunized and challenged cotton rat immunized and challenged were assessed to determine pathology associated with vaccine enhance disease. Neutralization antibody titers in the serum of immunized cotton rats on day 0 and 42 post immunization were assessed (FIG. 11).

hMPV/A2 (FIG. 14) or PIV3 (FIG. 15) neutralizing antibody titers in the serum samples of the immunized ¹⁵ cotton rat 42 days post immunization were measured. All mRNA vaccines tested induced strong neutralizing antibodies cotton rats. Lung histopathology of the immunized cotton rats were also evaluated (FIG. 16). Low occurrence of alevolitis and interstitial pneumonia was observed, indicat-²⁰ ing no antibody-dependent enhancement (ADE) of hMPV or PIV associated diseases.

Example 20: Betacoronavirus Immunogenicity Study

The instant study is designed to test the immunogenicity in rabbits of candidate betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1 or a combination thereof) vaccines comprising a mRNA polynucleotide encoding the spike (S) protein, the S1 subunit (S1) of the spike protein, or the S2 subunit (S2) of the spike protein obtained from a betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1).

Rabbits are vaccinated on week 0 and 3 via intravenous (IV), intramuscular (IM), or intradermal (ID) routes. One group remains unvaccinated and one is administered inactivated betacoronavirus. Serum is collected from each rabbit on weeks 1, 3 (pre-dose) and 5. Individual bleeds are tested for anti-S1 or anti-S2 activity via a virus neutralization assay from all three time points, and pooled samples from week 5 only are tested by Western blot using inactivated betacoronavirus (e.g., inactivated MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1).

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA (50 mol %) or DLin-MC3-DMA (50 mol %), the non-cationic lipid is DSPC (10 mol %), the PEG lipid is PEG-DOMG (1.5 mol %) and the structural lipid is cholesterol (38.5 mol %), for example.

Example 21: Betacoronavirus Challenge

The instant study is designed to test the efficacy in rabbits of candidate betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-HKU1 or a combination thereof) vaccines against a lethal challenge using a betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-HKU1 or a combination thereof) vaccine comprising mRNA encoding the spike (S) protein, the S1 subunit (S1) of the spike protein, or the S2 subunit (S2) of the spike protein obtained from betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1). Rabbits are challenged with a lethal dose (10xLD90; ~100 plaque-forming units; PFU) of betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1).

The animals used are 6-8 week old female rabbits in groups of 10. Rabbits are vaccinated on weeks 0 and 3 via an IM, ID or IV route of administration. Candidate vaccines are chemically modified or unmodified. Rabbit serum is tested for microneutralization (see Example 14). Rabbits are ¹⁰ then challenged with ~1 LD90 of betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1) on week 7 via an IN, IM, ID or IV route of administration. Endpoint is day 13 post infection, death or euthanasia. ¹⁵ Animals displaying severe illness as determined by >30% weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.

Example 22: Microneutralization Assay

Nine serial 2-fold dilutions (1:50-1:12,800) of rabbit serum are made in 50 µl virus growth medium (VGM) with trypsin in 96 well microtiter plates. Fifty microliters of virus 25 containing ~50 pfu of betacoronavirus (e.g., MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, HCoV-NL, HCoV-NH or HCoV-HKU1) is added to the serum dilutions and allowed to incubate for 60 minutes at room temperature (RT). Positive control wells of virus 30 without sera and negative control wells without virus or sera are included in triplicate on each plate. While the serumvirus mixtures incubate, a single cell suspension of Madin-Darby Canine-Kidney cells are prepared by trypsinizing (Gibco 0.5% bovine pancrease trypsin in EDTA) a confluent 35 monolayer and suspended cells are transferred to a 50 ml centrifuge tube, topped with sterile PBS and gently mixed. The cells are then pelleted at 200 g for 5 minutes, supernatant aspirated and cells resuspended in PBS. This procedure is repeated once and the cells are resuspended at a concen- 40 tration of 3×10^5 /ml in VGM with porcine trypsin. Then, 100 µl of cells are added to the serum-virus mixtures and the plates incubated at 35° C. in C02 for 5 days. The plates are fixed with 80% acetone in phosphate buffered saline (PBS) for 15 minutes at RT, air dried and then blocked for 30 45 minutes containing PBS with 0.5% gelatin and 2% FCS. An antibody to the S proteins, S1 protein or S2 protein is diluted in PBS with 0.5% gelatin/2% FCS/0.5% Tween 20 and incubated at RT for 2 hours. Wells are washed and horseradish peroxidase-conjugated goat anti-mouse IgG added, 50 followed by another 2 hour incubation. After washing, O-phenylenediamine dihydrochloride is added and the neutralization titer is defined as the titer of serum that reduced color development by 50% compared to the positive control wells.

Example 23: MERS CoV Vaccine Immunogenicity Study in Mice

The instant study was designed to test the immunogenic- 60 ity in mice of candidate MERS-CoV vaccines comprising a mRNA polynucleotide encoding the full-length Spike (S) protein, or the S2 subunit (S2) of the Spike protein obtained from MERS-CoV.

Mice were vaccinated with a 10 µg dose of MERS-CoV 65 mRNA vaccine encoding either the full-length MERS-CoV Spike (S) protein, or the S2 subunit (S2) of the Spike protein

on days 0 and 21. Sera were collected from each mice on days 0, 21, 42, and 56. Individual bleeds were tested for anti-S, anti-S2 activity via a virus neutralization assay from all four time points.

As shown in FIG. 17, the MERS-CoV vaccine encoding the full-length S protein induced strong immune response after the boost dose on day 21. Further, full-length S protein vaccine generated much higher neutralizing antibody titers as compared to S2 alone (FIG. 18).

Example 24: MERS CoV Vaccine Immunogenicity Study in New Zealand White Rabbits

The instant study was designed to test the immunogenic-15 ity of candidate MERS-CoV mRNA vaccines encoding the full-length Spike (S) protein. The New Zealand white rabbits used in this study weighed about 4-5 kg. The rabbits were divided into three groups (Group 1a, Group 1b, and Group 2, n=8). Rabbits in Group 1a were immunized intramuscu-²⁰ larly (IM) with one 20 µg dose of the MERS-CoV mRNA vaccine encoding the full-length Spike protein on day 0. Rabbits in Group 1b were immunized intramuscularly (IM) with one 20 µg dose of the MERS-CoV mRNA vaccine encoding the full-length Spike protein on day 0, and again on day 21 (booster dose). Group 2 received placebo (PBS). The immunized rabbits were then challenged and samples were collected 4 days after challenge. The viral loads in the lungs, bronchoalveolar lavage (Bal), nose, and throat of the rabbits were determined, e.g., via quantitative PCR. Replicating virus in the lung tissues of the rabbits were also detected. Lung histopathology were evaluated and the neutralizing antibody titers in serum samples of the rabbits were determined.

Two 20 μ g doses of MERS-CoV mRNA vaccine resulted in a 3 log reduction of viral load in the nose and led to complete protection in the throat of the New Zealand white rabbits (FIG. **19**A). Two 20 μ g doses of MERS-CoV mRNA vaccine also resulted in a 4 log reduction of viral load in the BAL of the New Zealand white rabbits (FIG. **19**B). One 20 μ g dose of MERS-CoV mRNA vaccine resulted in a 2 log reduction of viral load, while two 20 μ g doses of MERS-CoV mRNA vaccine resulted in an over 4 log reduction of viral load in the lungs of the New Zealand white rabbits (FIG. **19**C).

Quantitative PCR results show that two 20 µg doses of MERS-CoV mRNA vaccine reduced over 99% (2 log) of viruses in the lungs of New Zealand white rabbits (FIG. 20A). No replicating virus were detected in the lungs (FIG. 20B).

Further, as shown in FIG. 21, two 20 µg doses of MERS-CoV mRNA vaccine induced significant amount of neutralizing antibodies against MERS-CoV (ECso between 500-1000).

The MERS-CoV mRNA vaccine induced antibody titer is 55 3-5 fold better than any other vaccines tested in the same model.

Example 25: Immunogenicity Study

The instant study is designed to test the immunogenicity in mice of candidate MeV vaccines comprising a mRNA polynucleotide encoding MeV hemagglutinin (HA) protein, MeV Fusion (F) protein or a combination of both.

Mice are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) with candidate vaccines. Up to three immunizations are given at 3-week intervals (i.e., at weeks 0, 3, 6, and 9), and sera are collected after each

immunization until weeks 33-51. Serum antibody titers against MeV HA protein or MeV F protein are determined by ELISA.

Example 26: MeV Rodent Challenge

The instant study is designed to test the efficacy in transgenic mice of candidate MeV vaccines against a lethal challenge using a MeV vaccine comprising mRNA encoding MeV HA protein or MeV F protein. The transgenic mice 10 express human receptor CD46 or signaling lymphocyte activation molecule (SLAM) (also referred to as CD150). Humans are the only natural host for MeV infection, thus transgenic lines are required for this study. CD46 is a complement regulatory protein that protects host tissue from 15 complement deposition by binding to complement components C3b and C4b. Its expression on murine fibroblast and lymphoid cell lines renders these otherwise refractory cells permissive for MeV infection, and the expression of CD46 on primate cells parallels the clinical tropism of MeV 20 infection in humans and nonhuman primates (Rall G F et al. PNAS USA 1997; 94(9):4659-63). SLAM is a type 1 membrane glycoprotein belonging to the immunoglobulin super-

family. It is expressed on the surface of activated lymphocytes, macrophages, and dendritic cells and is thought to play an important role in lymphocyte signaling. SLAM is a receptor for both wild-type and vaccine MeV strains (Sellin C I et al. *J Virol.* 2006; 80(13):6420-29).

CD46 or SLAM/CD150 transgenic mice are challenged with a lethal dose of the MeV. Animals are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) at week 0 and week 3 with candidate MeV vaccines with and without adjuvant. The animals are then challenged with a lethal dose of MeV on week 7 via IV, IM or ID. Endpoint is day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by >30% weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.

In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA (50 mol %), the non-cationic lipid is DSPC (10 mol %), the PEG lipid is PEG-DOMG (1.5 mol %) and the structural lipid is cholesterol (38.5 mol %), for example.

TABLE 1

	Animal		111111	minia	10 gennent y	studios t	leeding schedul			
	groups						Day			
	(n = 8)	vaccine	-2	0	7	14	21	28	35	56
Placebo	Group $1 (n = 8)$	PBS) (IM)	Pre-Bleed	Prime	Bleeds	Bleeds	Bleeds/Boost	Bleeds	Bleeds	Harvest Spleens/Term
10 µg	Group									inal Bleeds
Dose	2(n = 8)									
2 μg	Group	2 µg								
Dose	3(n = 8)) (IM)								

Total n = 24

40 Each of the sequences described herein encompasses a chemically modified sequence or an unmodified sequence which includes no nucleotide modifications.

TABLE 2	2
---------	---

		SEQ II
Description	Sequence	NO:
gi 122891979 gb EF051124.1	ATGAGCTGGAAGGTGGTGATTATCTTCAGCCTGCTGATTA	1
Human	CACCTCAACACGGCCTGAAGGAGAGCTACCTGGAAGAGA	
metapneumovirus	GCTGCTCCACCATCACCGAGGGCTACCTGAGCGTGCTGC	
isolate TN/92-4	GGACCGGCTGGTACACCAACGTGTTCACCCTGGAGGTGG	
fusion protein gene,	GCGACGTGGAGAACCTGACCTGCAGCGACGGCCCTAGCC	
complete genome	TGATCAAGACCGAGCTGGACCTGACCAAGAGCGCTCTGA	
	GAGAGCTGAAGACCGTGTCCGCCGACCAGCTGGCCAGAG	
	AGGAACAGATCGAGAACCCTCGGCAGAGCAGATTCGTGC	
	TGGGCGCCATCGCTCTGGGAGTCGCCGCTGCCGCTGCAG	
	TGACAGCTGGAGTGGCCATTGCTAAGACCATCAGACTGG	
	AAAGCGAGGTGACAGCCATCAACAATGCCCTGAAGAAG	
	ACCAACGAGGCCGTGAGCACCCTGGGCAATGGAGTGAGA	
	GTGCTGGCCACAGCCGTGCGGGAGCTGAAGGACTTCGTG	
	AGCAAGAACCTGACCAGAGCCATCAACAAGAACAAGTG	
	CGACATCGATGACCTGAAGATGGCCGTGAGCTTCTCCCA	
	GTTCAACAGACGGTTCCTGAACGTGGTGAGACAGTTCTC	
	CGACAACGCTGGAATCACACCTGCCATTAGCCTGGACCT	
	GATGACCGACGCCGAGCTGGCTAGAGCCGTGCCCAACAT	
	GCCCACCAGCGCTGGCCAGATCAAGCTGATGCTGGAGAA	
	CAGAGCCATGGTGCGGAGAAAGGGCTTCGGCATCCTGAT	
	TGGGGTGTATGGAAGCTCCGTGATCTACATGGTGCAGCT	
	GCCCATCTTCGGCGTGATCGACACCCCTGCTGGATCGTG	

TABLE 2-continued

Description	Sequence	SEQ II NO:
	AAGGCCGCTCCTAGCTGCTCCGAGAAGAAAGGAAACTAT	
	GCCTGTCTGCTGAGAGAGGACCAGGGCTGGTACTGCCAG	
	AACGCCGGAAGCACAGTGTACTATCCCAACGAGAAGGAC	
	TGCGAGACCAGAGGCGACCACGTGTTCTGCGACACCGCT	
	GCCGGAATCAACGTGGCCGAGCAGAGCAAGGAGTGCAA	
	CATCAACATCAGCACAACCAACTACCCCTGCAAGGTGAG CACCGGACGGCACCCCATCAGCATGGTGGCTCTGAGCCC	
	TCTGGGCGCTCTGGTGGCCTGCTATAAGGGCGTGTCCTGT	
	AGCATCGGCAGCAATCGGGTGGGCATCATCAAGCAGCTG	
	AACAAGGGATGCTCCTACATCACCAACCAGGACGCCGAC	
	ACCGTGACCATCGACAACACCGTGTACCAGCTGAGCAAG	
	GTGGAGGGCGAGCAGCACGTGATCAAGGGCAGACCCGT	
	GAGCTCCAGCTTCGACCCCATCAAGTTCCCTGAGGACCA GTTCAACGTGGCCCTGGACCAGGTGTTTGAGAACATCGA	
	GAACAGCCAGGCCCTGGTGGACCAGGTGTTTGAGAACATCGA	
	GTCCAGCGCTGAGAAGGGCAACACCGGCTTCATCATTGT	
	GATCATTCTGATCGCCGTGCTGGGCAGCTCCATGATCCTG	
	GTGAGCATCTTCATCATTATCAAGAAGACCAAGAAACCC	
	ACCGGAGCCCCTCCTGAGCTGAGCGGCGTGACCAACAAT	
	GGCTTCATTCCCCACAACTGA	
jb AY525843.1 : 3065-4684 Juman	ATGTCTTGGAAAGTGATGATCATCATTTCGTTACTCATAA CACCCCAGCACGGGCTAAAGGAGAGTTATTTGGAAGAAT	2
netapneumovirus	CATGTAGTACTATAACTGAGGGATACCTCAGTGTTTTAAG	
lsolate NL/1/99,	AACAGGCTGGTACACTAATGTCTTCACATTAGAAGTTGGT	
complete genome	GATGTTGAAAATCTTACATGTACTGATGGACCTAGCTTAA	
	TCAAAACAGAACTTGATCTAACAAAAAGTGCTTTAAGGG	
	AACTCAAAACAGTCTCTGCTGATCAGTTGGCGAGAGAGG	
	AGCAAATTGAAAATCCCAGACAATCAAGATTTGTCTTAG	
	GTGCGATAGCTCTCGGAGTTGCTACAGCAGCAGCAGTCA CAGCAGGCATTGCAATAGCCAAAACCATAAGGCTTGAGA	
	GTGAGGTGAATGCAATTAAAGGTGCTCTCAAACAAACTA	
	ATGAAGCAGTATCCACATTAGGGAATGGTGTGCGGGTCC	
	TAGCCACTGCAGTGAGAGAGCTAAAAGAATTTGTGAGCA	
	AAAACCTGACTAGTGCAATCAACAGGAACAAATGTGACA	
	TTGCTGATCTGAAGATGGCTGTCAGCTTCAGTCAATTCAA	
	CAGAAGATTTCTAAATGTTGTGCGGCAGTTTTCAGACAAT	
	GCAGGGATAACACCAGCAATATCATTGGACCTGATGACT GATGCTGAGTTGGCCAGAGCTGTATCATACATGCCAACA	
	TCTGCACGGCAGATAAAACTGATGTTGGAGAACCGCGCA	
	ATGGTAAGGAGAAAAGGATTTGGAATCCTGATAGGGGTC	
	TACGGAAGCTCTGTGATTTACATGGTTCAATTGCCGATCT	
	TTGGTGTCATAGATACACCTTGTTGGATCATCAAGGCAGC	
	TCCCTCTTGCTCAGAAAAAACGGGAATTATGCTTGCCTC	
	CTAAGAGAGGATCAAGGGTGGTATTGTAAAAATGCAGGA TCTACTGTTTACTACCCAAATGAAAAAGACTGCGAAACA	
	AGAGGTGATCATGTTTTTTGTGACACAGCAGCAGGGATC	
	AATGTTGCTGAGCAATCAAGAGAATGCAACATCAACATA	
	TCTACTACCAACTACCCATGCAAAGTCAGCACAGGAAGA	
	CACCCTATAAGCATGGTTGCACTATCACCTCTCGGTGCTT	
	TGGTGGCTTGCTATAAAGGGGTAAGCTGCTCGATTGGCA	
	TGGAATCATCAAACAATTACCCAAAGGCTGCTCATACAT AACCAACCAGGATGCAGACACTGTAACAATTGACAATAC	
	CGTGTATCAACTAAGCAAAGTTGAAGGTGAACAGCATGT	
	AATAAAAGGGAGACCAGTTTCAAGCAGTTTTGATCCAAT	
	CAAGTTTCCTGAGGATCAGTTCAATGTTGCGCTTGATCAA	
	GTCTTCGAAAGCATTGAGAACAGTCAGGCACTAGTGGAC	
	CAGTCAAACAAAATTCTAAACAGTGCAGAAAAAGGAAA	
	CACTGGTTTCATTATCGTAGTAGTATTTTGGTTGCTGTTCTTG	
	GTCTAACCATGATTTCAGTGAGCATCATCATCATAATCAA GAAAACAAGGAAGCCCACAGGAGCACCTCCAGAGCTGA	
	ATGGTGTCACCAACGGCGGTTTCATACCACATAGTTA	
b KJ627414.1 : 3015-4634	ATGTCTTGGAAAGTGATGATTATCATTTCGTTACTCATAA	3
luman	CACCTCAGCATGGACTAAAAGAAAGTTATTTAGAAGAAT	
netapneumovirus	CATGTAGTACTATAACTGAAGGATATCTCAGTGTTTTAAG	
strain hMPV/Homo	AACAGGTTGGTACACCAATGTCTTTACATTAGAAGTTGGT	
sapiens/PER/CFI0497/ 2010/B,	GATGTTGAAAATCTTACATGTACTGATGGACCTAGCTTAA TCAAAACAGAACTTGACCTAACCAAAAGTGCTTTAAGAG	
complete genome	AACTCAAAACAGTTTCTGCTGATCAGTTAGCGAGAGAAG	
	AACAAATTGAAAAATCCCAGACAATCAAGGTTTGTCCTAG	
	GTGCAATAGCTCTTGGAGTTGCCACAGCAGCAGCAGTCA	
	CAGCAGGCATTGCAATAGCCAAAACTATAAGGCTTGAGA	

TABLE 2-continued

Description	Sequence	SEQ II NO:
Jeacription	sequence	NO:
	ATGAGGCAGTATCAACACTAGGAAATGGAGTGCGGGTCC TAGCCACTGCAGTAAGAGAGCTGAAAGAATTTGTGAGCA	
	AAAACCTGACTAGTGCGATCAACAAGAACAAGTGTGAGCA	
	TTGCTGATTTGAAGATGGCTGTCAGCTTCAGTCAGTTCAA	
	CAGAAGATTCCTAAATGTTGTGCGGCAGTTTTCAGACAAT	
	GCAGGGATAACACCAGCAATATCATTGGACCTGATGAAT	
	GATGCTGAGCTGGCCAGAGCTGTATCATACATGCCAACA	
	TCTGCAGGACAGATAAAACTAATGTTAGAGAACCGTGCA ATGGTGAGGAGAAAAGGATTTGGAATCTTGATAGGGGTC	
	TACGGAAGCTCTGTGATTTACATGGTCCAGCTGCCGATCT	
	TTGGTGTCATAAATACACCTTGTTGGATAATCAAGGCAGC	
	TCCCTCTTGTTCAGAAAAAGATGGAAATTATGCTTGCCTC	
	CTAAGAGAGGATCAAGGGTGGTATTGTAAAAATGCAGGA	
	TCCACTGTTTACTACCCAAATGAAAAAGACTGCGAAACA AGAGGTGATCATGTTTTTTGTGACACAGCAGCAGGGATC	
	AATGTTGCTGAGCAATCAAGAGAATGCAACATCAACATCAACATCAACATCAACATCAACATA	
	TCTACCACCAACTACCCATGCAAAGTCAGCACAGGAAGA	
	CACCCTATCAGCATGGTTGCACTATCACCTCTCGGTGCTT	
	TGGTAGCTTGCTACAAAGGGGTTAGCTGCTCGACTGGCA	
	GTAATCAGGTTGGAATAATCAAACAACTACCTAAAGGCT	
	GCTCATACATAACTAACCAGGACGCAGACACTGTAACAA TTGACAACACTGTGTATCAACTAAGCAAAGTTGAGGGTG	
	AACAGCATGTAATAAAAGGGAGACCAGTTTCAAGCAGTT	
	TTGATCCAATCAGGTTTCCTGAGGATCAGTTCAATGTTGC	
	GCTTGATCAAGTCTTTGAAAGCATTGAAAACAGTCAAGC	
	ACTAGTGGACCAGTCAAACAAAATTCTGAACAGTGCAGA	
	AAAAGGAAACACTGGT TTCATTATTGTAATAATTTTGATTGCTGTTCTTGGGTTAAC	
	CATGATTTCAGTGAGCATCATCATCATCAAAAAAAAAC	
	AAGGAAGCCCACAGGGGCACCTCCGGAGCTGAATGGTGT	
	TACCAACGGCGGTTTCATACCGCATAGTTAG	
gb KJ723483.1 : 5586-7310	ATGGAGTTGCCAATCCTCAAAACAAATGCAATTACCACA	4
Human	ATCCTTGCTGCAGTCACACTCTGTTTCGCTTCCAGTCAAA	
respiratory	ACATCACTGAAGAATTTTATCAATCAACATGCAGTGCAG	
syncytial virus	TTAGCAAAGGCTATCTTAGTGCTCTAAGAACTGGTTGGTA	
strain RSVA/Homo	TACTAGTGTTATAACTATAGAATTAAGTAATATCAAGGA	
sapiens/USA/841-	AAATAAGTGTAATGGAACAGATGCTAAGGTAAAATTGAT AAAACAAGAATTAGATAAATATAAAAATGCTGTAACAGA	
215A-01/1984, complete genome	ATTGCAGTTGCTCATGCAAAGCACACCAGCAGCCAACAA	
somprete genome	TCGAGCCAGAAGAGAACTACCAAGGTTTATGAATTATAC	
	ACTCAATAATACCAAAAATACCAATGTAACATTAAGCAA	
	GAAAAGGAAAAGAAGATTTCTTGGCTTTTTGTTAGGTGTT	
	GGATCTGCAATCGCCAGTGGCATTGCTGTATCTAAGGTCC	
	TACTATCCACAAACAAGGCTGTAGTCAGCTTATCAAATG GAGTTAGTGTCTTAACCAGCAAAGTGTTAGACCTCAAAA	
	ACTATATAGATAAACAGTTGTTACCTATTGTGAACAAGC	
	AAAGCTGCAGCATATCAAACATTGAAACTGTGATAGAGT	
	TCCAACAAAAGAACAACAGACTACTAGAGATTACCAGGG	
	AATTTAGTGTTAATGCAGGTGTAACTACACCTGTAAGCAC	
	TTATATGTTAACTAATAGTGAATTATTATCATTAATCAAT	
	GATATGCCTATAACAAATGATCAGAAAAAGTTAATGTCC AACAATGTTCAAATAGTTAGACAGCAAAGTTACTCTATC	
	ATGTCCATAATAAAGGAGGAAGTCTTAGCATATGTAGTA	
	CAATTACCACTATATGGTGTAATAGATACACCCTGTTGGA	
	AACTGCACACATCCCCTCTATGTACAACCAACACAAAGG	
	AAGGGTCCAACATCTGCTTAACAAGAACCGACAGAGGAT	
	GGTATTGTGACAATGCAGGATCAGTATCTTTCTTCCCACA	
	AGCTGAAACATGTAAAGTTCAATCGAATCGGGTATTTTGT	
	GACACAATGAACAGTTTAACATTACCAAGTGAAGTAAAT CTCTGCAACATTGACATATTCAACCCCAAATATGATTGCA	
	AAATTATGACTTCAAAAACAGATGTAAGCAGCTCCGTTA	
	TCACATCTCTAGGAGCCATTGTGTCATGCTATGGCAAAAC	
	TAAATGTACAGCATCCAATAAAAATCGTGGGATCATAAA	
	GACATTTTCTAACGGGTGTGATTATGTATCAAATAAGGG	
	AATAAGCAAGAAGGCAAAAGTCTCTATGTAAAAGGTGAA	
	CCAATAATAAATTTCTATGACCCATTAGTGTTCCCCCTCTG ATGAATTTGATGCATCAATATCTCAAGTCAATGAGAAGA	
	TTAACCAGAGCCTAGCATTTATTCGTAAATCCGATGAATT	
	TTAACCAGAGCCTAGCATTTATTCGTAAATCCGATGAATT ATTACATAATGTAAATGCTGGTAAATCCACCACAAATAT	

TABLE 2-continued

		SEQ I
Description	Sequence	NO:
	GTGGTATAAATAATATTGCATTTAGTAACTGA	
	hMPV mRNA Sequences	
gi 122891979 gb EF051124.1 Human	AUGAGCUGGAAGGUGGUGAUUAUCUUCAGCCUGCUGAU UACACCUCAACACGGCCUGAAGGAGAGCUACCUGGAAG	57
netapneumo virus	AGAGCUGCUCCACCAUCACCGAGGGCUACCUGAGCGUG	
isolate TN/92-4	CUGCGGACCGGCUGGUACACCAACGUGUUCACCCUGGA	
fusion protein gene,	GGUGGGCGACGUGGAGAACCUGACCUGCAGCGACGGCC	
complete genome	CUAGCCUGAUCAAGACCGAGCUGGACCUGACCAAGAGC GCUCUGAGAGAGCUGAAGACCGUGUCCGCCGACCAGCU	
	GCCCAGAGAGAGCCGAGACCGGGCAGAGCCGGCGGCAGAGCA	
	GAUUCGUGCUGGGCGCCAUCGCUCUGGGAGUCGCCGCU	
	GCCGCUGCAGUGACAGCUGGAGUGGCCAUUGCUAAGAC	
	CAUCAGACUGGAAAGCGAGGUGACAGCCAUCAACAAUG CCCUGAAGAAGACCAACGAGGCCGUGAGCACCCUGGGC	
	AAUGGAGUGAGAGUGCUGGCCACACCGUGAGCACCCUGGGC	
	GAAGGACUUCGUGAGCAAGAACCUGACCAGAGCCAUCA	
	ACAAGAACAAGUGCGACAUCGAUGACCUGAAGAUGGCC	
	GUGAGCUUCUCCCAGUUCAACAGACGGUUCCUGAACGU	
	GGUGAGACAGUUCUCCGACAACGCUGGAAUCACACCUG CCAUUAGCCUGGACCUGAUGACCGACGCCGAGCUGGCU	
	AGAGCCGUGCCCAACAUGCCCACCAGCGCUGGCCAGAU	
	CAAGCUGAUGCUGGAGAACAGAGCCAUGGUGCGGAGAA	
	AGGGCUUCGGCAUCCUGAUUGGGGUGUAUGGAAGCUCC	
	GUGAUCUACAUGGUGCAGCUGCCCAUCUUCGGCGUGAU	
	CGACACACCCUGCUGGAUCGUGAAGGCCGCUCCUAGCU GCUCCGAGAAGAAAGGAAACUAUGCCUGUCUGCUGAGA	
	GAGGACCAGGGCUGGUACUGCCAGAACGCCGGAAGCAC	
	AGUGUACUAUCCCAACGAGAAGGACUGCGAGACCAGAG	
	GCGACCACGUGUUCUGCGACACCGCUGCCGGAAUCAAC	
	GUGGCCGAGCAGAGCAAGGAGUGCAACAUCAACAUCAG CACAACCAACUACCCCUGCAAGGUGAGCACCGGACGGC	
	ACCCCAUCAGCAUGGUGGCUCUGAGCCCUCUGGGCGCU	
	CUGGUGGCCUGCUAUAAGGGCGUGUCCUGUAGCAUCGG	
	CAGCAAUCGGGUGGGCAUCAUCAAGCAGCUGAACAAGG	
	GAUGCUCCUACAUCACCAACCAGGACGCCGACACCGUG ACCAUCGACAACACCGUGUACCAGCUGAGCAAGGUGGA	
	GGGCGAGCAGCACCGUGAUCAAGGGCAGACCCGUGAGCU	
	CCAGCUUCGACCCCAUCAAGUUCCCUGAGGACCAGUUC	
	AACGUGGCCCUGGACCAGGUGUUUGAGAACAUCGAGAA	
	CCAGCGCUGAGAAGGGCAACACCGGCUUCAUCAUUGUG AUCAUUCUGAUCGCCGUGCUGGGCAGCUCCAUGAUCCU	
	GGUGAGCAUCUUCAUCAUUAUCAAGAAGACCAAGAAAC	
	CCACCGGAGCCCCUCCUGAGCUGAGCGGCGUGACCAAC AAUGGCUUCAUUCCCCACAACUGA	
b AY525843.1 : 3065-4684 Juman	AUGUCUUGGAAAGUGAUGAUCAUCAUUUCGUUACUCAU AACACCCCAGCACGGGCUAAAGGAGAGUUAUUUGGAAG	58
etapneumovirus	AAUCAUGUAGUACUAUAACUGAGGGAUACCUCAGUGUU	
solate NL/1/99,	UUAAGAACAGGCUGGUACACUAAUGUCUUCACAUUAGA	
omplete genome	AGUUGGUGAUGUUGAAAAUCUUACAUGUACUGAUGGA CCUAGCUUAAUCAAAACAGAACUUGAUCUAACAAAAAG	
	UGCUUUAAGGGAACUCAAAACAGUCUCUGCUGAUCAGU	
	UGGCGAGAGAGGAGCAAAUUGAAAAUCCCAGACAAUCA	
	AGAUUUGUCUUAGGUGCGAUAGCUCUCGGAGUUGCUAC	
	AGCAGCAGCAGUCACAGCAGGCAUUGCAAUAGCCAAAA	
	CCAUAAGGCUUGAGAGUGAGGUGAAUGCAAUUAAAGG UGCUCUCAAACAAACUAAUGAAGCAGUAUCCACAUUAG	
	GGAAUGGUGUGCGGGUCCUAGCCACUGCAGUGAGAGAG	
	CUAAAAGAAUUUGUGAGCAAAAACCUGACUAGUGCAAU	
	CAACAGGAACAAAUGUGACAUUGCUGAUCUGAAGAUGG	
	CUGUCAGCUUCAGUCAAUUCAACAGAAGAUUUCUAAAU GUUGUGCGGCAGUUUUCAGACAAUGCAGGGAUAACACC	
	AGCAAUAUCAUUGGACCUGAUGACUGAUGCUGAGUUGG	
	CCAGAGCUGUAUCAUACAUGCCAACAUCUGCAGGGCAG	
	AUAAAACUGAUGUUGGAGAACCGCGCAAUGGUAAGGAG	
	AAAAGGAUUUGGAAUCCUGAUAGGGGUCUACGGAAGCU CUGUGAUUUACAUGGUUCAAUUGCCGAUCUUUGGUGUC	
	CUGUGAUUUACAUGUUCAAUUGUUGAUUUUGGUGUC	
	AUAGAUACACCUUGUUGGAUCAUCAAGGCAGCUCCCUC UUGCUCAGAAAAAAACGGGAAUUAUGCUUGCCUCCUAA	
	AUAGAUACACCUUGUUGGAUCAUCAAGGCAGCUCCCUC	

TABLE 2-continued

Deservite	Service en	SEQ ID
Description	Sequence	NO :
	AAUGUUGCUGAGCAAUCAAGAGAAUGCAACAUCAACAU AUCUACUACCAACUACCCAUGCAAAGUCAGCACAGGAA	
	GACACCCUAUAAGCAUGGUUGCACUAUCACCUCUCGGU	
	GCUUUGGUGGCUUGCUAUAAAGGGGUAAGCUGCUCGAU	
	UGGCAGCAAUUGGGU	
	UGGAAUCAUCAAACAAUUACCCAAAGGCUGCUCAUACA	
	UAACCAACCAGGAUGCAGACACUGUAACAAUUGACAAU	
	ACCGUGUAUCAACUAAGCAAAGUUGAAGGUGAACAGCA	
	UGUAAUAAAAGGGAGACCAGUUUCAAGCAGUUUUGAUC	
	CAAUCAAGUUUCCUGAGGAUCAGUUCAAUGUUGCGCUU	
	GAUCAAGUCUUCGAAAGCAUUGAGAACAGUCAGGCACU	
	AGUGGACCAGUCAAACAAAAUUCUAAACAGUGCAGAAA	
	AAGGAAACACUGGUUUCAUUAUCGUAGUAAUUUUGGU UGCUGUUCUUGGUCUAACCAUGAUUUCAGUGAGCAUCA	
	UCAUCAUAAUCAAGAAAACAAGGAAGCCCACAGGAGCA	
	CCUCCAGAGCUGAAUGGUGUCACCAACGGCGGUUUCAU	
	ACCACAUAGUUAG	
gb KJ627414.1 : 3015-4634	AUGUCUUGGAAAGUGAUGAUUAUCAUUUCGUUACUCAU	59
Juman	AACACCUCAGCAUGGACUAAAAGAAAGUUAUUUAGAAG	
netapneumovirus	AAUCAUGUAGUACUAUAACUGAAGGAUAUCUCAGUGUU	
strain hMPV/Homo	UUAAGAACAGGUUGGUACACCAAUGUCUUUACAUUAGA	
sapiens/PER/CFI0497/	AGUUGGUGAUGUUGAAAAUCUUACAUGUACUGAUGGA	
2010/B,	CCUAGCUUAAUCAAAACAGAACUUGACCUAACCAAAAG	
complete genome	UGCUUUAAGAGAACUCAAAACAGUUUCUGCUGAUCAGU	
	UAGCGAGAGAAGAACAAAUUGAAAAUCCCAGACAAUCA	
	AGGUUUGUCCUAGGUGCAAUAGCUCUUGGAGUUGCCAC	
	AGCAGCAGCAGUCACAGCAGGCAUUGCAAUAGCCAAAA CUAUAAGGCUUGAGAGUGAAGUGA	
	UGCUCUCAAAACAACCAAUGAGGGAGGGAGUGCAAUCAAAGG	
	GAAAUGGAGUGCGGGUCCUAGCCACUGCAGUAAGAGAG	
	CUGAAAGAAUUUGUGAGCAAAAACCUGACUAGUGCGAU	
	CAACAAGAACAAGUGUGACAUUGCUGAUUUGAAGAUGG	
	CUGUCAGCUUCAGUCAGUUCAACAGAAGAUUCCUAAAU	
	GUUGUGCGGCAGUUUUCAGACAAUGCAGGGAUAACACC	
	AGCAAUAUCAUUGGACCUGAUGAAUGAUGCUGAGCUGG	
	CCAGAGCUGUAUCAUACAUGCCAACAUCUGCAGGACAG	
	AUAAAACUAAUGUUAGAGAACCGUGCAAUGGUGAGGA	
	GAAAAGGAUUUGGAAUCUUGAUAGGGGUCUACGGAAG	
	CUCUGUGAUUUACAUGGUCCAGCUGCCGAUCUUUGGUG UCAUAAAUACACCUUGUUGGAUAAUCAAGGCAGCUCCC	
	UCUUGUUCAGAAAAAGAUGGAAAAUUAUGCUUGCCUCCU	
	AAGAGAGGAUCAAGGGUGGUAUUGUAAAAAUGCAGGA	
	UCCACUGUUUACUACCCAAAUGAAAAAGACUGCGAAAC	
	AAGAGGUGAUCAUGUUUUUUGUGACACAGCAGCAGGGA	
	UCAAUGUUGCUGAGCAAUCAAGAGAAUGCAACAUCAAC	
	AUAUCUACCACCAACUACCCAUGCAAAGUCAGCACAGG	
	AAGACACCCUAUCAGCAUGGUUGCACUAUCACCUCUCG	
	GUGCUUUGGUAGCUUGCUACAAAGGGGUUAGCUGCUCG	
	ACUGGCAGUAAUCAGGUUGGAAUAAUCAAACAACUACC	
	UAAAGGCUGCUCAUACAUAACUAACCAGGACGCAGACA	
	CUGUAACAAUUGACAACACUGUGUAUCAACUAAGCAAA	
	GUUGAGGGUGAACAGCAUGUAAUAAAAGGGAGACCAG UUUCAAGCAGUUUUGAUCCAAUCAGGUUUCCUGAGGAU	
	CAGUUCAAUGUUGCGCUUGAUCCAAUCAGGUUUCCUGAGGAU	
	UGAAAACAGUCAAGCACUAGUGGACCAGUCAAACAAA	
	UUCUGAACAGUGCAGAAAAAGGAAACACUGGU	
	UUCAUUAUUGUAAUAAUUUUGAUUGCUGUUCUUGGGU	
	UAACCAUGAUUUCAGUGAGCAUCAUCAUCAUAAUCAAA	
	AAAACAAGGAAGCCCACAGGGGCACCUCCGGAGCUGAA	
	UGGUGUUACCAACGGCGGUUUCAUACCGCAUAGUUAG	
b KJ723483.1 : 5586-7310	AUGGAGUUGCCAAUCCUCAAAACAAAUGCAAUUACCAC	60
luman	AAUCCUUGCUGCAGUCACACUCUGUUUCGCUUCCAGUC	
respiratory	AAAACAUCACUGAAGAAUUUUUAUCAAUCAACAUGCAGU	
syncytial virus strain RSVA/Homo	GCAGUUAGCAAAGGCUAUCUUAGUGCUCUAAGAACUGG UUGGUAUACUAGUGUUAUAACUAUAGAAUUAAGUAAU	
sapiens/USA/841-	AUCAAGGAAAAUAAGUGUAAACUAUAGAAUUAAGUAAU	
215A-01/1984,	UAAAAUUGAUAAAACAAGAAUUAGAUAAAUAUAAAAA	
complete genome	UGCUGUAACAGAAUUGCAGUUGCUCAUGCAAAGCACAC	
	CAGCAGCCAACAAUCGAGCCAGAAGAGAACUACCAAGG	
	UUUAUGAAUUAUACACUCAAUAAUACCAAAAAUACCAA	
	UGUAACAUUAAGCAAGAAAAGGAAAAGAAGAUUUCUU	
	GGCUUUUUGUUAGGUGUUGGAUCUGCAAUCGCCAGUGG	
	CALIFICATION AND CALCOLLACE CONTRACT ACCOUNTS	

CAUUGCUGUAUCUAAGGUCCUGCACCUAGAAGGGGAAG

TABLE 2-continued

SEQ ID NO:	Sequence	Description
	UGAACAAAAUCAAAAGUGCUCUACUAUCCACAAACAAG	
	GCUGUAGUCAGCUUAUCAAAUGGAGUUAGUGUCUUAAC	
	CAGCAAAGUGUUAGACCUCAAAAACUAUAUAGAUAAAC	
	AGUUGUUACCUAUUGUGAACAAGCAAAGCUGCAGCAUA	
	UCAAACAUUGAAACUGUGAUAGAGUUCCAACAAAAGAA	
	CAACAGACUACUAGAGAUUACCAGGGAAUUUAGUGUUA	
	AUGCAGGUGUAACUACACCUGUAAGCACUUAUAUGUUA	
	ACUAAUAGUGAAUUAUUAUCAUUAAUCAAUGAUAUGCC	
	UAUAACAAAUGAUCAGAAAAAGUUAAUGUCCAACAAUG	
	UUCAAAUAGUUAGACAGCAAAGUUACUCUAUCAUGUCC	
	AUAAUAAAGGAGGAAGUCUUAGCAUAUGUAGUACAAU	
	UACCACUAUAUGGUGUAAUAGAUACACCCUGUUGGAAA	
	CUGCACACAUCCCCUCUAUGUACAACCAACACAAAGGA	
	AGGGUCCAACAUCUGCUUAACAAGAACCGACAGAGGAU	
	GGUAUUGUGACAAUGCAGGAUCAGUAUCUUUCUUCCCA	
	CAAGCUGAAACAUGUAAAGUUCAAUCGAAUCGGGUAUU	
	UUGUGACACAAUGAACAGUUUAACAUUACCAAGUGAAG	
	UAAAUCUCUGCAACAUUGACAUAUUCAACCCCAAAUAU	
	GAUUGCAAAAUUAUGACUUCAAAAACAGAUGUAAGCAG	
	CUCCGUUAUCACAUCUCUAGGAGCCAUUGUGUCAUGCU	
	AUGGCAAAACUAAAUGUACAGCAUCCAAUAAAAAUCGU	
	GGGAUCAUAAAGACAUUUUCUAACGGGUGUGAUUAUG	
	UAUCAAAUAAGGGGGUGGAUACUGUGUCUGUAGGUAA	
	UACAUUAUAUUAUGUAAAUAAGCAAGAAGGCAAAAGU	
	CUCUAUGUAAAAGGUGAACCAAUAAUAAAUUUCUAUGA	
	CCCAUUAGUGUUCCCCUCUGAUGAAUUUGAUGCAUCAA	
	UAUCUCAAGUCAAUGAGAAGAUUAACCAGAGCCUAGCA	
	UUUAUUCGUAAAUCCGAUGAAUUAUUACAUAAUGUAA	
	AUGCUGGUAAAUCCACCACAAAUAUCAUGAUAACUACU	
	AUGEUGGUARAUCEACEACAMAUAUGUUAUGUUAUCAUUAA	
	UUGCAGUUGGACUGCUCCUAUACUGCAAGGCCAGAAGC	
	ACACCAGUCACACUAAGUAAGGAUCAACUGAGUGGUAU AAAUAAUAUUGCAUUUAGUAACUGA	

TABLE	3
-------	---

	hMPV Amino Acid Sequences	
Description	Sequence	SEQ II NO:
gi 122891979 gb EF051124.1	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGW	5
Human	YTNVFTLEVGDVENLTCSDGPSLIKTELDLTKSALRELKTVS	
metapneumovirus	ADQLAREEQIENPRQSRFVLGAIALGVAAAAAVTAGVAIAK	
isolate TN/92-4	TIRLESEVTAINNALKKTNEAVSTLGNGVRVLATAVRELKD	
fusion protein gene,	FVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS	
complete cds	DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRA	
	MVRRKGFGILIGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPS	
	CSEKKGNYACLLREDQGWYCQNAGSTVYYPNEKDCETRG	
	DHVFCDTAAGINVAEQSKECNINISTTNYPCKVSTGRHPISM	
	VALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD	
	ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQF	
	NVALDQVFENIENSQALVDQSNRILSSAEKGNTGFIIVIILIAV	
	LGSSMILVSIFIIIKKTKKPTGAPPELSGVTNNGFIPHN	
gb AY525843.1 : 3065-4684	MSWKVMIIISLLITPQHGLKESYLEESCSTITEGYLSVLRTGW	6
Human	YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVS	
metapneumovirus	ADQLAREEQIENPRQSRFVLGAIALGVATAAAVTAGIAIAKT	
isolate NL/1/99,	IRLESEVNAIKGALKQTNEAVSTLGNGVRVLATAVRELKEF	
complete cds	VSKNLTSAINRNKCDIADLKMAVSFSQFNRRFLNVVRQFSD	
-	NAGI TPAI SLDLMTDAELARAVSYMPTSAGQI KLMLENRAM	
	VRRKGFGILIGVYGSSVIYMVQLPIFGVIDTPCWIIKAAPSCS	
	EKNGNYACLLREDQGWYCKNAGSTVYYPNEKDCETRGDH	
	VFCDTAAGINVAEQSRECNINISTTNYPCKVSTGRHPISMVA	
	LSPLGALVACYKGVSCSIGSNWVGIIKQLPKGCSYITNQDAD	
	TVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFNV	
	ALDQVFESIENSQALVDQSNKILNSAEKGNTGFIIVVILVAVL	
	GLTMISVSIIIIIKKTRKPTGAPPELNGVTNGGFIPHS	
gb KJ627414.1 : 3015-4634	MSWKVMIIISLLITPQHGLKESYLEESCSTITEGYLSVLRTGW	7
Human	YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVS	
metapneumovirus	ADQLAREEQIENPROSRFVLGAIALGVATAAAVTAGIAIAKT	

_

TABLE	3-continued

hMPV Amino Acid Sequences		
Description	Sequence	SEQ II NO:
strain hMPV/Homo	IRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVRELKEF	
sapiens/PER/CFI0497/	VSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSD	
2010/B,	NAGITPAISLDLMNDAELARAVSYMPTSAGQIKLMLENRAM	
complete cds	VRRKGFGILIGVYGSSVIYMVQLPIFGVINTPCWIIKAAPSCS	
	EKDGNYACLLREDQGWYCKNAGSTVYYPNEKDCETRGDH	
	VFCDTAAGINVAEQSRECNINISTTNYPCKVSTGRHPISMVA	
	LSPLGALVACYKGVSCSTGSNQVGIIKQLPKGCSYITNQDAD	
	TVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIRFPEDQFNV	
	ALDQVFESIENSQALVDQSNKILNSAEKGNTGFIIVIILIAVLG	
	LTMISVSIIIIIKKTRKPTGAPPELNGVTNGGFIPHS	
gb KJ723483.1 : 5586-7310	MELPILKTNAITTILAAVTLCFASSQNITEEFYQSTCSAVSKG	8
Human	YLSALRTGWYTSVITIELSNIKENKCNGTDAKVKLIKQELDK	
respiratory	YKNAVTELQLLMQSTPAANNRARRELPRFMNYTLNNTKNT	
syncytial virus	NVTLSKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKI	
strain RSVA/Homo	KSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVN	
sapiens/USA/841-	KOSCSISNIETVIEFOOKNNRLLEITREFSVNAGVTTPVSTYM	
215A-01/1984.	LTNSELLSLINDMPITNDOKKLMSNNVOIVROOSYSIMSIIKE	
complete cds	EVLAYVVOLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTR	
	TDRGWYCDNAGSVSFFPOAETCKVOSNRVFCDTMNSLTLP	
	SEVNLCNIDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGK	
	TKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVN	
	KQEGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSL	
	AFIRKSDELLHNVNAGKSTTNIMITTIIIVIIVILLSLIAVGLLL	
	YCKARSTPVTLSKDQLSGINNIAFSN	

TABLE 4

hMPV NCBI Accession Numbers (Amino Acid Sequences)		
Virus	GenBank Accession	
F [Human metapneumovirus] [Human metapneumovirus]	AEK26895.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53565.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53566.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53569.1	
fusion protein [Human metapneumovirus]	AEZ52347.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53574.1	
fusion glycoprotein [Human metapneumovirus]	AHV79473.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53570.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53567.1	
fusion protein [Human metapneumovirus]	AAS22125.1	
fusion glycoprotein [Human metapneumovirus]	AHV79795.1	
fusion glycoprotein [Human metapneumovirus]	AHV79455.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53568.1	
fusion protein [Human metapneumovirus]	AAS22109.1	
fusion glycoprotein [Human metapneumovirus]	AGU68417.1	
fusion glycoprotein [Human metapneumovirus]	AGJ74228.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53575.1	
fusion protein [Human metapneumovirus]	AAU25820.1	
fusion glycoprotein [Human metapneumovirus]	AGU68377.1	
fusion glycoprotein [Human metapneumovirus]	AGU68371.1	
fusion glycoprotein [Human metapneumovirus]	AGJ74087.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53560.1	
fusion glycoprotein [Human metapneumovirus]	AHV79858.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53577.1	
fusion protein [Human metapneumovirus]	AAS22085.1	
fusion protein [Human metapneumovirus]	AEZ52348.1	
fusion glycoprotein [Human metapneumovirus]	AGJ74044.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53563.1	
fusion glycoprotein precursor [Human metapneumovirus]	YP_012608.1	
fusion glycoprotein [Human metapneumovirus]	AGJ74053.1	
fusion protein [Human metapneumovirus]	BAM37562.1	
fusion glycoprotein [Human metapneumovirus]	ACJ53561.1	
fusion glycoprotein [Human metapneumovirus]	AGU68387.1	
fusion [Human metapneumovirus]	AGL74060.1	
fusion glycoprotein precursor [Human metapneumovirus]	AAV88364.1	
fusion protein [Human metapneumovirus]	AAN52910.1	
fusion protein [Human metapneumovirus]	AAN52915.1	
fusion protein [Human metapneumovirus]	BAM37564.1	
fusion glycoprotein precursor [Human metapneumovirus]	BAH59618.1	
fusion protein [Human metapneumovirus]	AAQ90144.1	
italea protein filunian metaphetinovirub]	7 E 1 X 2 V 1 TT 1	

TABLE 4-continued

	d Sequences)
Virus	GenBank Accession
fusion glycoprotein [Human metapneumovirus]	AHV79446.1
fusion protein [Human metapneumovirus]	AEL87260.1
fusion glycoprotein [Human metapneumovirus]	AHV79867.1 ABO66027.2
fusion protein [Human metapneumovirus] fusion glycoprotein [Human metapneumovirus]	AGQ00027.2 ACJ53621.1
fusion protein [Human metapneumovirus]	AAN52911.1
fusion glycoprotein [Human metapneumovirus]	AHV79536.1
fusion glycoprotein [Human metapneumovirus]	AGU68411.1
fusion protein [Human metapneumovirus]	AEZ52346.1
fusion protein [Human metapneumovirus]	AAN52913.1
fusion protein [Human metapneumovirus]	AAN52908.1
fusion glycoprotein [Human metapneumovirus]	ACJ53553.1
fusion glycoprotein [Human metapneumovirus] fusion protein [Human metapneumovirus]	AIY25727.1 ABM67072.1
fusion protein [Human metapheumovirus]	AEZ52361.1
fusion protein [Human metapneumovirus]	AAS22093.1
fusion glycoprotein [Human metapneumovirus]	AGH27049.1
fusion protein [Human metapneumovirus]	AAK62968.2
fusion glycoprotein [Human metapneumovirus]	ACJ53556.1
fusion glycoprotein [Human metapneumovirus]	ACJ53620.1
fusion protein [Human metapneumovirus]	ABQ58820.1
F [Human metapneumovirus] [Human metapneumovirus]	AEK26886.1
fusion glycoprotein [Human metapneumovirus]	ACJ53619.1
fusion glycoprotein [Human metapneumovirus]	ACJ53555.1
fusion [Human metapneumovirus] fusion protein [Human metapneumovirus]	AGL74057.1 ABD27850.1
fusion protein [Human metapheumovirus]	AEZ52349.1
fusion protein [Human metapneumovirus]	ABD27848.1
fusion protein [Human metapneumovirus]	ABD27846.1
fusion protein [Human metapneumovirus]	ABQ66021.1
fusion protein [Human metapneumovirus]	AFM57710.1
fusion protein [Human metapneumovirus]	AFM57709.1
fusion protein [Human metapneumovirus]	ABH05968.1
fusion protein [Human metapneumovirus]	AEZ52350.1
fusion protein [Human metapneumovirus]	AFM57712.1
fusion protein [Human metapneumovirus] fusion protein [Human metapneumovirus]	AEZ52364.1 AAN52912.1
fusion protein [Human metapneumovirus]	AEZ52363.1
fusion [Human metapneumovirus]	AGL74059.1
fusion glycoprotein [Human metapneumovirus]	ACJ53583.1
fusion protein [Human metapneumovirus]	AEZ52356.1
fusion protein [Human metapneumovirus]	AEZ52353.1
fusion glycoprotein [Human metapneumovirus]	ACJ53581.1
fusion glycoprotein [Human metapneumovirus]	ACJ53578.1
fusion protein [Human metapneumovirus]	AAS22117.1 BAN75965.1
fusion protein [Human metapneumovirus] fusion protein [Human metapneumovirus]	AGF92105.1
fusion protein [Human metapneumovirus]	AAS22077.1
fusion protein [Human metapheumovirus]	AAN52909.1
fusion glycoprotein [Human metapneumovirus]	ACJ53586.1
fusion protein [Human metapneumovirus]	AAQ90145.1
fusion glycoprotein [Human metapneumovirus]	AGT75042.1
fusion [Human metapneumovirus]	AGL74058.1
fusion protein [Human metapneumovirus]	AEL87263.1
fusion glycoprotein [Human metapneumovirus]	AGH27057.1
fusion glycoprotein [Human metapneumovirus]	AHV79491.1
F [Human metapneumovirus] [Human metapneumovirus]	AEK26906.1
fusion glycoprotein [Human metapneumovirus] fusion protein [Human metapneumovirus]	ACJ53580.1 AEZ52354.1
fusion protein [Human metapheumovirus]	AAN52914.1
G [Human metapneumovirus] [Human metapneumovirus]	AEK26901.1
glycoprotein [Human metapneumovirus]	AFI56738.1
lycoprotein [Human metapneumovirus]	AFI56739.1
glycoprotein [Human metapneumovirus]	AFI56745.1
G protein [Human metapneumovirus]	AAQ62718.1
G protein [Human metapneumovirus]	AAQ62719.1
attachment glycoprotein G [Human metapneumovirus]	AGH27104.1
G protein [Human metapneumovirus]	AAQ62729.1
G protein [Human metapneumovirus]	AAQ62728.1
glycoprotein [Human metapneumovirus]	AFI56753.1
glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus]	AFI56746.1 AFI56750.1
glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus]	AFI56750.1 AFI56747.1
G protein [Human metapneumovirus]	AAQ62721.1
glycoprotein [Human metapneumovirus]	AAT46573.1
glycoprotein [Human metapneumovirus]	AFI56748.1

TABLE 4-continued

hMPV NCBI Accession Numbers (Amino Acid	GenBank Accession
glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus]	AFI56736.1 AFI56749.1
attachment glycoprotein G [Human metapneumovirus]	AGH27131.1
attachment glycoprotein G [Human metapneumovirus]	AHV79558.1
glycoprotein [Human metapneumovirus]	AFI56740.1
glycoprotein [Human metapneumovirus]	AFI56741.1 AFI56744.1
glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus]	AHV79790.1
attachment glycoprotein G [Human metapneumovirus]	AGH27122.1
attachment glycoprotein G [Human metapneumovirus]	AHV79763.1
attachment glycoprotein G [Human metapneumovirus]	AGZ48849.1
glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus]	AFI56743.1 AHV79450.1
glycoprotein [Human metapneumovirus]	AFI56751.1
attachment glycoprotein [Human metapneumovirus]	AAS48482.1
attachment glycoprotein G [Human metapneumovirus]	AHV79889.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43050.1
glycoprotein [Human metapneumovirus]	AFI56754.1
attachment glycoprotein G [Human metapneumovirus] glycoprotein [Human metapneumovirus]	AHV79601.1 AFI56752.1
attachment glycoprotein G [Human metapneumovirus]	AHV79871.1
G protein [Human metapneumovirus]	AEZ68099.1
attachment glycoprotein G [Human metapneumovirus]	AHV79817.1
attachment glycoprotein G [Human metapneumovirus]	AHV79943.1
attachment glycoprotein G [Human metapneumovirus]	BAN75968.1 AGW43045.1
attachment surface glycoprotein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus]	AGW43045.1 AHV79628.1
attachment glycoprotein [Human metapneumovirus]	AFK49783.1
G protein [Human metapneumovirus]	AAQ62723.1
attachment glycoprotein [Human metapneumovirus]	ABD27839.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43046.1
G protein [Human metapneumovirus]	AAQ62717.1 AFI56742.1
glycoprotein [Human metapneumovirus] attachment protein [Human metapneumovirus]	ABQ44522.1
glycoprotein [Human metapneumovirus]	AFI56735.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43065.1
G protein [Human metapneumovirus]	AAQ62724.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43075.1
attachment surface glycoprotein [Human metapneumovirus] glycoprotein [Human metapneumovirus]	AGW43062.1 AAT46579.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43064.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43054.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43042.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43078.1
attachment surface glycoprotein [Human metapneumovirus] G protein [Human metapneumovirus]	AGW43067.1 AAQ62722.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43063.1
glycoprotein [Human metapneumovirus]	AAT46571.1
glycoprotein [Human metapneumovirus]	AAT46578.1
attachment glycoprotein G [Human metapneumovirus]	AGJ74232.1
glycoprotein [Human metapneumovirus]	AAT46580.1
glycoprotein [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus]	AAT46574.1 AGW43061.1
attachment glycoprotein [Human metapneumovirus]	AFK49791.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43047.1
glycoprotein [Human metapneumovirus]	ABC26386.1
attachment glycoprotein [Human metapneumovirus]	AAS48466.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43048.1
attachment glycoprotein G [Human metapneumovirus] attachment surface glycoprotein [Human metapneumovirus]	AGH27140.1 AGW43049.1
attachment glycoprotein G [Human metapneumovirus]	AGJ74082.1
attachment glycoprotein G [Human metapneumovirus]	AHV79442.1
attachment glycoprotein G [Human metapneumovirus]	AGJ74091.1
attachment glycoprotein G [Human metapneumovirus]	AHV79477.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43056.1
attachment protein [Human metapneumovirus] attachment glycoprotein G [Human metapneumovirus]	ABQ44523.1 BAH59622.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43070.1
glycoprotein [Human metapneumovirus]	AAT46585.1
attachment glycoprotein G [Human metapneumovirus]	AGU68409.1
attachment glycoprotein G [Human metapneumovirus]	AGJ74223.1
attachment glycoprotein [Human metapneumovirus]	AAS22129.1
attachment glycoprotein G [Human metapneumovirus]	AGJ74048.1
G protein [Human metanasumovinue]	
G protein [Human metapneumovirus] glycoprotein [Human metapneumovirus]	AAQ62725.1 ABC26384.1

TABLE 4-continued

hMPV NCBI Accession Numbers (Amino Acid	Sequences)
Virus	GenBank Accession
attachment glycoprotein G [Human metapneumovirus]	YP_012612.1
attachment surface glycoprotein [Human metapneumovirus]	AGW43071.1
attachment glycoprotein G [Human metapneumovirus]	AGJ74162.1
attachment glycoprotein G [Human metapneumovirus]	AGH27095.1
attachment glycoprotein G [Human metapneumovirus]	AHV79531.1
G protein [Human metapneumovirus] attachment glycoprotein [Human metapneumovirus]	AAQ62726.1 AAS48465.1
attachment givcoprotein [runnan metaphetiniovirus]	AGW43058.1
P [Human metapneumovirus] [Human metapneumovirus]	AEK26894.1
phosphoprotein [Human metapneumovirus]	AHV79631.1
phosphoprotein [Human metapneumovirus]	AHV79901.1
phosphoprotein [Human metapneumovirus]	AHV79570.1
phosphoprotein [Human metapneumovirus]	AGJ74076.1
phosphoprotein [Human metapneumovirus]	AA\$22123.1
phosphoprotein [Human metapneumovirus]	ABB16895.1
phosphoprotein [Human metapneumovirus]	AHV79579.1
phosphoprotein [Human metapneumovirus]	AGJ74244.1
phosphoprotein [Human metapneumovirus]	AHV79856.1
phosphoprotein [Human metapneumovirus]	ACJ70113.1
phosphoprotein [Human metapneumovirus]	AGZ48843.1
phosphoprotein [Human metapneumovirus]	AHV79498.1
phosphoprotein [Human metapneumovirus]	AHV79480.1
phosphoprotein [Human metapneumovirus]	ABQ43382.1 AAS22107.1
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	ABB16898.1
phosphoprotein [Human metapheumovirus]	AGH27134.1
phosphoprotein [Human metapheumovirus]	ABB16899.1
phosphoprotein [Human metapneumovirus]	AGH27098.1
phosphoprotein [Human metapneumovirus]	AAN52866.1
phosphoprotein [Human metapneumovirus]	AAS22083.1
phosphoprotein [Human metapneumovirus]	YP_012606.1
phosphoprotein [Human metapneumovirus]	AHV79973.1
phosphoprotein [Human metapneumovirus]	AHV79462.1
phosphoprotein [Human metapneumovirus]	AGJ74042.1
phosphoprotein [Human metapneumovirus]	AAV88362.1
P [Human metapneumovirus] [Human metapneumovirus]	AIL23591.1
phosphoprotein [Human metapneumovirus]	AHV79453.1
phosphoprotein [Human metapneumovirus]	AGJ74261.1
phosphoprotein [Human metapneumovirus]	AGH27116.1
phosphoprotein [Human metapneumovirus]	ABB16444.1
phosphoprotein [Human metapneumovirus]	ABB16445.1
phosphoprotein [Human metapneumovirus]	AHV79507.1
phosphoprotein [Human metapneumovirus]	BAH59616.1
phosphoprotein [Human metapneumovirus]	ABB16443.1 ABO43388.1
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	ABQ43389.1 ABQ43389.1
phosphoprotein [Human metapheumovirus]	ABQ43395.1 ABQ43395.1
phosphoprotein [Human metapheunovirus]	ABO43385.1
phosphoprotein [Human metapneumovirus]	AAP84042.1
phosphoprotein [Human metaphounovirus]	AAN52868.1
phosphoprotein [Human metapneumovirus]	AAP84041.1
phosphoprotein [Human metapneumovirus]	AGH27080.1
phosphoprotein [Human metapneumovirus]	ABQ43387.1
phosphoprotein [Human metapneumovirus]	AAS22099.1
phosphoprotein [Human metapneumovirus]	ABB16896.1
phosphoprotein [Human metapneumovirus]	AGJ74094.1
phosphoprotein [Human metapneumovirus]	AEZ68089.1
phosphoprotein [Human metapneumovirus]	ABK97002.1
phosphoprotein [Human metapneumovirus]	AAP13486.1
phosphoprotein [Human metapneumovirus]	AHV79444.1
phosphoprotein [Human metapneumovirus]	AHV79865.1
phosphoprotein [Human metapneumovirus]	AGJ74226.1
phosphoprotein [Human metapneumovirus]	ABQ43383.1
phosphoprotein [Human metapneumovirus]	AAN52863.1
phosphoprotein [Human metapneumovirus]	AHV79775.1
phosphoprotein [Human metapneumovirus]	AEZ68094.1
phosphoprotein [Human metapneumovirus]	AHV79883.1
phosphoprotein [Human metapneumovirus]	AEZ68092.1
phosphoprotein [Human metapneumovirus]	ABQ43390.1
phosphoprotein [Human metapneumovirus]	ABQ43386.1
phosphoprotein [Human metapneumovirus]	ABQ43391.1 ACS16062.1
phosphoprotein [Human metapneumovirus]	
phosphoprotein [Human metapneumovirus]	AEZ68090.1
phosphoprotein [Human metapneumovirus]	AAK62967.1
phosphoprotein [Human metapneumovirus]	AEZ68093.1
phosphoprotein [Human metapneumovirus]	AEZ68088.1

TABLE 4-continued

Virus	GenBank Accession
phosphoprotein [Human metapneumovirus]	ABQ43392.1
hosphoprotein [Human metapneumovirus]	ABQ43393.1
hosphoprotein [Human metapneumovirus]	ABQ43384.1
hosphoprotein [Human metapneumovirus] hosphoprotein [Human metapneumovirus]	ABQ43394.1 ABK96999.1
hosphoprotein [Human metapneumovirus]	AHV79489.1
hosphoprotein [Human metapneumovirus]	AGJ74235.1
hosphoprotein [Human metapneumovirus]	AAS22075.1
hosphoprotein [Human metapneumovirus]	AAS22115.1
hosphoprotein [Human metapneumovirus]	AII17601.1
hosphoprotein [Human metapneumovirus]	ABK97000.1
hosphoprotein [Human metapneumovirus]	AHV79561.1
hosphoprotein [Human metapneumovirus] hosphoprotein [Human metapneumovirus]	AGT75040.1 AAN52864.1
hosphoprotein [Human metapneumovirus]	ABK97001.1
phosphoprotein [Human metapneumovirus]	AGT74979.1
bhosphoprotein [Human metapneumovirus]	AHV79955.1
hosphoprotein [Human metapneumovirus]	AGH27055.1
hosphoprotein [Human metapneumovirus]	AAV88361.1
hosphoprotein [Human metapneumovirus]	ABQ43397.1
hosphoprotein [Human metapneumovirus]	AGJ74173.1
[Human metapneumovirus] [Human metapneumovirus]	AEK26904.1
hosphoprotein [Human metapneumovirus]	ACJ70104.1
phosphoprotein [Human metapneumovirus] phosphoprotein [Human metapneumovirus]	ABK97003.1 AGT74955.1
phosphoprotein [Human metapneumovirus]	AG174955.1 AAN52856.1
phosphoprotein [Human metapheumovirus]	AAN52862.1
bhosphoprotein [Human metapneumovirus]	AGJ74138.1
bhosphoprotein [Human metapneumovirus]	AHV79613.1
hosphoprotein [Human metapneumovirus]	AGJ74060.1
hosphoprotein [Human metapneumovirus]	AAQ67684.1
hosphoprotein [Human metapneumovirus]	AEA02278.1
I [Human metapneumovirus] [Human metapneumovirus]	AEK26899.1
nucleoprotein [Human metapneumovirus]	ACS16061.1 AAS88425.1
nucleoprotein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	YP_012605.1
nucleoprotein [Human metapheumovirus]	AHV79882.1
nucleoprotein [Human metapheumovirus]	AHV79774.1
nucleocapsid protein [Human metapneumovirus]	AAN52886.1
ucleoprotein [Human metapneumovirus]	AAS22082.1
ucleoprotein [Human metapneumovirus]	AHV79864.1
ucleoprotein [Human metapneumovirus]	AHV79828.1
ucleoprotein [Human metapneumovirus]	AGJ74084.1
nucleocapsid protein [Human metapneumovirus]	AAN52888.1
J [Human metapneumovirus] [Human metapneumovirus] ucleoprotein [Human metapneumovirus]	AIL23590.1 AAK62966.1
ucleoprotein [Human metapneumovirus]	AHV79972.1
ucleoprotein [Human metapneumovirus]	AHV79470.1
ucleoprotein [Human metapheumovirus]	AHV79452.1
ucleoprotein [Human metapneumovirus]	AGJ74243.1
ucleoprotein [Human metapneumovirus]	AHV79533.1
ucleoprotein [Human metapneumovirus]	AGJ74181.1
ucleoprotein [Human metapneumovirus]	AHV79497.1
ucleoprotein [Human metapneumovirus]	AHV79702.1
ucleoprotein [Human metapneumovirus]	AHV79648.1
ucleoprotein [Human metapneumovirus]	AHV79435.1
utative nucleoprotein [Human metapneumovirus] nucleocapsid protein [Human metapneumovirus]	AGJ74260.1 AAN52887.1
ucleoprotein [Human metapneumovirus]	AGU68386.1
nucleocapsid protein [Human metapheumovirus]	AAN52899.1
ucleoprotein [Human metapneumovirus]	AAR17673.1
ucleocapsid protein [Human metapneumovirus]	AAN52898.1
ucleoprotein [Human metapneumovirus]	AEA02277.1
ucleoprotein [Human metapneumovirus]	AHV79612.1
ucleoprotein [Human metapneumovirus]	AGU68416.1
ucleoprotein [Human metapneumovirus]	AGU68408.1
ucleoprotein [Human metapneumovirus]	AGU68370.1
nucleoprotein [Human metapneumovirus]	AAQ67683.1
ucleoprotein [Human metapneumovirus]	AGJ74137.1
uucleoprotein [Human metapneumovirus] uucleocapsid protein [Human metapneumovirus]	AGU68344.1 ABK96997.1
ucleoprotein [Human metapneumovirus]	AGU68413.1
ucleocapsid protein [Human metapneumovirus]	AAN52891.1
ucleoprotein [Human metapneumovirus]	AGU68360.1
nucleoprotein [Human metapneumovirus]	AGU68353.1
ucleocapsid protein [Human metapneumovirus]	ABK96996.1

TABLE 4-continued

Virus	GenBank Accession
nucleoprotein [Human metapneumovirus]	AAR17666.1
N [Human metapneumovirus] [Human metapneumovirus]	AEK26903.1
nucleoprotein [Human metapneumovirus]	AGT75039.1
nucleoprotein [Human metapneumovirus]	AGU68410.1
nucleoprotein [Human metapneumovirus]	AAS22074.1
nucleoprotein [Human metapneumovirus]	AHV79560.1
nucleoprotein [Human metapneumovirus]	AGT74978.1
nucleoprotein [Human metapneumovirus]	AGJ74128.1
nucleoprotein [Human metapneumovirus]	AAR17663.1
nucleoprotein [Human metapneumovirus]	AAR17662.1
nucleoprotein [Human metapneumovirus]	AAR17664.1
nucleoprotein [Human metapneumovirus]	AAR17657.1
nucleoprotein [Human metapneumovirus]	AAR17659.1
nucleoprotein [Human metapneumovirus]	AAR17661.1
nucleoprotein [Human metapneumovirus]	AGU68352.1
nucleoprotein [Human metapneumovirus]	AGU68373.1
nucleoprotein [Human metapneumovirus]	AGU68376.1
nucleoprotein [Human metapneumovirus]	AGU68342.1
nucleoprotein [Human metapneumovirus]	AGU68365.1
nucleoprotein [Human metapneumovirus]	AGU68363.1
nucleoprotein [Human metapneumovirus]	AGU68398.1
nucleoprotein [Human metapneumovirus]	AGU68348.1
nucleoprotein [Human metapneumovirus]	AGU68354.1
nucleoprotein [Human metapneumovirus]	AGU68391.1
nucleoprotein [Human metapneumovirus]	AGU68389.1 AGU68399.1
nucleoprotein [Human metapneumovirus] nucleoprotein [Human metapneumovirus]	AGU68337.1
nucleoprotein [Human metapheumovirus]	AGC08557.1 AAR17660.1
nucleoprotein [Human metapneumovirus]	AAR17667.1
nucleoprotein [Human metapneumovirus]	AGU68402.1
nucleoprotein [Avian metapneumovirus type C]	CDN30025.1
nucleoprotein [Avian metapneumovirus]	AGZ87947.1
Nucleoprotein [Avian metapneumovirus type C]	CAL25113.1
nucleocapsid protein [Avian metapneumovirus]	ABO42286.1
nucleocapsid protein [Avian metapneumovirus]	AAK38430.1
nucleocapsid protein [Avian metapneumovirus]	AAK54155.1
nucleocapsid protein [Avian metapneumovirus]	AAK38426.1
nucleocapsid protein [Avian metapneumovirus]	AAK38425.1
nucleocapsid protein [Avian metapneumovirus]	AAK38424.1
nucleocapsid protein [Avian metapneumovirus]	AAF05909.1
nucleocapsid protein [Avian metapneumovirus]	AAK38435.1
nucleocapsid protein [Avian metapneumovirus]	AAK38428.1
nucleoprotein [Human metapneumovirus]	AAR17669.1
nucleocapsid protein [Avian metapneumovirus]	AAK38429.1
nucleocapsid protein [Avian metapneumovirus]	AAK38427.1
nucleocapsid protein [Avian metapneumovirus]	AAK38423.1
nucleocapsid protein [Avian metapneumovirus]	AAK38434.1
nucleoprotein [Human metapneumovirus]	AGU68338.1
nucleoprotein [Avian metapneumovirus]	YP_443837.1
nucleoprotein [Human metapneumovirus]	AGU68384.1
nucleocapsid protein [Avian metapneumovirus]	AAK38431.1
nucleoprotein [Human metapneumovirus]	AGU68405.1
nucleoprotein [Human metapneumovirus]	AGU68382.1
nucleoprotein [Human metapneumovirus]	AGU68395.1
nucleocapsid [Human metapneumovirus]	AAL35389.3
nucleoprotein [Human metapneumovirus]	AEZ68064.1

TABLE 5

PI	V3 Nucleic Acid Sequences	
Description	Sequence	SEQ ID NO:
>gb KJ672601.1 : 4990-6609 Human parainfluenza virus 3 strain HPIV3/Homo sapiens/PER/FLA4815/ 2008[fusion glycoprotein F0]	ATGCCAATTTCAATACTGTTAATTATTACAACCATGATC ATGCCATCACACTGCCAAATAGACATCACAAAACTACA GCATGTAGGTGTATTGGTCAACAGTCCCAAAGGGATGA AGATATCACAAAACTTCGAAACAAGATATCTAATCCTGA GTCTCATACCAAAAATAGAAGATTCTAACTCTTGTGGTG ACCAACAGATCAAGCAATACAAGAGGTTATTGGATGAA CTGATCATCCTTTATATGATGGACTAAGATTACAGAAA GATGGATAGTGACTAACTAAGAATCCAATGAAACAC TGATCCCAGAACAGAA	9

TABLE 5-continued

	3 Nucleic Acid Sequences	anc
Description	Sequence	SEQ ID NO:
Description	AACTATTGCTCTAGGAGTAGCAACCTCAGCACAAATTAC AGCAGCAGTTGCTCTGGTTGAAGCCAAGCAGCAGGACAGA CAGACATTGAAAAACTCAGGAAGCAAGCAGCAGGACAATCAGGGACACA AATAAAGCAGTGCAGT	NU:
gi 612507167 gb AHX22430.1 hemagglutinin- neuraminidase [Human parainfluenza virus 3]	CAAAATGATAAGCCGTATGTATTAACAAACAAG ATGGAATACTGGAAGCACACCAACCACGGAAAGGATGC TGGTAATGAGCTGGAGAGCACCCACCACGGAAAGGATGC ACAAGCTCACCAACAAGATAACATATATATTGTGGACG ATAACCCTGGTGTTATTATCAATAGTCTTCATCATAGTG CTAACTAATTCCATCAAAAGTGAAAAGGCCGCGGAATC ATGCTACAAGACCAAAATGAAAAGGCCTCTTACCAATGC AGAAAAGATCCAAGTGGCATCGGATAATACTAATGATC TAATACAGTCAGGAGTGAATACAAGGCTTCTTACAATTC AGAATACGGTCATGGCATCGGATAATACTATGATGAT CAATTACAGTCAGGAGTGTATAAATGAATCAATGGACA AACAATATCGGATCTTAGGAAATCAATTGATGAAATTA CAATTAGAAATGGATGTTAGGAATTAATGATGA ATAACACATGATGTGGGTATAAAAACCTTTAAATCCAGAT GATTTCTGGAGATGGCGCTCTGGTCTTCCACCTTGAGA ATAACACATGATGTGGGGTATAAAACCTTTAATCCAGAT GATTTCTGGAGATGCGCACCGGCATGGCAAGAA ATAACCCATGATGTGGGGTATAAAACCTTTAATCCAGAT GATTTCTGGAGATGCGCGCTCTGGTCTCCACCTTGATG AAAACTCCAAAATAAGAATAATGACCGGGACAAGGAA ATCATGCCAACAACGACGTTGTGATGGGGCATAGGAA ATCATATCAAGTATTACCGAGGTTGCCAGGACTTAAGGAA ATCATATCAAGTATTACGGAGTATAAGGGATAATAGGGAA ATCATATCAAGTATTACGGAGTATATAGGGATAATAGGGA ATCATATCAAGTATTACGGAGTATATAGGAGTAATAAGG CCCAAAGTTGGTACCTGAGTTTAAGGACTAAGTCTCCA CCCAAAAGTTGATGACTGGATATTAGCACCGTCTCCA CCCAAAGTTGGTACCTGAGTTTAAGGACTAATACGGACTATGC GCCAAAGTTGATGACAGAGACTAGATAATGCCACAGG GCTCAAACCAACAGAACTTGGATATAGCACCACGG GCTCAAACCAACAGGACTTGAATATGCCACACGA GGGTAAGGAGGATGGTCACGAAAAATAAATTATAA GTTTGGACCACCAACAGGGATTATACCACCGGGACAAGAA GAGACTGTAATCAAGACACCGAAAATAAATTGCC CCCAAAGGGTCTGGAAACACACGAA GAGACTGAACCAACTGGGTCCTGAGGAAAACACAGA GCTGAACCAACTGGGTCCTGAAGGAAAAACACAGA GCTGAACCAAACTGGGACTCAATAAATGGGAATAA CATTACTGAACCAACTGGGGTCCAGAAGAACCACAG GCTGAACCAAACTGGGATCACACAAAAAGGAATAA CTTCTACTAGGACACAAGAGACTCACAAAAATGGAAAT CTTCTACTAGGACACAGAGATTAACCAATGGAGATAA CATAGGACAAAAATTACTGGGGCTCAGAAGAAAACAAGA GCATAGGACACAAAATTACCGGAGTCACAAAAAAGGACAT GCATAAGGACAACAAGACTCACACAAGAAAAAAGGACT CAAGGGAAACCAACAGGACTACCACAAAAAAAGGACT GCATAAGGGACATCCACACAGGAAACAAAAAAGGACT GCATAAGGGACATCCACACAGGAAAAAAAGGACT GCATAAGGGACATCCACACAGGAACAAAAACGACT GCATAGGGACATCCACACACGAAACCACGAAA GGGTAAACGACGGCGCATAACCACACAAAAAACCACTCACCACAAAAAACAACCACT	10

TABLE 5-continued

Description	Sequence	SEQ ID NO:
	GCTGGGTACACAACAACAAGCTGCATTACACACTATAA CAAAGGGTATTGTTTTCATATAGTAGAAATAAATCATAA AAGCTTAAACACATTTCAACCCATGTTGTTCAAAACAGA GATTCCAAAAAGCTGCAGT	
HPIV3_HN_Codon Optimized	ATGGAATACTGGAAGCACCACCACCACGGCAAGGACGC CGGCAACGAGCTGGAAACCAGCACACCACGACGACGAC ACAAGCTGACCAACAAGAGCACAACGCACACACGACG CTGACCCATAGCATCAACAACGAGTTCATCATCGTG CTGACCAATAGCATCAAGGCGACAACACCAACGAC CCGACGAGACCCAGGCGTGAACACCAACGACCACCAACGAC CTGATCCAGGACGTCACGACACCACGACCACCACCAC CAGAGACACCAGGGCGTGAACACCAGGACGTCATCAGCCCCGCAGACACCACGACACCACGAC CAGCATCAGCGACCTGCGGAACTACATCCACCACCACCAC CAGCACTCCGGAACGACCACGAACGTCCAGGCCTGACCAC CACCATCCGGAACGACCACGGAAGTCCATCAGCCCCCGA GAATCAACCCACGACGTGGGCATCAAGCCCCTGAACCCC GACGATTTCTGGCGGGTGTACAAGCGGCCTGGCCCGG ACTGCTGGCCATGCCTAACCACGATGCTGGCCCGG GACCCCCCAGGCTCGCTAACCACGGACGTGATCATCAG GCACGCCCCGGCGTCACCACGGTGATCCACGCCTG CACCAGCAACCTGATCAACCGCCGGGCATCATCACC GTGAACTCCGGCCTGGTGCCCGACCTGAACCATCGGCCTG CAGCCACCTTCAACGATCGGCCTGAACCATCGGCC CAGCCACCCTCGCGTGACCAACGAACGAAGAAGACCG CAGCCCCCCCAAGGTGGACGACGACGACCACGGACT CAGCCACCCTCGCGCGCCCGACCTGAACCACGACGGC CAGCCCCCCCAAGGTGGACGACGACGACCACGGCATCG CAGCCCCCCCAAGGTGGACGACGACGACCACGGCG CAGCCCCCCCAAGGTGGCGCGACCACGGCGTGACCAGCGCG CAGCCCCCCCAAGGTGGACGACGACGACCACGGCCTG CAGCCCCCCCAAGGTGGCCGACCACGGCGTCAAGAACAA CAACATCAGCTTCGACGACCACCCGGCTGCAAGAACAA CAACATCAGCTTCGACGACCCCCGGCTGCAAGAACAA CAACATCAGCTTCGACCACCCGGCTGCAAGAACCACCCC TTCTGTGGGCCCGGCGCAGAACCACCCCCGGTCACGACAACAA CAACATCAGCATCGGCCGCGCACAACCCCCCGGCTGGAACATC CTCCCGGGCATCGGCCACACCCCGGCTGCAAGAACCACC CCCAGAGAGCTGCAACACCCCCCGGCTGCAAGAACACC CCCAGAGAGCTGCAACACCCCCCGGCTGCAAGAACCACC TTCTGGGGCCCGGCCAGAACCCCCCAGCCCTGG GACAACTCCGCCAGAACGCCCACACGCCCTGG GACAACTCCGGCCAGAACGCCCCCCGGGCACACCCCCTGG GACAACTCCGCCCGGCCTACACCGGCACACCCCCGGGAACAAC CCCGGGCCGCGCACAACGCCCACACGCCCCCGGACACACACACACACACACACCCCCC	11
HPIV3_F_Codon Optimized	ATGCCCATCAGCATCCTGCTGATCATCACCACAATGATC ATGGCCAGCCACTGCCAGATCGACATCACCAAGCTGCA GCACGTGGGCGTGCTCGTGAACAGCCCCAAGGGCATGA AGATCAGCCAGAACTTCGAGACAGCCACCAGCTGCTGGACAG GCCTGATCCCCAAGATCGAGGACAGCAACAGCTGCGGC GACCAGCAGATCAAGCAGTACAAGCGGCTGCTGGACAG ACTGATCATCCCCCTGTACGACGGCAGCAGGAACAA CCGACCCCCGGACCGACGAGAGACAACGAGGACAG GCACAATCGCCCTGGGAGTGGCACAAGCGACGAGAACA CCGACCCCCGGACCGAGAGAGTCGTCGGGCGCGAGATT ACAGCGCCTGTGGCCCTGGTGGAAGCAACGAGGCCAG AATCGGCCTGTGGCCTGGTGGAAGCCAAGCGAGGCCAG AAGCGTCATCGAGAAGCGAGGCCACAAGCGAGGCCAG AAGCGGCCTGTGGCCCTGGTGGAAGCCAAGCGAGGCCAG AAGCGACATCGAGAAGCCGAGGCCAGGCC	12

TABLE 5-continued

	3 Nucleic Acid Sequences	
Description	Sequence	SEQ ID NO:
	TGGTACATCCCTCTGCCCAGCCACATTATGACCAAGGGC GCCTTTCTGGGCGGAGCCGACGTGAAAGAGTGCATCGA GGCCTTCAGCAGCTACATCTGCCCCAGCGACCCTGGCT CGTGCTGAACCACGGATGGAAAGCTGCCTGGGCGCCA ACATCAGCCAGTGCCCCAGAACCACCGTGACCGCGCA ATCGTGCCCAGATACGCCTCCGGAATGGCGGCGTGGT GCCAACTGCATCACCACCACCGTGTACCTGCAACGGCATC GGCAACCGGATCAACCACCACCGTGTACCTGCGACGCGCAC ACGGCATGCTTCAATACCACCAACAGAGGGCATCCA ACGGCATGCTTCAATACCACCAACAGAGGGCACCCTG GCCTTCTACACCCCCGACGACTATCACCCTGAACAACTCC GTGGCTCTGGACCCCCCGACGAGGCACCCTG GCCTTCTGGCCCCGACGACATCTCCATCGAGCTGAAC AAGGCCAAGAGCGACCTGGAAGAGCCCCAGGGCATC GGCACCGGAGCAACCAGAAGAGTGGAACCCATGGGCATCA AAGGCCAAGAGCGACCACCACCATCATCGGCAGCT GGCACCAGAGCAGCACCACCATCATCGGCAGCT GGCACCAGAGCAGCACCACCATCATCGGCAGCT GGCACCAGAGCAGCACCACCATCATCGTGATCATCAC TATCGCCATTAAGTACTACCGGATCCAGAAACGGAACC CAGGTGGCCCAGAATGACAAGCCCACACACTGCGAACGAA	
	PIV3 mRNA Sequences	
>gb KJ672601.1 : 4990-6609 Human parainfluenza virus 3 strain HPIV3/Homo sapiens/PER/FL44815/ 2008[fusion glycoprotein F0]	AUGCCAAUUUCAAUACUGUUAAUUAUUACAACCAUGA UCAUGCAUUCAAUACUGCCAAUAGACAUCACAAACU ACAGCAUGUAGGUGUAUUGUCAACAGUCCCAAAGGG AUGAAGAUAUCACAAAACUUCGAAACAAGUUUCUAACUC UUGUGUGACCAACAGAUCAAGAAUAUCAAGGUUA UUGGUGUGACCAACAGAUCAAGCAAUACAAGAGUUCUAACUC UUGUGUGACCAACAGAUCAUCAAGCAAUACAAGAGUUCUUA GAUUACAGAAGGAUGUGAUUAUUCAUACUACUAGUAUCCAAGAAUC CAAUGAAAACACUGAUCCCUUUUAUAUGAUGACUAACAAG GAUUACAGAAGGAUGUGAUUAUUCUUCUAGGAGUAGCAA CCUCAGCACAAUUACAGCAGCAGUUGCUUGGUUGA AGCCAACCAGCAAGAUCCAGCAGUUGCUUGGUUGA AGCCAACCAGGCAAGAUCCAACAUUGAAAAACUCAAG GAAGCAAUCAGGGACACAUUGAUAUGCUCUGGUUGA AUCAGUCCAGGAUUAUGCUCACAAGAAUUCCAAG GAAGCAAUCAGGGACACAAUAAAAGCAGUGCCA UUCAGAGCUCUGUAGGAUAUUGAUAGUACCAAUUAA AUCAGUCCAGGAUUAUGUUCAACAAAGAAAUCGUGCCA UCCAGACUCGGAGACUAGGUUGUGAAGCAACAUUAA AUCAGUCCAGGAUUAUGUUGAACAAAGAAAUCGUGCCA UCCAAUUCGGGACUAGGUUGUGAAGCAAGCAGCAGGACAUUC AGUUGCGAGACUAGGUUGUGAAGCAAGCACAUCAA GAAAAGGAAUAAAUUUCACAGGUAUUACUCAGAAUU AACAAAUAUAUUUGGUGAUAACAAGGUACUUACUACAAC AGUUGCACAAAUAUCACAGGAAUUACUCAGAAUU AACAAAUUAAUUUGGUGAUACAAGGUACUUCAAACAUCAAC AGUUGACAAAUAAUCACAGGAAUUUAACACACUCCAAC AGUUGACAAAUAAUCACAGAAAUAUCUACAACAUCAAC AGUUGACAAAUAAUCACAGAAUAUCUACUACUACAAC AGUUGACAAAUAACCUCCAAGUCCCUUU AUUGACCAACUGCUGAACACUCAAAUCUACAAGAA GAAUCAAUAAAGGUGAGAGUUCAAAUCUACAAGGAAUGGU AUUCCUCUUCCCAGCCUUCAAAUCUACAAGAAGAG AUUCCAUAUCAAGAAUUAUCCAAAAUCUACAAGAAGAA GCAUUCAGACUGCUGAACACUCAAAUUCUACAAGGA AUUCCUAGUUCUAGGAGACGUUCUAUCAAG AAACAUAUCCCAAUGUCCAAGUACUACAAGGAAUGGU AUAUCCCAAUUGCCAAGUACAUCUAAAGGAAUGGU AUAUCCCAAUUGCAAUGUACAACAUCUACAAGGAAUGGU AUAUCCCAAUUGCAAUGUACAACACUCAAUGAACACACAAUCAA GAAUUCUAAACCAUGAAUGAACCAACACACACUCAAGGA AACAUAUUCCUAGGUAAUGAAUCAACCAACACACAUCAA GAGUUCCAAAUUGUUCAACAACCAACACUAGGA AUCAAAAUUGUAUAACAACUACAACACUACAAGAA GAGUUCCAAAUUGUUGAAUCAACCAACACACACACACACA	61
gi 612507167 gb AHX22430.1 hemagglutinin- neuraminidase Human parainfluenza virus 3]	AUGGAAUACUGGAAGCACACCAACCACGGAAAGGAUG CUGGUAAUGAGCUGGAGACAUCCACAGCCACUCAUGG CAACAAGCUCACCAACAAGAUAACAUAUAUAUUGUGG ACGAUAACCCUGGUGUUAUUAUCAAUAGUCUUCAUCA UAGUGCUAACUAAUUCCAUCAAAAGUGAAAAGGCCCG GAAGUCAUUGCUACAAGACAUAAAUAAUGAGUUUAUG GAAGUUACAGAAAAGAUCCAAGUGGCAUCGGAUAAUA CUAAUGAUCUAAUACAGUCAGGAGUGAAUACAAGGCU	62

TABLE 5-continued

		SEQ II
escription	Sequence	NO:
	UCUUACAAUUCAGAGUCAUGUCCAGAAUUAUAUACCA	
	AUAUCAUUGACACAACAAAUAUCGGAUCUUAGGAAAU	
	UCAUUAGUGAAAUUACAAUUAGAAAUGAUAAUCAAGA AGUGCCACCACAAAGAAUAACACAUGAUGUGGGUAUA	
	AAACCUUUAAAUCCAGAUGAUUUCUGGAGAUGCACGU	
	CUGGUCUUCCAUCUUUGAUGAAAACUCCAAAAAUAAG	
	AUUAAUGCCGGGACCAGGAUUAUUAGCUAUGCCAACG	
	ACUGUUGAUGGCUGUGUCAGAACCCCGUCCUUAGUGA	
	UAAAUGAUCUGAUUUAUGCUUACACCUCAAAUCUAAU UACUCGAGGUUGCCAGGAUAUAGGGAAAUCAUAUCAA	
	GUAUUACAGAUAGGGAUAAUAACUGUAAACUCAGACU	
	UGGUACCUGACUUAAAUCCUAGGAUCUCUCAUACCUU	
	CAACAUAAAUGACAAUAGAAAGUCAUGUUCUCUAGCA	
	CUCCUAAAUACAGAUGUAUAUCAACUGUGUUCAACCC	
	CAAAAGUUGAUGAAAGAUCAGAUUAUGCAUCAUCAGG	
	CAUAGAAGAUAUUGUACUUGAUAUUGUCAAUUAUGAU GGCUCAAUCUCGACAACAAGAUUUAAGAAUAAUAAUA	
	UAAGUUUUGAUCAACCAUAUGCGGCAUUAUACCCAUC	
	UGUUGGACCAGGGAUAUACUACAAAGGCAAAAUAAUA	
	UUUCUCGGGUAUGGAGGUCUUGAACAUCCAAUAAAUG	
	AGAAUGCAAUCUGCAACACAACUGGGUGUCCUGGGAA	
	AACACAGAGAGACUGUAAUCAAGCAUCUCAUAGUCCA	
	UGGUUUUCAGAUAGAAGGAUGGUCAACUCUAUAAUUG UUGUUGACAAGGGCUUGAACUCAGUUCCAAAAUUGAA	
	GGUAUGGACGAUAUCUAUGAGACAAAAUUACUGGGGG	
	UCAGAAGGAAGAUUACUUCUACUAGGUAACAAGAUCU	
	ACAUAUACACAAGAUCUACAAGUUGGCACAGCAAGUU	
	ACAAUUAGGAAUAAUUGACAUUACUGACUACAGUGAU	
	AUAAGGAUAAAAUGGACAUGGCAUAAUGUGCUAUCAA	
	GACCAGGAAACAAUGAAUGUCCAUGGGGACAUUCAUG UCCGGAUGGAUGUAUAACGGGAGUAUAUACCGAUGCA	
	UAUCCACUCAAUCCCACAGGAAGCAUUGUAUCAUCUG	
	UCAUAUUGGACUCACAAAAAUCGAGAGUCAACCCAGU	
	CAUAACUUACUCAACAGCAACCGAAAGGGUAAACGAG	
	CUGGCUAUCCGAAACAAAACACUCUCAGCUGGGUACA	
	CAACAACAAGCUGCAUUACACACUAUAACAAAGGGUA	
	UUGUUUUCAUAUAGUAGAAAUAAAUCAUAAAAGCUUA	
	AACACAUUUCAACCCAUGUUGUUCAAAACAGAGAUUC CAAAAAGCUGCAGU	
PIV3 HN Codon	AUGGAAUACUGGAAGCACACCAACCACGGCAAGGACG	63
timized	CCGGCAACGAGCUGGAAACCAGCACAGCCACACGCGC	0.5
-	AACAAGCUGACCAACAAGAUCACCUACAUCCUGUGGA	
	CCAUCACCCUGGUGCUGCUGAGCAUCGUGUUCAUCAUC	
	GUGCUGACCAAUAGCAUCAAGAGCGAGAAGGCCAGAG	
	AGAGCCUGCUGCAGGACAUCAACAACGAGUUCAUGGA	
	AGUGACCGAGAAGAUCCAGGUGGCCAGCGACAACACC AACGACCUGAUCCAGAGCGGCGUGAACACCCGGCUGCU	
	GACCAUCCAGAGCCACGUGCAGAACUACAUCCCCAUCA	
	GCCUGACCCAGCAGAUCAGCGACCUGCGGAAGUUCAUC	
	AGCGAGAUCACCAUCCGGAACGACAACCAGGAAGUGC	
	CCCCCCAGAGAAUCACCCACGACGUGGGCAUCAAGCCC	
	CUGAACCCCGACGAUUUCUGGCGGUGUACAAGCGGCC	
	UGCCCAGCCUGAUGAAGACCCCCCAAGAUCCGGCUGAUG CCUGGCCCUGGACUGCCGCCAUGCCUACCACAGUGGA	
	CCUGGCCCUGGACUGCUGGCCAUGCCUACCACAGUGGA UGGCUGUGUGCGGACCCCCAGCCUCGUGAUCAACGAUC	
	UGAUCUACGCCUACACCAGCAUCUGAUCAACCGGGGC	
	UGCCAGGAUAUCGGCAAGAGCUACCAGGUGCUGCAGA	
	UCGGCAUCAUCACCGUGAACUCCGACCUGGUGCCCGAC	
	CUGAACCCUCGGAUCAGCCACACCUUCAACAUCAACGA	
	CUGAACCCUCGGAUCAGCCACACCUUCAACAUCAACGA CAACAGAAAGAGCUGCAGCCUGGCUCUGCUGAACACC	
	CUGAACCCUCGGAUCAGCCACACCUUCAACAUCAACGA CAACAGAAAGAGCUGCAGCCUGGCUCUGCUGAACACC GACGUGUACCAGCUGUGCAGCACCCCCAAGGUGGACG	
	CUGAACCCUCGGAUCAGCCACACCUUCAACAUCAACGA CAACAGAAAGAGCUGCAGCCUGGCUCUGCUGAACACC GACGUGUACCAGCUGUGCAGCACCCCCAAGGUGGACG AGAGAAGCGACUACGCCAGCAGCGGCAUCGAGGAUAU	
	CUGAACCCUCGGAUCAGCCACACCUUCAACAUCAACGA CAACAGAAAAGAGCUGCAGCCUGGCUCUGCUGAACACCC GACGUGUACCAGCUGUGCAGCACCCCAAGGUGGACG AGAGAAGCGACUACGCCAGCAGCGGCAUCGAGGAUAU CGUGCUGGACAUCGUGAACUACGACGGCAGCAUCAGC	
	CUGAACCCUCGGAUCAGCCACACCUUCAACAUCAACGA CAACAGAAAGAGCUGCAGCCUGGCUCUGCUGAACACC GACGUGUACCAGCUGUGCAGCACCCCCAAGGUGGACG AGAGAAGCGACUACGCCAGCAGCGGCAUCGAGGAUAU	
	CUGAACCCUCGGAUCAGCCACACCUUCAACAUCAACGA CAACAGAAAGAGCUGCAGCCUGCUCCUGCUGAACACC GACGUGUACCAGCUGUGCAGCACCCCCAGGUGGACG AGAGAAGCGACUACGCCAGCAGCGGCAUCGAGGAUAU CGUGCUGGACAUCGUGAACUACGACGCGCAGCAUCAGC ACCACCCGGUUCAAGAACAACAACAUCAGCUUCGACCA	
	CUGAACCCUCGGAUCAGCCACACCUUCAACAUCAACGA CAACAGAAAGAGCUGCAGCCUGGCUCUGCUGAACACC GACGUGUACCAGCUGUGCAGCACCCCCAAGGUGGACG AGAGAAGCGACUACGCCAGCAGCGCAUCGAGGAUAU CGUGCUGGACAUCGUGAACUACGACGGCAGCAUCAGC ACCACCCGGUUCAAGAACAACAACAUCAGCUUCGACCA GCCCUACGCCGCCUGUACCCUUCUGUGGGCCCUGGCA	
	CUGAACCCUCGGAUCAGCCACACCUUCAACAUCAACGA CAACAGAAAGAGCUGCAGCCUGGCUCUGCUGAACACCC GACGUGUACCAGCUGUGCAGCACCCCAAGGUGGACG AGAGAAGCGACUACGCCAGCAGCGGCAUCGAGGAUAU CGUGCUGGACAUCGUGAACUACGACGGCGAGCAUCAGC ACCACCCGGUUCAAGAACAACAACAUCAGCUUCGACCA GCCCUACGCCGCCUGUAACUACCUUCGUGGGCCCUGGCA UCUACUACAAGGGCAAGAUCAUCUUCCUGGGCUACGG CGGCCUGGAACACCACAUCAACGACAUCGAC	
	CUGAACCCUCGGAUCAGCCACACCUUCAACAUCAACGA CAACAGAAAGAGCUGCAGCCUGCUUCCUGCUGAACACC GACGUGUACCAGCUGUGCAGCACCCCCCAGGUGGACG AGAGAAGCGACUACGCCAGCAGCGGCAUCGAGGAUAU CGUGCUGGACAUCGUGAACUACGACGCGCGCAUCGAGC ACCACCCGGUUCAAGAACAACAACAUCAGCUUCGACCA GCCCUGAGCGCCCUGGACCUUCUUCCUGGGCCCCUGGCA UCUACUACAAGGGCAAGAUCAUCUUCCUGGGCUACGG CGGCCUGGAACACCCCAUCAACGAGAACGCCAUCUGCA ACACCACCGGCUGCCUGGCAAGAACCGCAGG	
	CUGAACCCUCGGAUCAGCCACACCUUCAACAUCAACGA CAACAGAAAGAGCUGCAGCCUGGCUCUGCUGAACAUC GACGUGUACCAGCUGUGCAGCACCCCCAAGGUGGACG AGAGAAGCGACUACGCCAGCAGCGCAUCGAGGAUAU CGUGCUGGACAUCGUGAACUACGACGGCGAGCAUCAGC ACCACCCGGUUCAAGAACAACAACAUCAGCUUCGACCA GCCCUACGCCGCCUUGUACCUUCUGUGGGCCCUGGCA UCUACUACAAGGGCAAGAUCAUCUUCCUGGGCUACGG CGGCCUGGAACACCCAUCAACGAGAACGCCAUCUGCA ACACCACCGGCUGCCCUGGCAAGAGACGCCAUCUGC AAUCAGGCCAGCCACGCCCUGGUCAGCGACCGCAG AAUCAGGCCAGCCACGCCCUGGUCAGCGACCGCAG AAUCAGCCACGCCUGAUCAUCGUGGUCGACAAGGGCCUG	
	CUGAACCCUCGGAUCAGCCACACCUUCAACAUCAACGA CAACAGAAAGAGCUGCAGCCUGGCUCUGCUGAACAUC GACGUGUACCAGCUGUGCAGCACCCCCAAGGUGGACG AGAGAAGCGACUACGCCAGCAGCGCAUCGAGGAUAU CGUGCUGGACAUCGUGAACUACGACGGCAGCAUCAGC ACCACCCGGUUCAAGAACAACAACAUCAGCUUCGACCA GCCCUACGCCGCCUUGUACCUUUCUUGUGGGCCCUGGCA UCUACUACAAGGGCAAGAUCAUCUUCCUGGGCUACGG CGGCCUGGAACACCCCUUCAACGAGAACGCCAUCUGCA ACACCACCGGCUGCCCUGGCAAGACCCAGGAGACUCGC AAUCAGCCACCCCAUCACCAGGACCACGCAG AAUCAGCCACCCACACCCCUGGUUCAGCGACCGCAG AAUCAGCCACCCAACACCUGGUUCAGCGACCGCAG AAUGGUCAACUCUAUCAUCGUGGUGACCAAUCAGCA	
	CUGAACCCUCGGAUCAGCCACACCUUCAACAUCAACGA CAACAGAAAGAGCUGCAGCCUGGCUCUGCUGAACAUC GACGUGUACCAGCUGUGCAGCACCCCCAAGGUGGACG AGAGAAGCGACUACGCCAGCAGCGCAUCGAGGAUAU CGUGCUGGACAUCGUGAACUACGACGGCGAGCAUCAGC ACCACCCGGUUCAAGAACAACAACAUCAGCUUCGACCA GCCCUACGCCGCCUUGUACCUUCUGUGGGCCCUGGCA UCUACUACAAGGGCAAGAUCAUCUUCCUGGGCUACGG CGGCCUGGAACACCCAUCAACGAGAACGCCAUCUGCA ACACCACCGGCUGCCCUGGCAAGAGACGCCAUCUGC AAUCAGGCCAGCCACGCCCUGGUCAGCGACCGCAG AAUCAGGCCAGCCACGCCCUGGUCAGCGACCGCAG AAUCAGCCACGCCUGAUCAUCGUGGUCGACAAGGGCCUG	

TABLE 5-continued

-	
ACAUCACCGACUACAGGACAUCCGAUCAAGUGGACC UGGCACAACGUGCUGAGCAGACCCGGCAACAAUGAGU GCCCUUGGGGCCACAGCUGCCCCGAUGGAUGUAUCACC GGCGUGUACACCGACGCUACCCCGGAGAUCUACCGG CUCCAUCGUGUCCAGCGUGAUCCUGGACAGCCAGAAA AGCAGAGUGAACCACGGCCAUCAGAACACAGCC CGAGAGGGAGUGAACGAACUGGCCAUCAGAACC CUGAGCGCCGGCUACACCACCACAAGCUGCAUCACACA	
CUACAACAAGGGCUACUGCUUCCACAUCGUGGAAAUC AACCACAAGUCCCUGAACACCUUCCAGCCCAUGCUGUU CAAGACCGAGAUCCCCAAGAGCUGCUCC	
AUGCCCAUCAGCAUCCUGCUGAUCAUCACCACAAUGAU CAUGGCCAGCAUGCCAGAUCGACAUCACCAAGCUGC AGCACGUGGGCUGUGUGUGAACAGCCCCAAGGCUU GAAGAUCAGCCAGAACUUCGAGACACCCUACCUGAUC UUGAGCCUGAUCCCCAAGAUCGAGACACGCUACCUGAUC GCGCCGACUGAUCAUCCCCCUGUACGACGCCUGCU GGACAGACUGAUCAUCCCCCUGUACGACGCCUGCUG GGCAGAAGACCUGAUCAUCCCCUGUACGACGCCUGCGC UGCAGAAGACCUGAUCGUGACCAACAGGAUUCUUCGGCG GCGUGAUCGGCACAAUCGCCUGGAGAGUUCUUCGGCG GCGUGAUCGGCACAAUCGACAUCGAGAGGUGCACAAG CGCCCAGAUUCAGCCCUUGUGCAGAGCGUGCAGA AGCAGGCCAGAAUCGACAUCGAGAGCUGCAGAGCGU UCCAGCGUGGGCAAUCUGAUCGUGCCGUGUGGAAGGCC AGCCGGCUGGCCAUCUGAUCGUGCCGUGUGGAAGCUG GGCUGGGCCUGCACAACAGCGUGCAGAGCUGCAG UCCAGCGUGGGCAUCUGAUCGUGCGCUGUAU CGCCCGGCUGGCCUGUGAACAAGAGUGCCGCUCUAU CGCCCGGCUGGCCUGUGAACGACGCUGCAGGCUGCACAA CAUCUUCGGCGACAACAUCGGCAGCCUGCAGCUGCAGAU GGCAUUGACCGAGAUCUGCGCCGCUGUACCGCA CCAACAUCACCGGAGAUCGACCGCAGCUGCAGCA CAUCUUCGGCGACAACAUCGGCAGCCUGCAGGAAAAG GGCAUUAAGUGCACGGGAUCGCCAGCAU CAACAUCACCGAGAUCUUCACCACCAGCACCGUGAU AAGUACGACAUCUUCGACGCUGCUGUCACCGA GACUGCUGAACACCCCAGAUCUACCGCAGCUU CUCCUACAACAUCCAGAAGCGGCUGCCCUGUGACCA CAACUCACCCUGCAGGUGUGACCGCACUA CAGCAUCACCCUGCAGGUGCGCCUGACCACACU CUCCUACACACCCCAGAUCUACAGAGGGCCUUCUCGGC GACUGCUGAACACCCCAGAUCUACAGAGCA CCACGCCUGAACACCCCGCAGUGGUCCACCA GACUGCUGAACACCCCAGAUCUACAGAGCCA CCACGCUGACACCCCGGACCCUGGCCUUCUGGCC AGUUCCACACCACGUGACCUCGACCUUCUGGCC AGUACCCCACAUUAUGACCACAGGCGCUUUCUGGCC AGUACCCCCCCCCC	64
	GGCGUGUACACCGACGCUACCCCUGAAUCCUACAGAA AGCAGAQUGAACCCCGUGAUCACGACAGCACGACAA AGCAGAQUGAACGCCCGUGAUCACGACAGCACCGCC CUGAGCGCCGGCUACACCACCACAGCCUGCAUCAAACAAGACC CUACAACAAGGCCCGUACACCACCACAAGCUGCAUCAACAA CUACAACAAGGCCUGAACACCUUCCACACACAAGCU CAAGACCGAGAUCCCCUGAUCAUCACCACACAAGAU CAAGACCGAGAUCCCCGAGAUCGACAUCACCACAAGGU GACGCUGGGCGUGCUGUGAUCAUCACCACAAGCUG CUGAGCCUGGCCAGAUCGGCAUCACCACAAGCUG CUGAGCCUGGCCGGCUGUGAUCAUCACCACAAGCUG CGGCGGCCAGAACUUCGAGACAGCAUCACCAAGCUG CUGAGCCUGAUCCCCCAGAUCGAGACAGCAACCAGCU CGGCGGACCAGCAGAUCGAGACAGCAACAGCU CGGGCGACCAGCAGAUCGAGGACAGCAACAGCU CGGGCGACCAGCAGAUCGAGGACAGCAACAGCU CGGGCGACCAGCAGAUCGAGGACGACAACCAGCU GGGACAACUGAUCAUCCCCCUGUGAGCAGCAACGACAA CGAGAACACCGACCCCCGGGACCGAGAGUUCUUCGGGG GCGUGAUCGGCACAAUCGCCCUGGGGGUGGCCACAAG CGCCCAGAUUACAGCCCUUGUGGCCCUGGUGAAGCCA AGCAGGCCAGAAGCGACAUCGAGAGAGUACCAA GGCCAGAUUACAGCCCUUGGAGCGAGAGCCAAG CGCCCGGCUGGCCACAAUCGAGAGAGUGCCACAAG CGCCCGGCUGGCCACACAGGCCUGGUGGAAGCCA AGCAGGCCAGAACGACAACAGGCGUGCAG UCCAGGCUAGGCACAUCGAGAGAGCGCAAGGCC GGCUUGGCCGGACACCAACAGGCGUGGCCACAAG CGCCUGGGCACACCAACAGGCCUGCGGCGGCG GGCUUGGGCCGGACACCGCGGCGGCCGCCUCUUU CGCCCGGCUGGCUGUGAACGCGGCCGCCUCUUU CGCCCGGCUGGCUGGAGAUCUGCGCGCCUCUUU CGCCCGGCUGGCUGGCGCGGCGGCGCAGCCAA CAUCUUCGCGGACAACAGCACUGCGGCGCGCCCUCUUU CGCCCGGCUGGCUGGCGGCGGCGCGCCGCCUGGAGU GGCAUUGACGCGCGAGAUCUGCGCGCGCCGCCGCAGACGA CAUCUCCGGGACAACCAGCCUGCUGCAGCCAA CAUCUUCGCGCAAAUCGGCGGCUGCCCGAGACGA CCAACAUCACCGAGAUCUGACCCACGGCGUGCCCAAGCCA CCAACAUCACCGAGAUCGCGCGCGCCUGGAGACAACACCA CACGACCACCCUGCAAGUGGCGCGCCCCUGGCGCCGCCUUCUGGC GAACAGCUGGAAGACCCAGGACUGAGCCCACACCA GCUACAUCUGCCCAGAACCGCGAGUGGCACACUCGCC CACGACGCGUGAACACCCAGGACCUGGACCCCUCCGCU CCCCACAACACCCCGGACCUGGCCUUCAGCC AGUACCACCCCCGGACCUCCGACAUCCGCCCU CCCACAACACCCCGGACCUCGACAUCCGCCC AGUACCACCACCACCACGGCAUCCGCCCU CCCACAACACCCCGGACCUCGACAUCCGCCCU CCCCCACAACACCCCGGAUCCCCGGCAUCAGCCCU CCCCCACAACCACCCGGCAUCCGCGCUUCGGCCCU UCUACACCCCCGACAUCCCCGACAUCCGCCU CCCCCACAACACCCGGAUCCCCGGCCUUCGGCCCU CUCACCCCCGACGACUCCGACUCCGACCUCGGCCUUCGCCCU CUCACCCCCGACGACCUCCGACUCCGACCUCGGCCUU CCCCCACAAGCCCCGACAUCCCCGACCUCGGCCUU

TABLE 6

	PIV3 Amino Acid Sequences	
Description	Sequence	SEQ ID NO:
>gi 612507166 gb AHX22429.1 fusion glycoprotein	MPISILLIITTMIMASHCQIDITKLQHVGVLVNSPKGMKISQ NFETRYLILSLIPKIEDSNSCGDQQIKQYKRLLDRLIIPLYDG LRLQKDVIVTNQESNENTDPRTERFFGGVIGTIALGVATSA	13
FO [Human] parainfluenza virus 3]	QITAAVALVEAKQARSDIEKLKEAIRDTNKAVQSVQSSVG NLIVAIKSVQDYVNKEIVPSIARLGCEAAGLQLGIALTQHYS ELTNIFGDNIGSLQEKGIKLQGIASLYRTNITEIFTTSTVDKY	
-1	DIYDLLFTESIKVRVIDVDLNDYSITLQVRLPLLTRLLNTQIY	

TABLE 6-continued

	PIV3 Amino Acid Sequences	
Description	Sequence	SEQ II NO:
gi 612507167 gb AHX22430.1 hemagglutinin- neuraminidase [Human parainfluenza virus 3]	KVDSISYNIQNREWYIPLPSHIMTKGAFLGGADVKECIEAFS SYICPSDPGFVLNHEMESCLSGNISQCPRTTVTSDIVPRYAF VNGGVVANCITTTCTCNGIGNRINQPPDQGVKIITHKECNTI GINGMLFNTNKEGTLAFYTPDDITLNNSVALDPIDISIELNK AKSDLEESKEWIRRSNQKLDSIGSWHQSSTTIIVILIMMIILFI INITIITIAIKYYRIQKRNRVDQNDKPYVLTNK MEYWKHTNHGKDAGNELETSTATHGNKLTNKITYILWTIT LVLLSIVFIIVLTNSIKSEKARESLLQDINNEFMEVTEKIQVA SDNTNDLIQSGVNTRLLTIQSHVQNYIPISLTQQISDLRKFIS EITIRNDNQEVPPQRITHDVGIKPLNPDDFWRCTSGLPSLMK TPKIRLMPGPGLLAMPTTVDGCVRTPSLVINDLIYAYTSNLI TRGCQDIGKSYQVLQIGIITVNSDLVPDLNPRISHTPNINDN	14
	RKSCSLALLNTDVYQLCSTPKVDERSDYASSGIEDIVLDIV NYDGSISTTRFKNNNISFDQPYAALYPSVGPGIYYKGKIIPL GYGGLEHPINENAICNTTGCPGKVTQRCNQASHSPWFSDR RMVNSIIVVDKGLNSVPKLKVMTISMRQNYWGSEGRLLLL GNKIYIYTRSTSWHSKLQLGIIDITDYSDIRIKWTWHNVLSR PGNNECPWGHSCPDGCITGVYTDAYPLNPTGSIVSSVILDS QKSRVNPVITYSTATERVNELAIRNKTLSAGYTTTSCITHY NKGYCFHIVEINHKSLNTFQPMLFKTEIPKSCS	

TABLE 7

PIV3 NCBI Accession Numbers (Nucleic Acid and Amino Acid Sequences)				
Description	GenBank Accession			
Fusion glycoprotein F0 [Human parainfluenza virus 3]	KJ672601.11:			
HPIV3/Homo sapiens/PER/FLA4815/2008	4990-6609			
	AHX22429			
	(Fusion protein)			
hemagglutinin-neuraminidase [Human parainfluenza virus 3]	KJ672601.1 :			
HPIV3/Homo sapiens/PER/FLA4815/2008	6724-8442			
	AHX22430			
	(HN protein)			
Recombinant PIV3/PIV1 virus fusion glycoprotein (F)	AF016281			
and hemagglutinin (HN) genes, complete cds; and RNA	AAC23947			
dependent RNA polymerase (L) gene, partial eds.	(hemagglutinin)			
Recombinant PIV3/PIV1 virus fusion glycoprotein (F)	AF016281			
and hemagglutinin (HN) genes, complete cds; and RNA	AAC23947			
lependent RNA polymerase (L) gene, partial cds.	(fusion protein)			
nemagglutinin-neuraminidase [Human parainfluenza virus 3]	BAO32044.1			
nemagglutinin-neuraminidase [Human parainfluenza virus 3]	BAO32051.1			
C protein [Human parainfluenza virus 3]	NP_599251.1			
C protein [Human parainfluenza virus 3]	ABZ85670.1			
C protein [Human parainfluenza virus 3]	AGT75164.1			
C protein [Human parainfluenza virus 3]	AAB48686.1			
C protein [Human parainfluenza virus 3]	AHX22115.1			
C protein [Human parainfluenza virus 3]	AGW51066.1			
C protein [Human parainfluenza virus 3]	AGW51162.1			
C protein [Human parainfluenza virus 3]	AGT75252.1			
C protein [Human parainfluenza virus 3]	AGT75188.1			
C protein [Human parainfluenza virus 3]	AGW51218.1			
C protein [Human parainfluenza virus 3]	AGW51074.1			
C protein [Human parainfluenza virus 3]	AGT75323.1			
C protein [Human parainfluenza virus 3]	AGT75307.1			
C protein [Human parainfluenza virus 3]	AHX22131.1			
C protein [Human parainfluenza virus 3]	AGW51243.1			
C protein [Human parainfluenza virus 3]	AGT75180.1			
C protein [Human parainfluenza virus 3]	AGT75212.1			
C protein [Human parainfluenza virus 3]	AGW51186.1			
C protein [Human parainfluenza virus 3]	AHX22075.1			
C protein [Human parainfluenza virus 3]	AHX22163.1			
C protein [Human parainfluenza virus 3]	AGT75196.1			
C protein [Human parainfluenza virus 3]	AHX22491.1			
C protein [Human parainfluenza virus 3]	AHX22139.1			
C protein [Human parainfluenza virus 3]	AGW51138.1			
C protein [Human parainfluenza virus 3]	AGW51114.1			
C protein [Human parainfluenza virus 3]	AGT75220.1			
C protein [Human parainfluenza virus 3]	AHX22251.1			
RecName: Full = Protein C; AltName: Full = VP18 protein	P06165.1			

250

TABLE 7-continued

Description	GenBank Accession
C protein [Human parainfluenza virus 3]	AHX22187.1
C protein [Human parainfluenza virus 3]	AGT75228.1
C protein [Human parainfluenza virus 3]	AHX22179.1
C protein [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3]	AHX22427.1 AGW51210.1
nonstructural protein C [Human parainfluenza virus 3]	BAA00922.1
C protein [Human parainfluenza virus 3]	AHX22315.1
C protein [Human parainfluenza virus 3]	AGW51259.1
C protein [Human parainfluenza virus 3]	AHX22435.1
C protein [Human parainfluenza virus 3]	AHX22123.1
C protein [Human parainfluenza virus 3]	AHX22299.1
C protein [Human parainfluenza virus 3]	AGW51267.1 CAA28430.1
unnamed protein product [Human parainfluenza virus 3] C protein [Human parainfluenza virus 3]	AGW51178.1
C protein [Human parainfluenza virus 3]	AHX22411.1
RecName: Full = Protein C	P06164.1
phosphoprotein [Human parainfluenza virus 3]	NP_067149.1
phosphoprotein [Human parainfluenza virus 3]	AAB48685.1
phosphoprotein [Human parainfluenza virus 3]	AHX22498.1
phosphoprotein [Human parainfluenza virus 3]	AHX22490.1
phosphoprotein [Human parainfluenza virus 3]	AGT75259.1
phosphoprotein [Human parainfluenza virus 3]	AGW51137.1 AGW51145.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51145.1 AGT75298.1
phosphoprotein [Human parainfluenza virus 3]	AGW51113.1
phosphoprotein [Human parainfluenza virus 3]	AGT75203.1
phosphoprotein [Human parainfluenza virus 3]	AGT75163.1
phosphoprotein [Human parainfluenza virus 3]	AHX22506.1
phosphoprotein [Human parainfluenza virus 3]	AGW51129.1
phosphoprotein [Human parainfluenza virus 3]	AHX22194.1
phosphoprotein [Human parainfluenza virus 3]	AGT75211.1
phosphoprotein [Human parainfluenza virus 3]	AHX22258.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51121.1 AGT75282.1
phosphoprotein [Human parainfluenza virus 3]	AHX22146.1
phosphoprotein [Human parainfluenza virus 3]	AHX22138.1
phosphoprotein [Human parainfluenza virus 3]	AHX22322.1
phosphoprotein [Human parainfluenza virus 3]	AHX22370.1
phosphoprotein [Human parainfluenza virus 3]	AHX22098.1
phosphoprotein [Human parainfluenza virus 3]	AHX22130.1
phosphoprotein [Human parainfluenza virus 3]	AHX22418.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22114.1 AHX22410.1
phosphoprotein [Human parainfluenza virus 3]	AGT75306.1
phosphoprotein [Human parainfluenza virus 3]	AHX22170.1
phosphoprotein [Human parainfluenza virus 3]	AHX22266.1
phosphoprotein [Human parainfluenza virus 3]	AHX22090.1
phosphoprotein [Human parainfluenza virus 3]	AGT75195.1
phosphoprotein [Human parainfluenza virus 3]	AHX22226.1
phosphoprotein [Human parainfluenza virus 3]	AHX22178.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22122.1 AHX22186.1
phosphoprotein [Human parainfluenza virus 3]	AHX22066.1
phosphoprotein [Human parainfluenza virus 3]	AHX22522.1
phosphoprotein [Human parainfluenza virus 3]	AGW51225.1
phosphoprotein [Human parainfluenza virus 3]	BAN29032.1
phosphoprotein [Human parainfluenza virus 3]	ABZ85669.1
phosphoprotein [Human parainfluenza virus 3]	AHX22426.1
phosphoprotein [Human parainfluenza virus 3]	AHX22058.1
phosphoprotein [Simian Agent 10]	ADR00400.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AHX22250.1 AHX22434.1
phosphoprotein [Human parainfluenza virus 3]	AHX22454.1 AHX22298.1
phosphoprotein [Human parainfluenza virus 3]	AHX22442.1
phosphoprotein [Human parainfluenza virus 3]	AHX22074.1
phosphoprotein [Human parainfluenza virus 3]	AGW51153.1
phosphoprotein [Human parainfluenza virus 3]	AGW51241.1
phosphoprotein [Human parainfluenza virus 3]	AHX22210.1
phosphoprotein [Human parainfluenza virus 3]	AGW51105.1
phosphoprotein [Human parainfluenza virus 3]	AGT75251.1
phosphoprotein [Human parainfluenza virus 3]	AHX22362.1 AHX22474.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51217.1
phosphoprotein [Human parainfluenza virus 3]	AIG60038.1
phosphoprotein [Human parainfluenza virus 3]	AHX22378.1

TABLE 7-continued

Description	GenBank Accession
phosphoprotein [Human parainfluenza virus 3]	AGT75187.1
phosphoprotein [Human parainfluenza virus 3]	AGW51233.1
phosphoprotein [Human parainfluenza virus 3]	AHX22482.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51161.1 AHX22306.1
phosphoprotein [Human parainfluenza virus 3]	AHX22162.1
phosphoprotein [Human parainfluenza virus 3]	ACJ70087.1
phosphoprotein [Human parainfluenza virus 3]	AHX22466.1
phosphoprotein [Human parainfluenza virus 3]	AHX22346.1
phosphoprotein [Human parainfluenza virus 3]	AGW51089.1 AGW51073.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51075.1 AGW51185.1
phosphoprotein [Human parainfluenza virus 3]	AGW51065.1
phosphoprotein [Human parainfluenza virus 3]	ABY47603.1
phosphoprotein [Human parainfluenza virus 3]	AGW51049.1
phosphoprotein [Human parainfluenza virus 3]	AHX22330.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51250.1 AGT75227.1
phosphoprotein [Human parainfluenza virus 3]	AGW51282.1
phosphoprotein [Human parainfluenza virus 3]	AGW51209.1
phosphoprotein [Human parainfluenza virus 3]	AGW51193.1
phosphoprotein [Human parainfluenza virus 3]	AGT75322.1
phosphoprotein [Human parainfluenza virus 3]	AGT75219.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51258.1 AGW51041.1
phosphoprotein [Human parainfluenza virus 3]	ACD99698.1
phosphoprotein [Human parainfluenza virus 3]	AGW51266.1
phosphoprotein [Human parainfluenza virus 3]	AGT75179.1
phosphoprotein [Human parainfluenza virus 3]	AHX22282.1
phosphoprotein [Human parainfluenza virus 3] phosphoprotein [Human parainfluenza virus 3]	AGW51169.1 AGW51274.1
phosphoprotein [Human parainfluenza virus 3]	AGW51274.1 AGW51201.1
phosphoprotein [Human parainfluenza virus 3]	AGW5120111 AGW51177.1
RecName: Full = Phosphoprotein; Short = Protein P	P06162.1
P protein [Human parainfluenza virus 3]	AAA66818.1
phosphoprotein [Human parainfluenza virus 3]	AAA46866.1
phosphoprotein [Human parainfluenza virus 3] polymerase-associated nucleocapsid phosphoprotein	BAA00031.1 RRNZP5
(version 2) - parainfluenza virus type 3	
[Human parainfluenza virus 3]	
phosphoprotein [Human parainfluenza virus 3]	AGT75171.1
phosphoprotein [Human parainfluenza virus 3]	BAA00921.1 NP_599250.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AHX22377.1
D protein [Human parainfluenza virus 3]	AHX22121.1
D protein [Human parainfluenza virus 3]	AGT75297.1
D protein [Human parainfluenza virus 3]	AGW51136.1
D protein [Human parainfluenza virus 3]	AGW51242.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AGW51112.1 AHX22497.1
D protein [Human parainfluenza virus 3]	AHX22145.1
D protein [Human parainfluenza virus 3]	AGT75202.1
D protein [Human parainfluenza virus 3]	AHX22385.1
D protein [Human parainfluenza virus 3]	AGW51216.1
D protein [Human parainfluenza virus 3]	AGT75281.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AGT75194.1 AHX22521.1
D protein [Human parainfluenza virus 3]	AGW51120.1
D protein [Human parainfluenza virus 3]	AGT75313.1
D protein [Human parainfluenza virus 3]	AHX22249.1
D protein [Human parainfluenza virus 3]	AHX22097.1
D protein [Human parainfluenza virus 3]	AGW51144.1
D protein [Human parainfluenza virus 3]	AHX22089.1 AHX22225.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AHX22223.1 AHX22137.1
D protein [Human parainfluenza virus 3]	AHX22065.1
D protein [Human parainfluenza virus 3]	AGW51224.1
D protein [Human parainfluenza virus 3]	AGT75210.1
D protein [Human parainfluenza virus 3]	AHX22393.1
D protein [Human parainfluenza virus 3]	AGT75258.1
D protein [Human parainfluenza virus 3] D protein [Human parainfluenza virus 3]	AHX22345.1 AGT75250.1
D protein [Human parainfluenza virus 3]	AHX22113.1
D protein [Human parainfluenza virus 3]	AGW51232.1
D protein [Human parainfluenza virus 3]	AHX22057.1
D protein [Human parainfluenza virus 3]	AHX22209.1

TABLE 7-continued

Description	GenBank Accession
D protein [Human parainfluenza virus 3]	AGW51056.1
D protein [Human parainfluenza virus 3]	AHX22161.1
D protein [Simian Agent 10]	ADR00402.1
D protein [Human parainfluenza virus 3]	AHX22361.1
D protein [Human parainfluenza virus 3]	AGW51281.1
D protein [Human parainfluenza virus 3]	AGW51184.1
D protein [Human parainfluenza virus 3]	AGW51160.1
D protein [Human parainfluenza virus 3]	AHX22465.1
D protein [Human parainfluenza virus 3]	AHX22329.1
D protein [Human parainfluenza virus 3]	AGW51064.1
D protein [Human parainfluenza virus 3]	AGW51040.1
D protein [Human parainfluenza virus 3]	AGT75226.1
D protein [Human parainfluenza virus 3]	AG175220.1 AHX22425.1
D protein [Human parainfluenza virus 3]	AHX22305.1
D protein [Human parainfluenza virus 3]	AGW51249.1
D protein [Human parainfluenza virus 3]	AHX22481.1
D protein [Human parainfluenza virus 3]	AHX22281.1
D protein [Human parainfluenza virus 3]	AGW51048.1
D protein [Human parainfluenza virus 3]	AHX22297.1
D protein [Human parainfluenza virus 3]	AGW51088.1
D protein [Human parainfluenza virus 3]	AGT75305.1
D protein [Human parainfluenza virus 3]	AHX22185.1
D protein [Human parainfluenza virus 3]	AGW51104.1
D protein [Human parainfluenza virus 3]	AHX22081.1
D protein [Human parainfluenza virus 3]	AGW51192.1
D protein [Human parainfluenza virus 3]	AHX22489.1
D protein [Human parainfluenza virus 3]	AHX22441.1
D protein [Human parainfluenza virus 3]	AHX22409.1
D protein [Human parainfluenza virus 3]	AHX22369.1
D protein [Human parainfluenza virus 3]	AHX22303.1 AHX22321.1
D protein [Human parainfluenza virus 3]	AHX22073.1
D protein [Human parainfluenza virus 3]	AGW51152.1
D protein [Human parainfluenza virus 3]	AGW51072.1
D protein [Human parainfluenza virus 3]	AGT75321.1
D protein [Human parainfluenza virus 3]	AHX22257.1
D protein [Human parainfluenza virus 3]	AHX22129.1
D protein [Human parainfluenza virus 3]	AHX22417.1
D protein [Human parainfluenza virus 3]	AGT75218.1
D protein [Human parainfluenza virus 3]	AHX22265.1
D protein [Human parainfluenza virus 3]	AGT75178.1
D protein [Human parainfluenza virus 3]	AHX22433.1
D protein [Human parainfluenza virus 3]	AGW51273.1
D protein [Human parainfluenza virus 3]	AGW51208.1
D protein [Human parainfluenza virus 3]	AGT75170.1
D protein [Human parainfluenza virus 3]	AGT75162.1
D protein [Human parainfluenza virus 3]	AGW51257.1
D protein [Human parainfluenza virus 3]	AGW51257.1 AGW51200.1
D protein [Human parainfluenza virus 3]	AGW51176.1
D protein [Human parainfluenza virus 3]	AGT75186.1
D protein [Human parainfluenza virus 3]	AGW51265.1
D protein [Human parainfluenza virus 3]	AGW51168.1

TABLE 8

TABLE 8-continued

	Signal Peptides		50	30		
Description	Sequence	SEQ ID NO:		Descript	ion	
HuIgG _k signal peptide	METPAQLLFLLLLWLPDTTG	15	55	Japanese encephal		
IgE heavy chain epsilon-1 signal peptide	MDWTWILFLVAAATRVHS	16		signal s		
Japanese encephalitis PRM signal sequence	MLGSNSGQRVVFTILLLLVAPAYS	17	60		hM	
VSVq protein	MKCLLYLAFLFIGVNCA	18		Group	n	
signal sequence			65	1	5	

_____ 50 _____

		Signal Peptides	
	Description	Sequence	SEQ ID NO:
	Japanese encephalitis JEV signal sequence	MWLVSLAIVTACAGA	19
)		TABLE 9	

-	hMPV/PIV Cotton Rat Challenge Study Design					
_	Group	n	Test Article	[conc]/µg	Route	Challenge
	1		Placebo	n/a	IM	hMPV/A2
	2	5	hMPV vaccine mRNA	30	IM	hMPV/A2

TABLE 9-continued

258 TABLE 9-continued

 $[conc]/\mu g$ Route Challenge

PIV3

PIV3

PIV3

_				innaea						nunaça		
_		hl	MPV/PIV Cotton Rat Chall	enge Study	Design		-		hMPV/PIV Cotton Rat Cha	illenge Study I	Design	
_	Group	n	Test Article	[conc]/µg	Route	Challenge	. 5	Group	n Test Article	[conc]/µg	Route	(
	3	5	hMPV vaccine mRNA	15	IM	hMPV/A2		10	5 PIV3 vaccine mRNA	10	IM	<u> </u>
	4	5	hMPV vaccine mRNA	10	IM	hMPV/A2			5 hMPV/PIV3 vaccine	30	IM	
	5	5	hMPV/PIV3 vaccine mRNA (15/15)	30	IM	hMPV/A2		11	mRNA (15/15)	30	1111	1
	6	5	FI-hMPV	n/a	IM	hMPV/A2		12	5 FI-PIV3	n/a	IM	J
	7	5	Placebo	n/a	IM	PIV3	10					
	8	5	PIV3 vaccine mRNA	30	IM	PIV3	r.		60			
	9	5	PIV3 vaccine mRNA	15	IM	PIV3						_

TABLE 1	0
---------	---

Strain	Nucleic Acid Sequence	SEQ I NO:
gb KJ156934.1 : 21405-25466	ATGATACACTCAGTGTTTCTACTGATGTTCTTGTTAACACC	20
Middle	TACAGAAAGTTACGTTGATGTAGGGCCAGATTCTGTTAAG	
East respiratory	TCTGCTTGTATTGAGGTTGATATACAACAGACCTTCTTTGA	
syndrome	TAAAACTTGGCCTAGGCCAATTGATGTTTCTAAGGCTGAC	
oronavirus	GGTATTATATACCCTCAAGGCCGTACATATTCTAACATAA	
isolate	CTATCACTTATCAAGGTCTTTTTCCCTATCAGGGAGACCAT	
Riyadh 14 2013,	GGTGATATGTATGTTTACTCTGCAGGACATGCTACAGGCA	
pike protein	CAACTCCACAAAAGTTGTTTGTAGCTAACTATTCTCAGGA	
(nucleotide)	CGTCAAACAGTTTGCTAATGGGTTTGTCGTCCGTATAGGA	
	GCAGCTGCCAATTCCACTGGCACTGTTATTATTAGCCCATC	
	TACCAGCGCTACTATACGAAAAATTTACCCTGCTTTTATGC	
	TGGGTTCTTCAGTTGGTAATTTCTCAGATGGTAAAATGGG	
	CCGCTTCTTCAATCATACTCTAGTTCTTTTGCCCGATGGAT	
	GTGGCACTTTACTTAGAGCTTTTTATTGTATTCTAGAGCCT	
	CGCTCTGGAAATCATTGTCCTGCTGGCAATTCCTATACTTC	
	TTTTGCCACTTATCACACTCCTGCAACAGATTGTTCTGATG	
	GCAATTACAATCGTAATGCCAGTCTGAACTCTTTTAAGGA	
	GTATTTTAATTTACGTAACTGCACCTTTATGTACACTTATA	
	ACATTACCGAAGATGAGATTTTAGAGTGGTTTGGCATTAC	
	ACAAACTGCTCAAGGTGTTCACCTCTTCTCATCTCGGTATG	
	TTGATTTGTACGGCGGCAATATGTTTCAATTTGCCACCTTG	
	CCTGTTTATGATACTATTAAGTATTATTCTATCATTCCTCA	
	CAGTATTCGTTCTATCCAAAGTGATAGAAAAGCTTGGGCT	
	GCCTTCTACGTATATAAACTTCAACCGTTAACTTTCCTGTT	
	GGATTTTTCTGTTGATGGTTATATACGCAGAGCTATAGACT	
	GTGGTTTTAATGATTTGTCACAACTCCACTGCTCATATGAA	
	TCCTTCGATGTTGAATCTGGAGTTTATTCAGTTTCGTCTTT	
	CGAAGCAAAACCTTCTGGCTCAGTTGTGGAACAGGCTGAA	
	GGTGTTGAATGTGATTTTTCACCTCTTCTGTCTGGCACACC	
	TCCTCAGGTTTATAATTTCAAGCGTTTGGTTTTTACCAATT	
	GCAATTATAATCTTACCAAATTGCTTTCACTTTTTTCTGTG AATGATTTTACTTGTAGTCAAATATCTCCAGCAGCAATTGC	
	TAGCAACTGTTATTCTTCACTGATTTTGGATTATTTTTCAT	
	ACCCACTTAGTATGAAATCCGATCTCAGTGTTAGTTCTGCT	
	GGTCCAATATCCCAGTTTAATTATAAACAGTCCTTTTCTAA	
	TCCCACATGTTTGATCTTAGCGACTGTTCCTCATAACCTTA	
	CTACTATTACTAAGCCTCTTAAGTACAGCTATATTAACAA	
	GTGCTCTCGTCTTCTTTCTGATGATCGTACTGAAGTACCTC	
	AGTTAGTGAACGCTAATCAATACTCACCCTGTGTATCCATT	
	GTCCCATCCACTGTGTGGGGAAGACGGTGATTATTATAGGA	
	AACAACTATCTCCACTTGAAGGTGGTGGCTGGCTTGTTGC	
	TAGTGGCTCAACTGTTGCCATGACTGAGCAATTACAGATG	
	GGCTTTGGTATTACAGTTCAATATGGTACAGACACCAATA	
	GTGTTTGCCCCAAGCTTGAATTTGCTAATGACACAAAAAT	
	TGCCTCTCAATTAGGCAATTGCGTGGAATATTCCCTCTATG	
	GTGTTTCGGGCCGTGGTGTTTTTCAGAATTGCACAGCTGTA	
	GGTGTTCGACAGCAGCGCCTTTGTTTATGATGCGTACCAGA	
	ATTTAGTTGGCTATTATTCTGATGATGGCAACTACTACTGT	
	CTGCGTGCTTGTGTTGTGTTGTGTTCCTGTCTGTCATCTATGA	
	TAAAGAAACTAAAACCCACGCTACTCTATTTGGTAGTGTT	
	GCATGTGAACACATTTCTTCTACCATGTCTCAATACTCCCG	
	TTCTACGCGATCAATGCTTAAACGGCGAGATTCTACATAT	
	GGCCCCCTTCAGACACCTGTTGGTTGTGTGTCCTAGGACTTGT	
	TAATTCCTCTTTGTTCGTAGAGGACTGCAAGTTGCCTCTCG	
	GTCAATCTCTCTGTGCTCTTCCTGACACCCTAGTACTCTC	
	ACACCTCGCAGTGTGCGCTCTGTGCCAGGTGAAATGCGCT	
	TGGCATCCATTGCTTTTAATCATCCCATTCAGGTTGATCAA	
	CTTAATAGTAGTTATTTTAAATTAAGTATACCCACTAATTT	

259

TABLE 10-continued

B	etacoronavirus Nucleic Acid Sequence	
Strain	Nucleic Acid Sequence	SEQ II NO:
	TTCCTTTGGTGTGACTCAGGAGTACATTCAGACAACCATTC	
	AGAAAGTTACTGTTGATTGTAAACAGTACGTTTGCAATGG	
	TTTCCAGAAGTGTGAGCAATTACTGCGCGAGTATGGCCAG	
	TTTTGTTCCAAAATAAACCAGGCTCTCCATGGTGCCAATTT	
	ACGCCAGGATGATTCTGTACGTAATTTGTTTGCGAGCGTG	
	AAAAGCTCTCAATCATCTCCTATCATACCAGGTTTTGGAG GTGACTTTAATTTGACACTTCTAGAACCTGTTTCTATATCT	
	ACTGGCAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGC	
	TATTTGACAAAGTCACTATAGCTGATCCTGGTTATATGCA	
	AGGTTACGATGATTGTATGCAGCAAGGTCCAGCATCAGCT	
	CGTGATCTTATTTGTGCTCAATATGTGGCTGGTTATAAAGT	
	ATTACCTCCTCTTATGGATGTTAATATGGAAGCCGCGTATA	
	CTTCATCTTTGCTTGGCAGCATAGCAGGTGTTGGCTGGACT	
	GCTGGCTTATCCTCCTTTGCTGCTATTCCATTTGCACAGAG TATVTTTTATATCCTCCTTTGCTGCTATTCCATTTGCACAGAG	
	TATYTTTTATAGGTTAAACGGTGTTGGCATTACTCAACAG GTTCTTTCAGAGAACCAAAAGCTTATTGCCAATAAGTTTA	
	ATCAGGCTCTGGGAGCTATGCAAACAGGCTTCACTACAAC	
	TAATGAAGCTTTTCCGGAAGGTTCAGGATGCTGTGAACAAC	
	AATGCACAGGCTCTATCCAAATTAGCTAGCGAGCTATCTA	
	ATACTTTTGGTGCTATTTCCGCCTCTATTGGAGACATCATA	
	CAACGTCTTGATGTTCTCGAACAGGACGCCCAAATAGACA	
	GACTTATTAATGGCCGTTTGACAACACTAAATGCTTTTGTT	
	GCACAGCAGCTTGTTCGTTCCGAATCAGCTGCTCTTTCCGC	
	TCAATTGGCTAAAGATAAAGTCAATGAGTGTGTCAAGGCA CAATCCAAGCGTTCTGGATTTTGCGGTCAAGGCACACATA	
	TAGTGTCCTTTGTTGTAAATGCCCCTAATGGCCTTACTTT	
	ATGCATGTTGGTTATTACCCTAGCAACCACATTGAGGTTGT	
	TTCTGCTTATGGTCTTTGCGATGCAGCTAACCCTACTAATT	
	GTATAGCCCCTGTTAATGGCTACTTTATTAAAACTAATAAC	
	ACTAGGATTGTTGATGAGTGGTCATATACTGGCTCGTCCTT	
	CTATGCACCTGAGCCCATCACCTCTCTTAATACTAAGTATG	
	TTGCACCACAGGTGACATACCAAAACATTTCTACTAACCT	
	CCCTCCTCCTCTCTCGGCAATTCCACCGGGATTGACTTCC AAGATGAGTTGGATGAGTTTTTCAAAAATGTTAGCACCAG	
	TATACCTAATTTTGGTTCTCTAACACAGATTAATACTACACAA	
	TACTCGATCTTACCTACGAGATGTTGTCTCTTCAACAAGTT	
	GTTAAAGCCCTTAATGAGTCTTACATAGACCTTAAAGAGC	
	TTGGCAATTATACTTATTACAACAAATGGCCGTGGTACAT	
	TTGGCTTGGTTTCATTGCTGGGCTTGTTGCCTTAGCTCTAT	
	GCGTCTTCTTCATACTGTGCTGCACTGGTTGTGGCACAAAC	
	TGTATGGGAAAACTTAAGTGTAATCGTTGTTGTGATAGAT	
	ACGAGGAATACGACCTCGAGCCGCATAAGGTTCATGTTCA CTAA	
IERS S FL	ATGATACACTCAGTGTTTCTACTGATGTTCTTGTTAACACC	21
PIKE	TACAGAAAGTTACGTTGATGTAGGGCCAGATTCTGTTAAG	
CEMC/2012	TCTGCTTGTATTGAGGTTGATATACAACAGACTTTCTTTGA	
XBaI change(T to)) (nucleotide)	TAAAACTTGGCCTAGGCCAATTGATGTTTCTAAGGCTGAC GGTATTATATACCCTCAAGGCCGTACATATTCTAACATAA	
// (Indefeotine)	CTATCACTTATCAAGGTCTTTTTCCCTATCAGGGAGACCAT	
	GGTGATATGTATGTTTACTCTGCAGGACATGCTACAGGCA	
	CAACTCCACAAAAGTTGTTTGTAGCTAACTATTCTCAGGA	
	CGTCAAACAGTTTGCTAATGGGTTTGTCGTCCGTATAGGA	
	GCAGCTGCCAATTCCACTGGCACTGTTATTATTAGCCCATC	
	TACCAGCGCTACTATACGAAAAATTTACCCTGCTTTTATGC	
	TGGGTTCTTCAGTTGGTAATTTCTCAGATGGTAAAATGGG	
	CCGCTTCTTCAATCATACTCTAGTTCTTTTGCCCCGATGGAT GTGGCACTTTACTTAGAGCTTTTTATTGTATTCTGGAGCCT	
	CGCTCTGGAAATCATTGTCCTGCTGGCAATTCCTATACTTC	
	TTTTGCCACTTATCACACTCCTGCAACAGATTGTTCTGATG	
	GCAATTACAATCGTAATGCCAGTCTGAACTCTTTTAAGGA	
	GTATTTTAATTTACGTAACTGCACCTTTATGTACACTTATA	
	ACATTACCGAAGATGAGATTTTAGAGTGGTTTGGCATTAC	
	ACAAACTGCTCAAGGTGTTCACCTCTTCTCATCTCGGTATG	
	TTGATTTGTACGGCGGCAATATGTTTCAATTTGCCACCTTG	
	CCTGTTTATGATACTATTAAGTATTATTCTATCATTCCTCA CAGTATTCGTTCTATCCAAAGTGATAGAAAAGCTTGGGCT	
	GCCTTCTACGTTCTATCCAAAGTGATAGAAAAGCTTGGGCT GCCTTCTACGTATATAAACTTCAACCGTTAACTTTCCTGTT	
	GGATTTTTCTGTTGATGGTTATATACGCAGAGCTATAGACT	
	GTGGTTTTAATGATTTGTCACAACTCCACTGCTCATATGAA	
	TCCTTCGATGTTGAATCTGGAGTTTATTCAGTTTCGTCTTT	
	CGAAGCAAAACCTTCTGGCTCAGTTGTGGAACAGGCTGAA	
	GGTGTTGAATGTGATTTTTCACCTCTTCTGTCTGGCACACC	
	TCCTCAGGTTTATAATTTCAAGCGTTTGGTTTTTACCAATT	

GCAATTATAATCTTACCAAATTGCTTTCACTTTTTCTGTG

TABLE 10-continued

Betacoro	navirus Nucleic Acid Sequence	
Strain	Nucleic Acid Sequence	SEQ I NO:
	AATGATTTTACTTGTAGTCAAATATCTCCAGCAGCAATTGC	
	TAGCAACTGTTATTCTTCACTGATTTTGGATTACTTTTCAT	
	ACCCACTTAGTATGAAATCCGATCTCAGTGTTAGTTCTGCT	
	GGTCCAATATCCCAGTTTAATTATAAACAGTCCTTTTCTAA	
	TCCCACATGTTTGATTTTAGCGACTGTTCCTCATAACCTTA CTACTATTACTAAGCCTCTTAAGTACAGCTATATTAACAA	
	GTGCTCTCGTCTTCTTTCTGATGATCGTACTGAAGTACCAG	
	AGTTAGTGAACGCTAATCAATACTCACCCTGTGTATCCATT	
	GTCCCATCCACTGTGTGGGAAGACGGTGATTATTATAGGA	
	AACAACTATCTCCACTTGAAGGTGGTGGCTGGCTTGTTGC	
	TAGTGGCTCAACTGTTGCCATGACTGAGCAATTACAGATG	
	GGCTTTGGTATTACAGTTCAATATGGTACAGACACCAATA	
	GTGTTTGCCCCAAGCTTGAATTTGCTAATGACACAAAAAT	
	TGCCTCTCAATTAGGCAATTGCGTGGAATATTCCCTCTATG	
	GTGTTTCGGGCCGTGGTGTTTTTCAGAATTGCACAGCTGTA	
	GGTGTTCGACAGCAGCGCTTTGTTTATGATGCGTACCAGA ATTTAGTTGGCTATTATTCTGATGATGGCAACTACTACTGT	
	TTGCGTGCTTGTGTTAGTGTTCCTGTTTCTGTCATCTACTAGT	
	AAAGAAACTAAAACCCACGCTACTCTATTTGGTAGTGTTG	
	CATGTGAACACATTTCTTCTACCATGTCTCAATACTCCCGT	
	TCTACGCGATCAATGCTTAAACGGCGAGATTCTACATATG	
	GCCCCCTTCAGACACCTGTTGGTTGTGTCCTAGGACTTGTT	
	AATTCCTCTTTGTTCGTAGAGGACTGCAAGTTGCCTCTTGG	
	TCAATCTCTCTGTGCTCTTCCTGACACCCCTAGTACTCTCA	
	CACCTCGCAGTGTGCGCTCTGTTCCAGGTGAAATGCGCTT	
	GGCATCCATTGCTTTTAATCATCCTATTCAGGTTGATCAAC	
	TTAATAGTAGTTATTTTAAATTAAGTATACCCACTAATTTT TCCTTTGGTGTGACTCAGGAGTACATTCAGACAACCATTC	
	AGAAAGTTACTGTTGATTGTAAACAGTACGTTTGCAATGG	
	TTTCCAGAAGTGTGAGCAATTACTGCGCGAGTATGGCCAG	
	TTTTGTTCCAAAATAAACCAGGCTCTCCATGGTGCCAATTT	
	ACGCCAGGATGATTCTGTACGTAATTTGTTTGCGAGCGTG	
	AAAAGCTCTCAATCATCTCCTATCATACCAGGTTTTGGAG	
	GTGACTTTAATTTGACACTTCTGGAACCTGTTTCTATATCT	
	ACTGGCAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGC	
	TATTTGACAAAGTCACTATAGCTGATCCTGGTTATATGCA	
	AGGTTACGATGATTGCATGCAGCAAGGTCCAGCATCAGCT CGTGATCTTATTTGTGCTCAATATGTGGCTGGTTACAAAGT	
	ATTACCTCCTCTTATGGATGTTAATATGGGAAGCCGCGTATA	
	CTTCATCTTTGCTTGGCAGCATAGCAGGTGTTGGCTGGACT	
	GCTGGCTTATCCTCCTTTGCTGCTATTCCATTTGCACAGAG	
	TATCTTTTATAGGTTAAACGGTGTTGGCATTACTCAACAGG	
	TTCTTTCAGAGAACCAAAAGCTTATTGCCAATAAGTTTAA	
	TCAGGCTCTGGGAGCTATGCAAACAGGCTTCACTACAACT	
	AATGAAGCTTTTCAGAAGGTTCAGGATGCTGTGAACAACA	
	ATGCACAGGCTCTATCCAAATTAGCTAGCGAGCTATCTAA	
	TACTTTTGGTGCTATTTCCGCCTCTATTGGAGACATCATAC AACGTCTTGATGTTCTCGAACAGGACGCCCAAATAGACAG	
	ACGTCTTGATGTTCTCGAACAGGACGCCCAAATAGACAG ACTTATTAATGGCCGTTTGACAACACTAAATGCTTTTGTTG	
	CACAGCAGCTTGTTCGTTCCGAATCAGCTGCTCTTTCCGCT	
	CAATTGGCTAAAGATAAAGTCAATGAGTGTGTCAAGGCAC	
	AATCCAAGCGTTCTGGATTTTGCGGTCAAGGCACACATAT	
	AGTGTCCTTTGTTGTAAATGCCCCTAATGGCCTTTACTTCA	
	TGCATGTTGGTTATTACCCTAGCAACCACATTGAGGTTGTT	
	TCTGCTTATGGTCTTTGCGATGCAGCTAACCCTACTAATTG	
	TATAGCCCCTGTTAATGGCTACTTTATTAAAACTAATAACA	
	CTAGGATTGTTGATGAGTGGTCATATACTGGCTCGTCCTTC	
	TATGCACCTGAGCCCATTACCTCCCTTAATACTAAGTATGT TGCACCACAGGTGACATACCAAAACATTTCTACTAACCTC	
	CCTCCTCCTCTTCTCGGCAATTCCACCGGGATTGACCTCCA	
	AGATGAGTTGGATGAGTTTTTCAAAAATGTTAGCACCAGT	
	ATACCTAATTTTGGTTCCCTAACACAGATTAATACTACATT	
	ACTCGATCTTACCTACGAGATGTTGTCTCTTCAACAAGTTG	
	TTAAAGCCCTTAATGAGTCTTACATAGACCTTAAAGAGCT	
	TGGCAATTATACTTATTACAACAAATGGCCGTGGTACATT	
	TGGCTTGGTTTCATTGCTGGGCTTGTTGCCTTAGCTCTATG	
	CGTCTTCTTCATACTGTGCTGCACTGGTTGTGGCACAAACT	
	GTATGGGAAAACTTAAGTGTAATCGTTGTTGTGATAGATA	
	CGAGGAATACGACCTCGAGCCGCATAAGGTTCATGTTCAC TAA	
	Inn	
ovel MERS S2 subunit trimeric	ATGATCCACTCCGTGTTCCTCCTCATGTTCCTGTTGACCCC	22
accine	CACTGAGTCAGACTGCAAGCTCCCGCTGGGACAGTCCCTG	
nucleotide)	TGTGCGCTGCCTGACACTCCTAGCACTCTGACCCCACGCTC	
	CGTGCGGTCGGTGCCTGGCGAAATGCGGCTGGCCTCCATC	

CGTGCGGTCGGTGCCTGGCGAAATGCGGCTGGCCTCCATC

262

TABLE 10-continued

Strain	Nucleic Acid Sequence	SEQ I NO:
	GCCTTCAATCACCCAATCCAAGTGGATCAGCTGAATAGCT	
	CGTATTTCAAGCTGTCCATCCCCACGAACTTCTCGTTCGGG	
	GTCACCCAGGAGTACATCCAGACCACAATTCAGAAGGTCA	
	CCGTCGATTGCAAGCAATACGTGTGCAACGGCTTCCAGAA	
	GTGCGAGCAGCTGCTGAGAGAATACGGGCAGTTTTGCAGC AAGATCAACCAGGCGCTGCATGGAGCTAACTTGCGCCAGG	
	ACGACTCCCGTGCGCAACCTCTTTGCCTCTGTGAAGTCATCC	
	CAGTCCTCCCCAATCATCCCCGGGATTCGGAGGGGGCTTCA	
	ACCTGACCCTCCTGGAGCCCGTGTCGATCAGCACCGGTAG	
	CAGATCGGCGCGCTCAGCCATTGAAGATCTTCTGTTCGAC	
	AAGGTCACCATCGCCGATCCGGGCTACATGCAGGGATACG	
	ACGACTGTATGCAGCAGGGACCAGCCTCCGCGAGGGACCT	
	CATCTGCGCGCAATACGTGGCCGGGTACAAAGTGCTGCCT CCTCTGATGGATGTGAACATGGAGGCCGCTTATACTTCGT	
	CCCTGCTCGGCTCTATCGCCGGCGTGGGGTGGACCGCCGG	
	CCTGTCCTCCTTCGCCGCTATCCCCTTTGCACAATCCATTT	
	TCTACCGGCTCAACGGCGTGGGCATTACTCAACAAGTCCT	
	GTCGGAGAACCAGAAGTTGATCGCAAACAAGTTCAATCA	
	GGCCCTGGGGGCCATGCAGACTGGATTCACTACGACTAAC	
	GAAGCGTTCCAGAAGGTCCAGGACGCTGTGAACAACAAC	
	GCCCAGGCGCTCTCAAAGCTGGCCTCCGAACTCAGCAACA	
	CCTTCGGAGCCATCAGCGCATCGATCGGTGACATAATTCA GCGGCTGGACGTGCTGGAGCAGGACGCCCAGATCGACCG	
	CCTCATCAACGGACGGCTGACCACCTTGAATGCCTTCGTG	
	GCACAACAGCTGGTCCGGAGCGAATCAGCGGCACTTTCCG	
	CCCAACTCGCCAAGGACAAAGTCAACGAATGCGTGAAGG	
	CCCAGTCCAAGAGGTCCGGTTTCTGCGGTCAAGGAACCCA	
	TATTGTGTCCTTCGTCGTGAACGCGCCCAACGGTCTGTACT	
	TTATGCACGTCGGCTACTACCCGAGCAATCATATCGAAGT	
	GGTGTCCGCCTACGGCCTGTGCGATGCCGCTAACCCCACT AACTGTATTGCCCCTGTGAACGGATATTTTATTAAGACCA	
	ACTGTATTGCCCCTGTGAACGGATATTTTATTAAGACCA ACAACACCCCGCATTGTGGACGAATGGTCATACACCGGTTC	
	GTCCTTCTACGCGCCCGAGCCCATCACTTCACTGAACACC	
	AAATACGTGGCTCCGCAAGTGACCTACCAGAACATCTCCA	
	CCAATTTGCCGCCGCCGCTGCTCGGAAACAGCACCGGAAT	
	TGATTTCCAAGATGAACTGGACGAATTCTTCAAGAACGTG	
	TCCACTTCCATTCCCAACTTCGGAAGCCTGACACAGATCA	
	ACACCACCCTTCTCGACCTGACCTACGAGATGCTGAGCCT	
	TCAACAAGTGGTCAAGGCCCTGAACGAGAGCTACATCGAC CTGAAGGAGCTGGGCAACTATACCTACTACAACAAGTGGC	
	CGGACAAGATTGAGGAGATTCTGTCGAAAAATCTACCACAAGTGGC	
	TGAAAACGAGATCGCCAGAATCAAGAAGCTTATCGGCGA	
	AGCC	
IERS SO Full-	ATGGAAACCCCTGCCCAGCTGCTGTTCCTGCTGCTGCTGTG	23
ength Spike	GCTGCCTGATACCACCGGCAGCTATGTGGACGTGGGCCCC	
rotein	GATAGCGTGAAGTCCGCCTGTATCGAAGTGGACATCCAGC	
nucleotide, codon	AGACCTTTTTCGACAAGACCTGGCCCAGACCCATCGACGT	
ptimized)	GTCCAAGGCCGACGGCATCATCTATCCACAAGGCCGGACC	
	TACAGCAACATCACCATTACCTACCAGGGCCTGTTCCCAT ATCAAGGCGACCACGGCGATATGTACGTGTACTCTGCCGG	
	CCACGCCACCGGCACCACCACCCCAGAAACTGTTCGTGGCC	
	AACTACAGCCAGGACGTGAAGCAGTTCGCCAACGGCTTCG	
	TCGTGCGGATTGGCGCCGCTGCCAATAGCACCGGCACAGT	
	GATCATCAGCCCCAGCACCAGCGCCACCATCCGGAAGATC	
	TACCCCGCCTTCATGCTGGGCAGCTCCGTGGGCAATTTCA	
	GCGACGGCAAGATGGGCCGGTTCTTCAACCACACCCTGGT	
	GCTGCTGCCCGATGGCTGTGGCACACTGCTGAGAGCCTTC	
	TACTGCATCCTGGAACCCAGAAGCGGCAACCACTGCCCTG CCGGCAATAGCTACACCAGCTTCGCCACCTACCACACACC	
	CCGGCAATAGCTACACCAGCTTCGCCACCTACCACACACC CGCCACCGATTGCTCCGACGGCAACTACAACCCGGAACGCC	
	AGCCTGAACAGCTTCAAAGAGTACTTCAACCTGCGGAACT	
	GCACCTTCATGTACACCTACAATATCACCGAGGACGAGAT	
	CCTGGAATGGTTCCGCATCACCCAGACCGCCCAGGGCGTG	
	CACCTGTTCAGCAGCAGATACGTGGACCTGTACGGCGGCA	
	ACATGTTCCAGTTTGCCACCCTGCCCGTGTACGACACCATC	
	AAGTACTACAGCATCATCCCCCACAGCATCCGGTCCATCC	
	AGAGCGACAGAAAAGCCTGGGCCGCCTTCTACGTGTACAA	
	GCTGCAGCCCCTGACCTTCCTGCTGGACTTCAGCGTGGAC GGCTACATCAGACGGGCCATCGACTGCGGCTTCAACGACC	
	GGCTACATCAGACGGGCCATCGACTGCGGCTTCAACGACC TGAGCCAGCTGCACTGCTCCTACGAGAGCTTCGACGTGGA	
	AAGCGGCGTGTACAGCGTGTCCAGCTTCGAGGCCAAGCCT	
	AGCGGCAGCGTGGTGGAACAGGCTGAGGGCGTGGAATGC	
	GACTTCAGCCCTCTGCTGAGCGGCACCCCTCCCCAGGTGT	

TABLE 10-continued

train	Nucleic Acid Sequence	SEQ I NO:
	CCTGACCAAGCTGCTGAGCCTGTTCTCCGTGAACGACTTC	
	ACCTGTAGCCAGATCAGCCCTGCCGCCATTGCCAGCAACT	
	GCTACAGCAGCCTGATCCTGGACTACTTCAGCTACCCCCT	
	GAGCATGAAGTCCGATCTGAGCGTGTCCTCCGCCGGACCC	
	ATCAGCCAGTTCAACTACAAGCAGAGCTTCAGCAACCCTA	
	CCTGCCTGATTCTGGCCACCGTGCCCCACAATCTGACCAC	
	CATCACCAAGCCCCTGAAGTACAGCTACATCAACAAGTGC	
	AGCAGACTGCTGTCCGACGACCGGACCGAAGTGCCCCAGC TCGTGAACGCCAACCAGTACAGCCCCTGCGTGTCCATCGT	
	GCCCAGCACCGTGTGGGAGGACGGCGACTACTACAGAAA	
	GCAGCTGAGCCCCCTGGAAGGCGGCGGATGGCTGGTGGCT	
	TCTGGAAGCACAGTGGCCATGACCGAGCAGCTGCAGATG	
	GGCTTTGGCATCACCGTGCAGTACGGCACCGACACCAACA	
	GCGTGTGCCCCAAGCTGGAATTCGCCAATGACACCAAGAT	
	CGCCAGCCAGCTGGGAAACTGCGTGGAATACTCCCTGTAT	
	GGCGTGTCCGGACGGGGCGTGTTCCAGAATTGCACAGCAG	
	TGGGAGTGCGGCAGCAGAGATTCGTGTACGATGCCTACCA	
	GAACCTCGTGGGCTACTACAGCGACGACGGCAATTACTAC	
	TGCCTGCGGGCCTGTGTGTCCGTGCCCGTGTCCGTGATCTA	
	CGACAAAGAGACAAAGACCCACGCCACACTGTTCGGCTCC CTCCCCCTCCCACACTGCCCCCCCCCC	
	GTGGCCTGCGAGCACATCAGCTCCACCATGAGCCAGTACT CCCGCTCCACCCGGTCCATGCTGAAGCGGAGAGATAGCAC	
	CTACGGCCCCCTGCAGACACCTGTGCGGATGTGTGCTGGGC	
	CTCGTGAACAGCTCCCTGTTTGTGGAAGATGCAAGCTGC	
	CCCTGGGCCAGAGCCTGTGTGCCCTGCCAGATACCCCTAG	
	CACCCTGACCCCTAGAAGCGTGCGCTCTGTGCCCGGCGAA	
	ATGCGGCTCGCCTCTATCGCCTTCAATCACCCCATCCAGGT	
	GGACCAGCTGAACTCCAGCTACTTCAAGCTGAGCATCCCC	
	ACCAACTTCAGCTTCGGCGTGACCCAGGAGTACATCCAGA	
	CCACAATCCAGAAAGTGACCGTGGACTGCAAGCAGTACGT	
	GTGCAACGGCTTTCAGAAGTGCGAACAGCTGCTGCGCGAG	
	TACGGCCAGTTCTGCAGCAAGATCAACCAGGCCCTGCACG	
	GCGCCAACCTGAGACAGGATGACAGCGTGCGGAACCTGTT	
	CGCCAGCGTGAAAAGCAGCCAGTCCAGCCCCATCATCCCT	
	GGCTTCGGCGGCGACTTTAACCTGACCCTGCTGGAACCTG TGTCCATCAGCACCGGCTCCAGAAGCGCCCAGATCCGCCAT	
	CGAGGACCTGCTGTTCGACAAGGGCCAGATCCGCCAT	
	GGCTACATGCAGGGCTACGACGATGCATGCAGCAGGGCC	
	CAGCCAGCGCCAGGGATCTGATCTGTGCCCCAGTATGTGGC	
	CGGCTACAAGGTGCTGCCCCCCTGATGGACGTGAACATG	
	GAAGCCGCCTACACCTCCAGCCTGCTGGGCTCTATTGCTG	
	GCGTGGGATGGACAGCCGGCCTGTCTAGCTTTGCCGCCAT	
	CCCTTTCGCCCAGAGCATCTTCTACCGGCTGAACGGCGTG	
	GGCATCACACAGGGGGGGGGGGGGGAGAACCAGAAGCTG	
	ATCGCCAACAAGTTTAACCAGGCACTGGGCGCCATGCAGA	
	CCGGCTTCACCACCACCAACGAGGCCTTCAGAAAGGTGCA	
	GGACGCCGTGAACAACGCCCAGGCTCTGAGCAAGCT GGCCTCCGAGCTGAGCAATACCTTCGGCGCCATCAGCGCC	
	TCCATCGGCGACATCATCCAGCGGCTGGACGTGCTGGAAC	
	AGGACGCCCAGATCGACCGGCTGATCAACGGCAGACTGA	
	CCACCCTGAACGCCTTCGTCGCACAGCAGCTCGTGCCGGAG	
	CGAATCTGCCGCTCTGTCTGCTCAGCTGGCCAAGGACAAA	
	GTGAACGAGTGCGTGAAGGCCCAGTCCAAGCGGAGCGGC	
	TTTTGTGGCCAGGGCACCCACATCGTGTCCTTCGTCGTGAA	
	TGCCCCCAACGGCCTGTACTTTATGCACGTGGGCTATTACC	
	CCAGCAACCACATCGAGGTGGTGTCCGCCTATGGCCTGTG	
	CGACGCCGCCAATCCTACCAACTGTATCGCCCCCGTGAAC	
	GGCTACTTCATCAAGACCAACAACACCCGGATCGTGGACG	
	AGTGGTCCTACACAGGCAGCAGCTTCTACGCCCCCGAGCC	
	CATCACCTCCCTGAACACCAAATACGTGGCCCCCCAAGTG	
	ACATACCAGAACATCTCCACCAACCTGCCCCCTCCACTGC TGGGAAATTCCACCGGCATCGACTTCCAGGACGAGCTGGA	
	TGGGAAATTCCACCGGCATCGACTTCCAGGACGAGCTGGA CGAGTTCTTCAAGAACGTGTCCACCTCCATCCCCAAGTTCG	
	GCAGCCTGACCCAGATCAACACCACCACCTGGCAGCCTGAC	
	CTACGAGATGCTGTCCCTGCAACAGGTCGTGAAAGCCCTG	
	AACGAGAGCTACATCGACCTGAAAGAGCTGGGGAACTAC	
	ACCTACTACAACAAGTGGCCTTGGTACATTTGGCTGGGCT	
	TTATCGCCGGCCTGGTGGCCCTGGCCCTGTGCGTGTTCTTC	
	ATCCTGTGCTGCACCGGCTGCGGCACCAATTGCATGGGCA	
	AGCTGAAATGCAACCGGTGCTGCGACAGATACGAGGAAT	

TABLE 10-continued

Strain	Nucleic Acid Sequence	SEQ NO :
;	Betacoronavirus mRNA Sequences	
gb KJ156934.1 : 21405-2546	6 AUGAUACACUCAGUGUUUCUACUGAUGUUCUUGUUAAC	65
Middle	ACCUACAGAAAGUUACGUUGAUGUAGGGCCAGAUUCUG	00
East respiratory	UUAAGUCUGCUUGUAUUGAGGUUGAUAUACAACAGACC	
syndrome	UUCUUUGAUAAAACUUGGCCUAGGCCAAUUGAUGUUUC	
coronavirus	UAAGGCUGACGGUAUUAUAUACCCUCAAGGCCGUACAU	
isolate	AUUCUAACAUAACUAUCACUUAUCAAGGUCUUUUUCCCU	
Riyadh 14 2013,	AUCAGGGAGACCAUGGUGAUAUGUAUGUUUACUCUGCA	
spike protein	GGACAUGCUACAGGCACAACUCCACAAAAGUUGUUUGU	
(nucleotide)	AGCUAACUAUUCUCAGGACGUCAAACAGUUUGCUAAUG	
,	GGUUUGUCGUCCGUAUAGGAGCAGCUGCCAAUUCCACUG	
	GCACUGUUAUUAUUAGCCCAUCUACCAGCGCUACUAUAC	
	GAAAAAUUUACCCUGCUUUUAUGCUGGGUUCUUCAGUU	
	GGUAAUUUCUCAGAUGGUAAAAUGGGCCGCUUCUUCAA	
	UCAUACUCUAGUUCUUUUGCCCGAUGGAUGUGGCACUU	
	UACUUAGAGCUUUUUAUUGUAUUCUAGAGCCUCGCUCU	
	GGAAAUCAUUGUCCUGCUGGCAAUUCCUAUACUUCUUU	
	UGCCACUUAUCACACUCCUGCAACAGAUUGUUCUGAUGG	
	CAAUUACAAUCGUAAUGCCAGUCUGAACUCUUUUAAGG	
	AGUAUUUUAAUUUACGUAACUGCACCUUUAUGUACACU	
	UAUAACAUUACCGAAGAUGAGAUUUUAGAGUGGUUUGG	
	CAUUACACAAACUGCUCAAGGUGUUCACCUCUUCUCAUC	
	UCGGUAUGUUGAUUUGUACGGCGGCAAUAUGUUUCAAU	
	UUGCCACCUUGCCUGUUUAUGAUACUAUUAAGUAUUAU	
	UCUAUCAUUCCUCACAGUAUUCGUUCUAUCCAAAGUGAU	
	AGAAAAGCUUGGGCUGCCUUCUACGUAUAUAAACUUCA	
	ACCGUUAACUUUCCUGUUGGAUUUUUCUGUUGAUGGUU	
	AUAUACGCAGAGCUAUAGACUGUGGUUUUAAUGAUUUG	
	UCACAACUCCACUGCUCAUAUGAAUCCUUCGAUGUUGAA	
	UCUGGAGUUUAUUCAGUUUCGUCUUUCGAAGCAAAACC	
	UUCUGGCUCAGUUGUGGAACAGGCUGAAGGUGUUGAAU	
	GUGAUUUUUCACCUCUUCUGUCUGGCACACCUCCUCAGG	
	UUUAUAAUUUCAAGCGUUUGGUUUUUACCAAUUGCAAU	
	UAUAAUCUUACCAAAUUGCUUUCACUUUUUUCUGUGAA	
	UGAUUUUACUUGUAGUCAAAUAUCUCCAGCAGCAAUUG	
	CUAGCAACUGUUAUUCUUCACUGAUUUUUGGAUUAUUUU	
	UCAUACCCACUUAGUAUGAAAUCCGAUCUCAGUGUUAG	
	UUCUGCUGGUCCAAUAUCCCAGUUUAAUUAUAAACAGU	
	CCUUUUCUAAUCCCACAUGUUUGAUCUUAGCGACUGUUC	
	CUCAUAACCUUACUACUAUUACUAAGCCUCUUAAGUACA	
	GCUAUAUUAACAAGUGCUCUCGUCUUCUUUCUGAUGAU	
	CGUACUGAAGUACCUCAGUUAGUGAACGCUAAUCAAUA	
	CUCACCCUGUGUAUCCAUUGUCCCAUCCACUGUGUGGGA	
	AGACGGUGAUUAUUAUAGGAAACAACUAUCUCCACUUG	
	AAGGUGGUGGCUGGCUUGUUGCUAGUGGCUCAACUGUU	
	GCCAUGACUGAGCAAUUACAGAUGGGCUUUGGUAUUAC AGUUCAAUAUGGUACAGACACCAAUAGUGUUUGCCCCA	
	AGCUUGAAUUUGCUAAUGACACAAAAAUUGCCUCUCAA	
	UUAGGCAAUUGCGUGGAAUAUUCCCUCUAUGGUGUUUC	
	GGGCCGUGGUGUUUUUCAGAAUUGCACAGCUGUAGGUG	
	UUCGACAGCAGCGCUUUGUUUAUGAUGCGUACCAGAAU	
	UUAGUUGGCUAUUAUUCUGAUGAUGGCAACUACUACUG	
	UCUGCGUGCUUGUGUUAGUGUUCCUGUUUCUGUCAUCU	
	AUGAUAAAGAAACUAAAACCCACGCUACUCUAUUUGGU	
	AGUGUUGCAUGUGAACACAUUUCUUCUACCAUGUCUCA	
	AUACUCCCGUUCUACGCGAUCAAUGCUUAAACGGCGAGA	
	UUCUACAUAUGGCCCCCUUCAGACACCUGUUGGUUGUGU	
	CCUAGGACUUGUUAAUUCCUCUUUGUUCGUAGAGGACU	
	GCAAGUUGCCUCUCGGUCAAUCUCUCUGUGCUCUUCCUG	
	ACACACCUAGUACUCUCACACCUCGCAGUGUGCGCUCUG	
	UGCCAGGUGAAAUGCGCUUGGCAUCCAUUGCUUUUAAU	
	CAUCCCAUUCAGGUUGAUCAACUUAAUAGUAGUUAUUU	
	UAAAUUAAGUAUACCCACUAAUUUUUCCUUUGGUGUGA	
	CUCAGGAGUACAUUCAGACAACCAUUCAGAAAGUUACU	
	GUUGAUUGUAAACAGUACGUUUGCAAUGGUUUCCAGAA	
	GUGUGAGCAAUUACUGCGCGAGUAUGGCCAGUUUUGUU	
	CCAAAAUAAACCAGGCUCUCCAUGGUGCCAAUUUACGCC	
	AGGAUGAUUCUGUACGUAAUUUGUUUGCGAGCGUGAAA	
	AGCUCUCAAUCAUCUCCUAUCAUACCAGGUUUUGGAGGU	
	GACUUUAAUUUGACACUUCUAGAACCUGUUUCUAUAUC	
	UACUGGCAGUCGUAGUGCACGUAGUGCUAUUGAGGAUU	
	UGCUAUUUGACAAAGUCACUAUAGCUGAUCCUGGUUAU	
	AUGCAAGGUUACGAUGAUUGUAUGCAGCAAGGUCCAGC	

270

269

TABLE 10-continued

Betacoronavirus Nucleic Acid Sequence		
Strain	Nucleic Acid Sequence	SEQ ID NO:
Strain	Nucleic Acid Sequence AUCAGCUCGUGAUUAUUUGUGUGCUCAAUAUGUGGCUG GUUAUAAAGUAUUACUUCAUCUUUGCUUGGAUGUUAAUAUG GAAGCCGCGUAUACUUCAUCUUUGCUUGGAGCAUAGCA GGUGUUGGCUGGACUGCUGCUUAUCCUCUUUGCUGCU AUUCCAUUUGCACAGAGUAUYUUUUAUAGGUUAAACGG UGUUGGCAUGCACAGAGUUCUUUCAGAGAACCAAA AGCUUAUUCCCAUACAGUUCUUUCAGAGAACCAAA AGCUUAUUCACGACUUCAUACAACUAAUGAAGCUUUUCG GAAGGUUCAGGAAUCAACUAAUGAAGCUUUUCG GAAGGUUCCGCCUCUUUGAGACAACACUAAUGCACAGGCUC UAUCCAAAUUAGCUGUCGAACACACUAAUACUUUUGGU GCUAUUUCCGCAUCAUAAGGCCCCAAAUAGACAGACUUAU UAAUGGCGUUUCGAUCAAACCUAAUGACUUUUGGU GAUGUUCCGAAUAAGUCAUACAACGACUUAU UAAUGGCGUUUGGACAACACUAAAUGACUUUUGUUGCAUGCC AAUUGGCCGUUUGGAUUAAUGAGUGUCCAAGGCA AAGCUUUGUUGUUGUAAAUGCCCUAAGGCACACAU AUUGGCUCUUUGUUGUUAAAUGCCCUAAGGCACACAU AUUGUUCUUUUGUUGUUAAAUGCCCCUAAUGGCUUUA CUUUAUUGUUGUUGUUAAAUGCCCUUUUGCGAUGACCUAU UUAAUACAAUAACCUACUUUUUGCGAUGACUAACC AAAACUUUUUUGUUGUUGUUGUUGAUAGGUGGCCAUUUUU AUACUAAUAACACUAGGUUUGUCCUUCAAGAGUUGGUCAU UUUUUCAAUAAUAACCUACUUUCAAAGAUUGUUGAUUAGCUUUUUUUU	
MERS S FL SPIKE 2cEMC/2012 (XBaI change(U to G)) (nucleotide)	UACGAGGAAAACUUAAGUGUAAUCGUUGUGUGUAUAA UACGAGGAAUACGACCUCGAGCCGCAUAAGGUUCAUGU UCACUAA AUGAUACACUCAGUCUUCACUCGAUGUUCUUCUUGUUAAC ACCUACAGAAAGUUACGUUGAUGUAGGUCCUUCUUCUU UUAAGUCUGCUUGUAUUGACGUUGAUGUACAACAGACU UUCUUUGAUAAAACUUUGCCUAAGCCCGUACAU AUUCUAACAUAACUAUCACUUAUCAAGGUCUUUUUCCU AUCAGGAGACCAUGGUGUAUAUACAACAGCUUUUUCCU AUCAGGAGACCAUGUUAUCACUUAUCAAGGUCUUUUUCCU AUCAGGAGACCAUGUUAUCACUUAUCAAGGUCUUUUUCCU GGACAUGCUACAGUCACACUCACAAAAGUUUUCACUGCA GGACAUGCUACAGUCACAACUCCACAAAAGUUUUCACUUGCA GGUUUGUUCGUCCGUAUAGAGCUGCAAUUCACUUG GACAUGUUAUUAUAGCCCUCUAACAGUUUUCACUUG GAAAAAUUUACCCUGCUUUUAUGCGGGUUCUUCAGUU GGUAAUUUCUCAGAUGUAAAAUGGGCCGCUUCUUCAA UCAUACUCUAGUUCUUUUGCCGAUGGAUGUGGACUUUUAGG GAAUUUUCUCAGAUGUGAAAAUGGGCCGCUUCUUCAA UCAUACUCUAGUUCUUUUGCUGGAUGUGGACUUUUAGG CAAUUACAUUGUCCUGCUGCAACAGAUUCUUUUUUU UGCCACUUUUUAUUGUAACGGCGCCUCUUUUAAGG CAAUUACAUUGUCCUGCUGCAACAGAUUGUUCUGAUGG AGUAUUUUAAUUUACGUAACGCGCGCUUCUUAAGG CAAUUACAAUGGUAUUUAUGUAACUUCUUU UGCCACCUUAUCACACUCUCAAGUUUUAAGG CAUUACAAUUGUCCUGCUGCAACAGAUUUUUAAGG AGUAUUUUAAUUUACGUAACGCGCGCCUCUUCAAU UUGCCACCUUACGUCAAGGUGUUCAACUUUUAAGG CAUUACACUGUCUCAAGGUGUUCAACUUUUAAGG CAUUACACUGUCUCAAGGUGUUCACCUUUUAAGG CAUUACACUUGCCUCAAGGUGUUCACCUUUUCAAU UUGCCACCUUGCUCAAGGUGUUCACCUCUUCCAUC UCGGUAUGUGGCUGCCUUCUACGUAUUAAAGUAUUAA UUGCCACUUGCCUCAAGGUGUUCACUUCUCAUCAAU UUGCGACUUGGCUGCUUUCAGUUUUAAAGUGUU AUAAACUUCCCUCUACGUAUUAAAGUGUUCAAUGAU AUAUACGCAGGCUAUAGAUUCUUCGUUCAAUGUU AUAUACCUCCUCUCAUAGAUUCUUCGAUGUUGAA UCUGGAGUUAUUCAGUUUCAGUUUUAAAGUGUU AUAUAACUUCCUCUUCGUUCUACGUUUCAAUGUUGAA UCUGGAGUUAUUCAGUUUCGUCUUCGAAGGGUGUAAACUUCA UUCUGGCCACUUCUUCGUCUUCGAAGGUGUUGAA UUCUACACUCCUCUUCGGCACACCUCCUCAGG UUUAUAAAUUUCACUUUCGUUUCG	66

272

TABLE 10-continued Betacoronavirus Nucleic Acid Sequence

Strain	Nucleic Acid Sequence	SEQ ID NO:
	GCUAUAUUAACAAGUGCUCUCGUCUUCUUUCUGAUGAU CGUACUGAAGUACCUCAGUUAGUGAACGCUAAUCAAUA	
	CUCACCCUGUGUAUCCAUUGUCCCAUCCACUGUGUGGGA	
	AGACGGUGAUUAUUAUAGGAAACAACUAUCUCCACUUG	
	AAGGUGGUGGCUUGCUUGUUGCUAGUGGCUCAACUGUU	
	GCCAUGACUGAGCAAUUACAGAUGGGCUUUGGUAUUAC AGUUCAAUAUGGUACAGACACCAAUAGUGUUUGCCCCA	
	AGUUGAAUUUGCUAAUGACACAAAAAUUGCCUCUCAA	
	UUAGGCAAUUGCGUGGAAUAUUCCCUCUAUGGUGUUUC	
	GGGCCGUGGUGUUUUUCAGAAUUGCACAGCUGUAGGUG	
	UUCGACAGCAGCGCUUUGUUUAUGAUGCGUACCAGAAU UUAGUUGGCUAUUAUUCUGAUGAUGGCAACUACUACUG	
	UUUGCGUGCUUGUGUUAGUGUUCCUGUUUCUGUCAUCU	
	AUGAUAAAGAAACUAAAACCCACGCUACUCUAUUUGGU	
	AGUGUUGCAUGUGAACACAUUUCUUCUACCAUGUCUCA	
	AUACUCCCGUUCUACGCGAUCAAUGCUUAAACGGCGAGA	
	UUCUACAUAUGGCCCCCUUCAGACACCUGUUGGUUGUGU CCUAGGACUUGUUAAUUCCUCUUUGUUCGUAGAGGACU	
	GCAAGUUGCCUCUUGGUCAAUCUCUCUGUGCUCUUCCUG	
	ACACACCUAGUACUCUCACACCUCGCAGUGUGCGCUCUG	
	UUCCAGGUGAAAUGCGCUUGGCAUCCAUUGCUUUUAAU	
	CAUCCUAUUCAGGUUGAUCAACUUAAUAGUAGUUAUUU	
	UAAAUUAAGUAUACCCACUAAUUUUUCCUUUGGUGUGA CUCAGGAGUACAUUCAGACAACCAUUCAGAAAGUUACU	
	GUUGAUUGUAAACAGUACGUUUGCAAUGGUUUCCAGAA	
	GUGUGAGCAAUUACUGCGCGAGUAUGGCCAGUUUUGUU	
	CCAAAAUAAACCAGGCUCUCCAUGGUGCCAAUUUACGCC	
	AGGAUGAUUCUGUACGUAAUUUGUUUGCGAGCGUGAAA AGCUCUCAAUCAUCUCCUAUCAUACCAGGUUUUGGAGGU	
	GACUJUJAAUJUGACACUUCUGGAACCUGUJUCUAUAUC	
	UACUGGCAGUCGUAGUGCACGUAGUGCUAUUGAGGAUU	
	UGCUAUUUGACAAAGUCACUAUAGCUGAUCCUGGUUAU	
	AUGCAAGGUUACGAUGAUUGCAUGCAGGCAAGGUCCAGC	
	AUCAGCUCGUGAUCUUAUUUGUGCUCAAUAUGUGGCUG GUUACAAAGUAUUACCUCCUCUUAUGGAUGUUAAUAUG	
	GAAGCCGCGUAUACUUCAUCUUUGCUUGGCAGCAUAGCA	
	GGUGUUGGCUGGACUGCUGGCUUAUCCUCCUUUGCUGCU	
	AUUCCAUUUGCACAGAGUAUCUUUUAUAGGUUAAACGG	
	UGUUGGCAUUACUCAACAGGUUCUUUCAGAGAACCAAA AGCUUAUUGCCAAUAAGUUUAAUCAGGCUCUGGGAGCU	
	AUGCAAACAGGCUUCACUACAACUAAUGAAGCUUUUCA	
	GAAGGUUCAGGAUGCUGUGAACAACAAUGCACAGGCUC	
	UAUCCAAAUUAGCUAGCGAGCUAUCUAAUACUUUUGGU	
	GCUAUUUCCGCCUCUAUUGGAGACAUCAUACAACGUCUU GAUGUUCUCGAACAGGACGCCCAAAUAGACAGACUUAU	
	UAAUGGCCGUUUGACAACACUAAAUGCUUUUGUUGCAC	
	AGCAGCUUGUUCGUUCCGAAUCAGCUGCUCUUUCCGCUC	
	AAUUGGCUAAAGAUAAAGUCAAUGAGUGUGUCAAGGCA	
	CAAUCCAAGCGUUCUGGAUUUUGCGGUCAAGGCACACAU AUAGUGUCCUUUGUUGUAAAUGCCCCUAAUGGCCUUUA	
	CUUCAUGCAUGUUGGUUAUUACCCUAGCAACCACAUUGA	
	GGUUGUUUCUGCUUAUGGUCUUUGCGAUGCAGCUAACC	
	CUACUAAUUGUAUAGCCCCUGUUAAUGGCUACUUUAUU	
	AAAACUAAUAACACUAGGAUUGUUGAUGAGUGGUCAUA	
	UACUGGCUCGUCCUUCUAUGCACCUGAGCCCAUUACCUC CCUUAAUACUAAGUAUGUUGCACCACAGGUGACAUACCA	
	AAACAUUUCUACUAACCUCCCUCCUCCUCUUCUCGGCAA	
	UUCCACCGGGAUUGACUUCCAAGAUGAGUUGGAUGAGU	
	UUUUCAAAAAUGUUAGCACCAGUAUACCUAAUUUUGGU	
	UCCCUAACACAGAUUAAUACUACAUUACUCGAUCUUACC	
	UACGAGAUGUUGUCUCUCAACAAGUUGUUAAAGCCCU UAAUGAGUCUUACAUAGACCUUAAAGAGCUUGGCAAUU	
	AUACUUAUUACAACAAAUGGCCGUGGUACAUUUGGCUU	
	GGUUUCAUUGCUGGGCUUGUUGCCUUAGCUCUAUGCGU	
	CUUCUUCAUACUGUGCUGCACUGGUUGUGGCACAAACUG	
	UAUGGGAAAACUUAAGUGUAAUCGUUGUUGUGAUAGAU ACGAGGAAUACGACCUCGAGCCGCAUAAGGUUCAUGUUC	
	ACGAGGAADACGACCUCGAGCCGCADAAGGUUCAUGUUC	
Novel_MERS_S2_subunit_trimeric	AUGAUCCACUCCGUGUUCCUCCUCAUGUUCCUGUUGACC	67
vaccine	CCCACUGAGUCAGACUGCAAGCUCCCGCUGGGACAGUCC	
(nucleotide)	CUGUGUGCGCUGCCUGACACUCCUAGCACUCUGACCCCA	
	CGCUCCGUGCGGUCGGUGCCUGGCGAAAUGCGGCUGGCC UCCAUCGCCUUCAAUCACCCAAUCCAAGUGGAUCAGCUG	
	CONTRACTOR CALCENATION CALCUNATION CALCUNA	

TABLE 10-continued

train	Nucleic Acid Sequence	SEQ NO :
	•	
	UCGUUCGGGGUCACCCAGGAGUACAUCCAGACCACAAUU CAGAAGGUCACCGUCGAUUGCAAGCAAUACGUGUGCAAC	
	GGCUUCCAGAAGUGCGAGCAGCUGCUGAGAGAAUACGG	
	GCAGUUUUGCAGCAAGAUCAACCAGGCGCUGCAUGGAGC	
	UAACUUGCGCCAGGACGACUCCGUGCGCAACCUCUUUGC	
	CUCUGUGAAGUCAUCCCAGUCCUCCCCAAUCAUCCCGGG	
	AUUCGGAGGGGACUUCAACCUGACCCUCCUGGAGCCCGU	
	GUCGAUCAGCACCGGUAGCAGAUCGGCGCGCUCAGCCAU	
	UGAAGAUCUUCUGUUCGACAAGGUCACCAUCGCCGAUCC GGGCUACAUGCAGGGAUACGACGACUGUAUGCAGCAGG	
	GGGCUACAUGCAGGGAUACGACGACUGUAUGCAGCAGG GACCAGCCUCCGCGAGGGACCUCAUCUGCGCGCAAUACG	
	UGGCCGGGUACAAAGUGCUGCCUCCUCUGAUGGAUGUG	
	AACAUGGAGGCCGCUUAUACUUCGUCCCUGCUCGGCUCU	
	AUCGCCGGCGUGGGGUGGACCGCCGGCCUGUCCUCCUUC	
	GCCGCUAUCCCCUUUGCACAAUCCAUUUUCUACCGGCUC	
	AACGGCGUGGGCAUUACUCAACAAGUCCUGUCGGAGAAC	
	CAGAAGUUGAUCGCAAACAAGUUCAAUCAGGCCCUGGG	
	GGCCAUGCAGACUGGAUUCACUACGACUAACGAAGCGUU	
	CCAGAAGGUCCAGGACGCUGUGAACAACAACGCCCAGGC GCUCUCAAAGCUGGCCUCCGAACUCAGCAACACCUUCGG	
	AGCCAUCAGCGCGAUCGGUCGGUGACAUAAUUCAGCGGCU	
	GGACGUGCUGGAGCAGGACGCCCAGAUCGACCGCCUCAU	
	CAACGGACGGCUGACCACCUUGAAUGCCUUCGUGGCACA	
	ACAGCUGGUCCGGAGCGAAUCAGCGGCACUUUCCGCCCA	
	ACUCGCCAAGGACAAAGUCAACGAAUGCGUGAAGGCCCA	
	GUCCAAGAGGUCCGGUUUCUGCGGUCAAGGAACCCAUAU	
	UAUGCACGUCGGCUACUACCCCGAGCAAUCAUAUCGAAGU GGUGUCCGCCUACGGCCUGUGCGAUGCCGCUAACCCCAC	
	UAACUGUAUUGCCCCUGUGAACGGAUAUUUUAUUAAGA	
	CCAACAACACCCGCAUUGUGGACGAAUGGUCAUACACCG	
	GUUCGUCCUUCUACGCGCCCGAGCCCAUCACUUCACUGA	
	ACACCAAAUACGUGGCUCCGCAAGUGACCUACCAGAACA	
	UCUCCACCAAUUUGCCGCCGCCGCUGCUCGGAAACAGCA	
	CCGGAAUUGAUUUCCAAGAUGAACUGGACGAAUUCUUC	
	AAGAACGUGUCCACUUCCAUUCCCAACUUCGGAAGCCUG	
	ACACAGAUCAACACCACCCUUCUCGACCUGACCUACGAG AUGCUGAGCCUUCAACAAGUGGUCAAGGCCCUGAACGAG	
	AUGUUGAGUUUGAGUUGAGUGUGGGUAAGGUUUGAGUAGG AGCUACAUCGACCUGAAGGAGCUGGGCAACUAUACCUAC	
	UACAACAAGUGGCCGGACAAGAUUGAGGAGAUUCUGUC	
	GAAAAUCUACCACAUUGAAAACGAGAUCGCCAGAAUCA	
	AGAAGCUUAUCGGCGAAGCC	
RS_S0_Full-	AUGGAAACCCCUGCCCAGCUGCUGCUGCUGCUGCUGCUG	68
ngth Spike	UGGCUGCCUGAUACCACCGGCAGCUAUGUGGACGUGGGC	
otein	CCCGAUAGCGUGAAGUCCGCCUGUAUCGAAGUGGACAUC	
ucleotide, codon	CAGCAGACCUUUUUCGACAAGACCUGGCCCAGACCCAUC	
timized)	GACGUGUCCAAGGCCGACGGCAUCAUCUAUCCACAAGGC	
	CGGACCUACAGCAACAUCACCAUUACCUACCAGGGCCUG UUCCCAUAUCAAGGCGACCACGGCGAUAUGUACGUGUAC	
	UCUGCCGGCCACGCCACCGGCACCACACCACACCACAGAAACUG	
	UUCGUGGCCAACUACAGCCAGGACGUGAAGCAGUUCGCC	
	AACGGCUUCGUCGUGCGGAUUGGCGCCCGCUGCCAAUAGC	
	ACCGGCACAGUGAUCAUCAGCCCCAGCACCAGCGCCACC	
	AUCCGGAAGAUCUACCCCGCCUUCAUGCUGGGCAGCUCC	
	GUGGGCAAUUUCAGCGACGGCAAGAUGGGCCGGUUCUU	
	CAACCACACCCUGGUGCUGCUGCCCGAUGGCUGUGGCAC	
	ACUGCUGAGAGCCUUCUACUGCAUCCUGGAACCCAGAAG	
	CGGCAACCACUGCCCUGCCGGCAAUAGCUACACCAGCUU CGCCACCUACCACACACCCGCCACCGAUUGCUCCGACGG	
	CAACUACAACCGGAACGCCAGCCUGAACAGCUUCAAAGA	
	GUACUUCAACCUGCGGAACUGCACCUUCAUGUACACCUA	
	CAAUAUCACCGAGGACGAGAUCCUGGAAUGGUUCGGCA	
	UCACCCAGACCGCCCAGGGCGUGCACCUGUUCAGCAGCA	
	GAUACGUGGACCUGUACGGCGGCAACAUGUUCCAGUUU	
	GCCACCCUGCCCGUGUACGACACCAUCAAGUACUACAGC	
	AUCAUCCCCCACAGCAUCCGGUCCAUCCAGAGCGACAGA	
	AAAGCCUGGGCCGCCUUCUACGUGUACAAGCUGCAGCCC CUGACCUUCCUGCUGGACUUCAGCGUGGACGGCUACAUC	
	CUGACCUUCCUGCUGGACUUCAGCGUGGACGGCUACAUC AGACGGGCCAUCGACUGCGGCUUCAACGACCUGAGCCAG	
	CUGCACUGCUCCUACGAGGCUUCGACGUGGAAAGCGGC	
	GUGUACAGCGUGUCCAGCUUCGAGGCCAAGCCUAGCGGC	
	AGCGUGGUGGAACAGGCUGAGGGCGUGGAAUGCGACUU	
	CAGCCCUCUGCUGAGCGGCACCCCUCCCCAGGUGUACAA	

TABLE 10-continued

		SEQ I
Strain	Nucleic Acid Sequence	NO :
	GACCAAGCUGCUGAGCCUGUUCUCCGUGAACGACUUCAC	
	CUGUAGCCAGAUCAGCCCUGCCGCCAUUGCCAGCAACUG	
	CUACAGCAGCCUGAUCCUGGACUACUUCAGCUACCCCCU	
	GAGCAUGAAGUCCGAUCUGAGCGUGUCCUCCGCCGGACC	
	CAUCAGCCAGUUCAACUACAAGCAGAGCUUCAGCAACCC	
	UACCUGCCUGAUUCUGGCCACCGUGCCCCACAAUCUGAC	
	CACCAUCACCAAGCCCCUGAAGUACAGCUACAUCAACAA	
	GUGCAGCAGACUGCUGUCCGACGACCGACCGAAGUGCC	
	CAUCGUGCCCAGCACCGUGUGGGAGGACGGCGACUACUA CAGAAAGCAGCUGAGCCCCCUGGAAGGCGGCGGAUGGCU	
	GGUGGCUUCUGGAAGCACAGUGGCCAUGACCGAGCAGCU	
	GCAGAUGGGCUUUGGCAUCACCGUGCAGUACGGCACCGA	
	CACCAACAGCGUGUGCCCCAAGCUGGAAUUCGCCAAUGA	
	CACCAAGAUCGCCAGCCAGCUGGGAAACUGCGUGGAAUA	
	CUCCCUGUAUGGCGUGUCCCGGACGGGGCGUGUUCCAGAA	
	UUGCACAGCAGUGGGAGUGCGGCAGCAGAGAUUCGUGU	
	ACGAUGCCUACCAGAACCUCGUGGGCUACUACAGCGACG	
	ACGGCAAUUACUACUGCCUGCGGGCCUGUGUGUCCGUGC	
	CCGUGUCCGUGAUCUACGACAAAGAGACAAAGACCCACG	
	CCACACUGUUCGGCUCCGUGGCCUGCGAGCACAUCAGCU	
	CCACCAUGAGCCAGUACUCCCGCUCCACCCGGUCCAUGC	
	UGAAGCGGAGAGAUAGCACCUACGGCCCCCUGCAGACAC	
	CUGUGGGAUGUGUGCUGGGCCUCGUGAACAGCUCCCUGU	
	UUGUGGAAGAUUGCAAGCUGCCCCUGGGCCAGAGCCUGU	
	GUGCCCUGCCAGAUACCCCUAGCACCCUGACCCCUAGAA	
	GCGUGCGCUCUGUGCCCGGCGAAAUGCGGCUGGCCUCUA	
	UCGCCUUCAAUCACCCCAUCCAGGUGGACCAGCUGAACU	
	CCAGCUACUUCAAGCUGAGCAUCCCCACCAACUUCAGCU	
	UCGGCGUGACCCAGGAGUACAUCCAGACCACAAUCCAGA	
	AAGUGACCGUGGACUGCAAGCAGUACGUGUGCAACGGC	
	UUUCAGAAGUGCGAACAGCUGCUGCGCGAGUACGGCCAG	
	UUCUGCAGCAAGAUCAACCAGGCCCUGCACGGCGCCAAC	
	CUGAGACAGGAUGACAGCGUGCGGAACCUGUUCGCCAGC	
	GUGAAAAGCAGCCAGUCCAGCCCCAUCAUCCCUGGCUUC	
	GGCGGCGACUUUAACCUGACCCUGCUGGAACCUGUGUCC	
	AUCAGCACCGGCUCCAGAAGCGCCAGAUCCGCCAUCGAG	
	GACCUGCUGUUCGACAAAGUGACCAUUGCCGACCCCGGC	
	UACAUGCAGGGCUACGACGAUUGCAUGCAGGAGGGCCCA	
	GCCAGCGCCAGGGAUCUGAUCUGUGCCCAGUAUGUGGCC	
	GGCUACAAGGUGCUGCCCCCCUGAUGGACGUGAACAUG	
	GAAGCCGCCUACACCUCCAGCCUGCUGGGCUCUAUUGCU	
	GGCGUGGGAUGGACAGCCGGCCUGUCUAGCUUUGCCGCC	
	GUGGGCAUCACACAACAGGUGCUGAGCGAGAACCAGAA	
	GCAGACCGGCUUCACCACCACCACGAGGCCUUCAGAAA	
	GGUGCAGGACGCCGUGAACAACACGCCCAGGCUCUGAG CAAGCUGGCCUCCGAGCUGAGCAAUACCUUCGGCGCCAU	
	CAGCGCCUCCAUCGGCGACAUCAUCCAGCGGCUGGACGU	
	GCUGGACAGGACGCCCAGAUCGACGGCUGGACGGCUGGACGG	
	CAGACUGAACAGGACGCCCAGAUCGACGGCUGAUCAACGG CAGACUGACCACCCCUGAACGCCUUCGUGGCACAGCAGCU	
	CGUGCGGAGCGAAUCUGCCGCUCUGUCUGCUCAGCUGGC	
	CAAGGACAAAGUGAACGAGUGCGUGAAGGCCCAGUCCA	
	AGCGGAGCGGCUUUUGUGGCCAGGGCACCCACAUCGUGU	
	CCUUCGUCGUGAAUGCCCCCAACGGCCUGUACUUUAUGC	
	ACGUGGGCUAUUACCCCAGCAACCACAUCGAGGUGGUGU	
	CCGCCUAUGGCCUGUGCGACGCCGCCAAUCCUACCAACU	
	GUAUCGCCCCCGUGAACGGCUACUUCAUCAAGACCAACA	
	ACACCCGGAUCGUGGACGAGUGGUCCUACACAGGCAGCA	
	GCUUCUACGCCCCCGAGCCCAUCACCUCCCUGAACACCA	
	UCGACUUCCAGGACGAGCUGGACGAGUUCUUCAAGAACG	
	UGUCCACCUCCAUCCCCAACUUCGGCAGCCUGACCCAGA	
	UCAACACCACUCUGCUGGACCUGACCUACGAGAUGCUGU	
	CCCUGCAACAGGUCGUGAAAGCCCUGAACGAGAGCUACA	
	UCGACCUGAAAGAGCUGGGGAACUACACCUACUACAACA	
	AGUGGCCUUGGUACAUUUGGCUGGGCUUUAUCGCCGGCC	
	NGENGGCCCNGGCCCNGNGCGNGNNCNNCANGCNGCA	
	GCACCGGCUGCGGCACCAAUUGCAUGGGCAAGCUGAAAU	
	GCAACCGGUGCUGCGACAGAUACGAGGAAUACGACCUGG	
	AACCUCACAAAGUGCAUGUGCAC	

277

TABLE 11

		SEQ II
Strain	Amino Acid Sequence	NO:
gb KJ156934.1 : 21405-25466 Middle East respiratory syndrome coronavirus isolate Riyadh_14_2013, spike protein (amino acid)	MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDKT WPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMY VYSAGHATGTTPQKLFVANYSQDVKQFANGFVVHIGAAANS TGTVIISPSTSATIRKIYPAPMLGSSVGNFSDGKMGRPFNHTL VLLPDGCGTLLRAFYCILEPRSGNHCPACNSYTSFATYHTPA TDCSDGNYNRNASLNSFKEYFNLRNCTFMYTYNITEDEILEW FGITQTAQGVHLFSSRYVDLYGGNMFQPATLPVVDTIKYTSII PHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAIDC GFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQABGV ECDFSPLLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSVNDFt CSGISPAAIASNCYSSILDYFSYVBLSMKSDLSVSSAGFISQFN YKQSFSNPTCLILATVPHNLTTITKPLKYSYINKCSRLSDDRT EVPQLVNNQYSPCVSIVPSTWEDGDYYRKQLSPLEGGGW LVASGSTVAMTEQLQMGFGITVQYGTDTNSVCPKLEFANDT KIASQLGMCVEYSLYGVSGRGVFQNCTAVGVRQQFFVDA YQNLVGYYSDGNYYCLRACVSVPSVIDVERTTHATLFG SVACHHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCULGL VNSSLFVEDCKLDLGQSLCALPDTPSTLTPRSVRSVPGEMRLA SIAPNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYIQTTIQKVTV DCKQYVCNGFQKCEQLLREYGQPCSKINGALHGANLRQDDS VRNLFASVKSSQSSPIIPGFGGDPNLTLLEPVSISTGSRSARSAI EDLLFDKVTIADFGYMQGYDDCMQQGPASARDLICAQVVA GYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSSFAAIFF AQSIFYLLNGVGITQQUSENQKLIANKNQALGAMQTGFTT TNEAFrKVQDAVNNAQALSKLASELSNTFGAISASIGDIIQR LDVLEQDAQIDRLINGRLTTLNAFVAQUVRSESAALSAQLA KDKVNECVKAQSKRSGFCQGTHIVSFVNAPNGLYFMHV GYYPSNHIEVVSAYGLCDAANPTNCIAPVNGQFIKTNNTRIV DEWSYTGSSFYAPEPITSLNKKVVAPQVTYQNISTNLPPPLLG NSTGIDFQDELDEFFKNVSTSIPNFSGTQUTISTNLPPLLG VSYCALNESYIDLKELGNYTYNKWPWIWLGFIAGLVA LALCVFFILCCTGCGTNCMGKLKCNRCCDRYEEVDLEPHKV HVH	24
MERS S FL SPIKE 2cEMC/2012 (XBaI change(T to G)) (amino acid)	MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDKT WRPPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMY VYSAGHATGTTPQKLFVANYSQDVKQFANGFVVRIGAAANS TGTVIISPSTSATIRKIYPAPMLGSSVGNFSDGKMGRFFNHTL VLLPDGCGTLLRAFYCLLEPRSGNHCPACNSYTSFATYHTPA TDCSDGNYNRNASLNSFKEYPNLRNCTFMYTYNITEDEILEW FGITQTAQGVHLFSSRYVDLYGGMMFQFATLPVYDTIKYYSII PHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAIDC GFNDLSQLHCSYESFDVBSGVYSVSSFEAKPSGSVVEQABGV ECDFSPLLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSVNDFT CSQISPAATASNCYSSLILDYFSYPLSMKSDLSVSSAGPISQFN YKQSFSNFTCLILATVPHNLTTITKPLKYSYINKCSRLLSDDRT EVPQLVNANQYSPCVSIVFSTWEDGDYYRKQLSPLEGGGW LVASGSTVAMTEQLQMGFGITVQYGTDTNSVCPKLEFANDT KIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQFFVDA YQNLVGYYSDDGNYYCLRACVSVPVSVIDKETKTHATLFG SVACEHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGL VNSSLFVEDCKLDLGQSLCALPDTPSTITPRSVRSVPGBMRLA SIAFNHPIQVDQLNSSYFKLSIPTNFFGVTQEYIQTTIQKVTV DCKQVVCNGFQKCEQLLREYGQFCSKINQALHGANLRQDDS VRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSISTGSRSARSAI EDLLFDKVTIADFGYMQGYDCMQGPASARDLCAQYVA GYKVLPPLMVNMEAAYTSSLLGSLAVFFALGAMQTGFT THEAFQKVQDAVNNNAQALSKLASELSNTFGAISASIGDIIQR LDVLEQDAQIDRLINGRLTTLNAFVAQQLVRSESAALSAQLA KDKVNECVKAQSKRSGCGQGTHIVSFVNAPNGLYFMW GYYPSNHIEVSAYGLCDAANPTNCIAPVNGYFIKTNNTRIV DEKSYTGSSFYAPEPITSLINFFGSLTQINTTILDLTYEMLS LQQVVALNESYIDLKELGNYTYNKWPYIWLGFIAGLVA LALCVFFILCTGCGTNCMGKLKCNRCCDRYEEYDLEPHKV HVH	25
Novel_MERS_S2_subunit_trimeric vaccine (amino acid)	MIHSVFLLMFLLTPTESDCKLPLGQSLCALPDTPSTLTPRSVR SVPGEMRLASIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYI QTTIQKVTVDCKQYVCNGFQKCEQLLREYGQFCSKINQALH GANLRQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSIS TGSRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPASAR DLICAQYYAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTA GLSSFAAIPFAQSIFYRLMGVGITQQVLSENQKLIANKFNQAL	26

Betacoronavirus Amino Acid Sequences		
Strain	Amino Acid Sequence	SEQ ID NO:
	GAMQTGFTTTNEAFQKVQDAVNNNAQALSKLASELSNTFG AISASIGDIIQRLDVLEQDAQIDRLINGRLTTLNAFVAQQLVRS ESAALSAQLAKDKVNECVKAQSKRSGFCGQGTHIVSFVVNA PNGLYFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNGY FIKTNNTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNI STNLPPPLGNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTL LDLTYEMLSLQQVVKALNESYIDLKELGNYTYYNKWPDKIE EILSKIYHIENEIARIKKLIGEA	
Isolate Al- Hasa_1_2013 (NCBI accession #AGN70962)	MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDKT WPRIDVSKADGIIYPQGRTYSNITIITYQGLFPYQGDHGDMY VYSAGHATGTTPQKLFVANYSQDVKQFANGFVVRIGAAANS TGTVIISPSTSATIRKIYPAPMLGSSVGNFSDGKMGRFFNHTL VLLPDGCGTLLRAFYCILBFRSGNHCPACMSYTSFATYHTPA TDCSDGNYNRNASLNSFKEYFNLFNCTFMYTYNITEDEILEW FGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVVDTIKYYSII PHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAIDC GFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQAEGV ECDFSPLLSGTPQVYNFKRLVFTNCNYNLTKLSLFSVNDFT CSQISPAAIASNCYSSLIDYFSYDLSMKSDLSVSSAGPISQFN YKQFFSNFTCLILATVPHNLTTITKPLKYSYINKCSRLLSDDRT EVPQLVNANQYSPCVSIVPSTVWEDGDYYRKQLSPLEGGGW LVASGSTVAMTEQLQMGFGITVQYGTDTNSVCPKLEFANDT KIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQRFVYDA YQNLVGYSDDGNYYCLRACVSVPSVIVDKETKTHATLFG SVACEHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGL VNSSLFVEDCKLPLGQSLCALPDTPSTLTPRSVRSVPGEMRLA SIAPNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYIQTTIQKVTV DCKQYVCNGFQKCEQLLREYGQFCSKINQALHGANLRQDDS VRNLFASVKSSQSSPIIPGFGDDNLTLLEPVSISTGSRSARSAI EDLLFDKVTIADFGYQQTDCMQQGPASARDLICAQYVA GYKVLPPLMDVNMEAAYTSSLGSIAGVGNTAGLSSFAAIFF AQSIFYRLMGVGITQQVLSENQKLIANKFNQALGANQTGFT TNEAFRKVQDAVNNAQALSKLASELSNTFGAISASIGDIIQR LDVLEQVAQSKRSGFCQGTHIVSFVNAPNGLYFMHV GYYFSNHIEVVSAYGLCDANPTNCIAPVMGYFIKNNTRIV DEWSYTGSSFYAPEPITSLNTKYVAPHVTYQNISTNLPPPLLG NSTGIDFQDELDEFFKNVSTSIDFNSLSTQINTTLLDFYELS LQQVVKALNESYIDLKELGNYTYNKWPWYIWLGFIAGLVA LALCVFFILCCTGCGTNCMGKLKCNRCCDRYEEYDLEPHKV HVH	27
Middle East respiratory syndrome coronavirus S protein UniProtKB- R9UQ53	MIHSVFLLMPLLTPTESYVDVGPDSVKSACIEVDIQQTFPDKT WPRPIDVSKADGIIYPQGRTYSNITITYQGLPPVQGDHGDMY VYSAGHATGTTPQKLFVANYSQDVKQFANGFVVRIGAAANS TGTVIISPSTSATIRKIYPAPMLGSSVGNFSDGKMGRFPNHTL VLLPGCGTLLRAFYCILEPRSGNHCPAGNSYTSFATYHTPA TDCSDGNYNRNASLNSFKEYFNLFNCTFMYTYNITEDEILEW FGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVYDTIKYYSII PHSIRSIQSDRKAMAAFYYYKLQPLTFLDFSVDGYIRRAIDC GFNDLSQLHCSYESFDVESGVYSVSSFAKPSGSVVEQAEGV ECDFSPLLSGTPPQYNFRRLVFTNCNYNLTKLLSLFSVNDFT CSQISPAAIASNCYSSLILDYFSYPLSMKSDLSVSSAGPISQPN YKQFFSNFTCLILATVPHNLTTITKPLKYSYINKCSRLLSDDRT EVPQLVNANQYSPCVSIVPSTWEDGDYYRKQLSPLEGGBW LVASGSTVAMTEQLQMGFGITVQYGTDTNSVCPKLEFANDT KIASQLGNCVEYSLIGVSGRGVFQNCTAVGVRQQFFVDA YQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHATLFG SVACEHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGL VNSSLFVEDCKLPLGQSLREVGQFCSKINQALHGANLRQDDS VRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSISTGSRSARSAI EDLLFPKVQDANNNAQALSKLASELSNTFGAISASIGDIQR LVASGSTVAMTSQLGLREYGQFCSKINQALGAMQTGFTT TNEAFRKVQDAVNNAQALSKLASELSNTFGAISASIGDIQR LDVLGYYSDGGTUQVSENQKLIANKFNQALGAMQTGFTT TNEAFRKVQDAVNNAQALSKLASELSNTFGAISASIGDIQR LDVLFYSNGGTQQVLSENQKLIANKFNQALGAMQTGFTT TNEAFRKVQDAVNNAQALSKLASELSNTFGAISASIGDIQR LDVLEQDAQIDRLINGRITTLNAFVAQLVRSESAALSAQLA KDKVNECVKAQSKRSGFCQGTHIVSFVNAPNGLYFMHV GYYPSNHIEVVSAYGLCDAANPTNCIAPVMGYFIKTNNTRIV DEWSYTGSSFYAPEPITSLNYVNAPHYQNISTNLPPPLLG NSTGIDFQDELDEFFKNYSTSIPNFGSLQINTTLLDLTYEMLS LQQVVKALMESYIDLKELGNYTYNKWPWIWLGFIAGLVA	28

TABLE 11-continued

Betacoronavirus Amino Acid Sequences		
Strain	Amino Acid Sequence	SEQ II NO:
	LALCVFFILCCTGCGTNCMGKLKCNRCCDRYEEYDLEPHKV HVH	
Human SARS coronavirus (SARS-CoV) (Severe acute respiratory syndrome coronavirus) Spike glycoprotein UniProtKB- P59594	MFIFLLFLTLTSGSDLDRCTTFDDVQAPNYTQHTSSMRGVYY PDEIFRSDTLYLTQDLFLPFYSNVTGFHTINHTGONPVIPFKDG IYFAATEKSNVVRGWVFGSTMNNKSQSVIIINNSTNVVIRAC NFELCDNFFFAVSKPMGTQTHTMIFDNAFNCTFEYISDAFSLD VSEKSGNFKHLREFVFKNKDGFLYVYKGYQFIDVVRDLPSGF NTLKPIFKLPLGINITNFRAILTAFSPAQDIWGTSAAAYFVGYL KPTTFMLKYDENGTITDAVDCSQNPLAELKCSVKSFEIDKGI YQTSNFRVVPSGDVVRPNITNLCPFGEVFNATKFPSVYAWE RKKISNCVADYSULYNSTFFSTFKCYGVSATKLNDLCFSNVY ADSFVVKGDDVRQIAPGQTGVIADYNYKLPDDFMGCVLAW NTRNIDATSTGNYNYKYRYLRHGKLRPFERDISNVPFSPDGK PCTPPALNCYWPLNDYGFYTTGIGYQPYRVVUSFELLNAP ATVCGFKLSTDLIKNQCVNFNENGLTGTGVLTPSSKRFQPFQ QFGRDVSDFTDSVRDPKTSEILDISPCSFGGVSVITPGTNASSE VAVLYQDVNCTDVSTAIHADQLTPAWRIYSTGNNVFQTQAG CLIGAEHVDTSYECDIPIGAGICASYHTVSLLRSTSQKSIVAYT MSLGADSSIAYSNNTIAIFTNFSISITTEVMPVSMAKTSVDCN MYICGDSTECANLLQYGSFCTQLNRALSGIAAEQDRNTREV FAQVKQWKKTPTLKYFGGFNFSQILPDFLKPTKRSFIEDLLFN KVTLADAGFMKQYGECLGDINARDLICAQKFNGLTVLPPLL TDDMIAAYTAALVSGTATAGWTFGAGAALQIPFAMQMAYR FNGIGUTQNVLYENXGLANGFKAISQIQESLTTTSTLGKL QDVNQNAQALNTLVKQLSNFGAISSVLNDILSRLDKVEAE VQLDRLITGRLQSLQTVTVQLLRAAEIRASANLAATKMSEC VLGQSKRVDFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQER NFTTAPAICHEGKAYFPREGVFVPNGTSWFITQNFFSQIITT DNTFVSGNCDVIGIINNTVDPLQPELDSFKEELDKYFKNH TSPDVDLGDISGINASVVNIQKEIDRLNEVFKHH TSPDVDLGDISGINASVVNIQKEIDRLNESKLDLJESLDLQE LGKYEQYIKWPYVLGFIAGLIAIVMVTILLCCMTSCCSCL KGACSCGSCCKFDEDDSEPVLKGVKLHYT	29
Human coronavirus OC43 (HCoV-OC43) Spike glycoprotein UniProtKB- P36334	MFLILLISLPTAFAVIGDLKCTSDNINDKDTGPPPISTDTVDVT NGLGTYVVLDRVYLNTTLFLNGYYPTSGSTYRNMALKGSVL LSRLWFKPPFLSDFINGIFAKVKNTKVIKDRVMYSEFPAITIGS TFVNTSYSVVVQPRTINSTQDGDNKLQGLLEVSVCQYNMCE YPQTICHPNLGNHRKELMHLDTGVVSCLYKRNFTYDVNAD YLYPHFYQEGGTFYAYFTDTGVVTKFLFNVYLGMALSHYV MPLTCNSKLTLEYWVTPLTSRQYLLAFNQDGIIPNAEDCMSD FMSEIKCKTQSIAPPTGVYELNGYTVQPIADVYRKKPNLPNC NIEAWLMDKSVPSPLNMERKTFSNCNFINSSLMSFIQADSFT CNNIDAKIYGMCFSSITIDKFAIPNGRKUDLQLGNLGYLQSF NYRIDTTATSCQLYYNLPAANVSVSRPNSTWNKRFGFIEDS VFKPRPAGVLTNHDVVYAQHCFKAPKNFCPCKLNGSCVGSG PGKNNGIGTCPAGTNYLTCDNLCTPQPITFTGTYKCPQTKSL VGIGEHCSGLAVKSDYCGGNSCTCRPQAFLGWSADSCLQED KCNIFANFILHDVNSQLLYSNGNLYGFRDYIJINRTFMI RSCYSGRVSAPHANSEPALLFRNIKCNYVFINSLTRQLQFI NYFDSYLGCVNAYNSTAISVQTCDLTVGSGYCVDYSKNRR SRGAITTGYRFTNFEPFTVNSVNDSLEPVGGLYHQIPSEFTIG NMVEFIQTSSPKVTIDCAAFVCGDYAACKSQLVEYGSFCDNI NAILTEVNELLDTQLQVANSLMNGVTLSTKLKDGVFRNVD DINFSPVLGCLGSECSKASSRSAIEDLLFDKVKLSDVGFVEAY NNCTGGAEIRDLICVQSYKGIKVLPPLLSENQISGYTLAATSA SLFPPWTAAAGVPFYLNVQYRINGLAVQSSRINFCGNGNHIIS LVQNAPYGLYFINFEPFTVKVTARVSPGLCIAGDRGHAVS QQLSDSTLVKFSAQAMEKVNECVKSQSSRINFCGNGNHIIS LVQNAPGLYFIHFSYVPTKYVTARVSPGLCIAGDRGIAPKS GYFVNVNNTWMYTGSGYYPEPITENNVVMSTCAVNYTK APYVMLNTSIPNLPDFKEELDQWFKNQTSVAPDLSLDYINVT FLDLQVEMNRLQEAIKVLNQSYINLKDIGTYEYVKWPWVV WLLICLAGVAMLVLEFFICCCTGGGTSCFKKCGGCCDDYTG YQELVIKTSHDD	30
Human coronavirus HKU1 (isolate N5) (HCoV- HKU1) Spike glycoprotein	MFLIIFILPTTLAVIGDFNCTNSFINDYNKTIPRISEDVVDVSLG LGTYYVLNRVYLNTTLLFTGYPFKSGANFRDLALKGSIVLST LWYKPPFLSDFNNGIFSKVKNTKLYVNNTLYSEFSTIVIGSVF VNTSYTIVVQPHNGILEITACQYTMCEYPHTVCKSKGSIRNES WHIDSSEPLCLFKKNFTYNVSADWLYFHFYQERGVFYAYYA DVGMPTTFLFSLYLGTILSHYYVMPLTCNAISSNTDNETLEY	31

TABLE 11-continued

Be	Betacoronavirus Amino Acid Sequences		
Strain	Amino Acid Sequence	SEQ ID NO:	
UniProtKB- Q0ZME7	WVTPLSRRQVLLNFDEHGVITNAVDCSSSFLSEIQCKTQSFAP NTGVYDLSGFTVKFVATVYRRIPNLPDCDIDNMLNNVSVPSP LNWERRIFSNCNFNLSTLLRLVHVDSFSCNNLDKSKIFGSCFN SITVDKFAIPNRRDDLQLGSSGFLQSSNYKIDISSSSCQLYYS LPLVNVTINNENPSSWNRRYGFGSFNLSSYDVVYSDHCFSVN SDFCPCADPSVVNSCAKSKPPSAICPAGTKYRHCDLDTTLYV KNWCRCSCLPDPISTYSPNTCPQKKVVVGIGEHCPGLGINEE KCGTQLNHSSCPCSPDAFLGWSPDSCISNNRCNIPSNFIFNGIN SGTTCSNDLLYSNTEISTGVCVNYDLYGITGQGIFKEVSAAY YNNWQNLLYDSNGNIIGFKDFLTNKTYTILPCYSGRVSAAFY QNSSSPALLYNNKCSYVLNISFISQPFYDSYLGCVLNAVN LTSYSVSSCDLRMGSGFCIDYALPSSRKRRGISSPYRPVTFEP FNVSFVNDSVETVGGLFEIQIPTNFTIAGHEEFIQTSSPKVTIDC SAFVCSNYAACHDLSEYGTFCDNINSILNEVNDLLDITQLQV ANALMQGVTLSSNLNTNLHSDVDNIDFKSLLGCLGSQCGSSS RSLLEDLFNKVKLSDVGFVEAYNNCTGGSEIRDLLCVQSFN GIKVLPPILSETQISGYTTAATVAAMPPWSAAAGVPFSLNVQ YRINGLGVTMANAQALNSLLQQLFNKFGAISSSLGEILSRLDNLE AQVQIDRLINGRTALNAYVSQLSDITLIKAGASRAIEKVNE CVKSQSPRINFCGNGNHILSLVQNAPYGLLFIHFSYKPTSFKT VLVSPGLCLSGDRGIAPKQGYFIKQNDSWMFTGSSYYYPEPIS DKNVVFMNSCSVNFTKAPFIVLNNSIFNLSDFEAELSLWFKN HTSIAPNLTFNSHINATFLDLYYEMVIQESIKSLNSSFINLKEI GTYEMYVKWPWYIWLLVILFIIFLMILFFICCCTGCGSACFSK CHNCCDEYGGHNDFVIKASHDD		
Novel_SARS_S2	MFIFLLFLTLTSGSDLDRALSGIAAEQDRNTREVFAQVKQMY KTPTLKYFGGPNFSQILPDPLKPTKRSFIEDLLFNKVTLADAG FMKQYGECLGDINARDLICAQKFNGLTVLPPLLTDDMIAAYT AALVSGTATAGWTFGAGAALQIPFAMQMAYRFNGIGVTQN VLYENQKQIANQFNKAISQIQESLTTTSTALGKLQDVVNQNA QALNTLVKQLSSNFGAISSVLNDILSRLDKVBAEVQIDRLITG RLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRV DFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAIC HEGKAYFPREGYFVFNGTSWFITQRNFFSPQIITTDNTFVSGN CDVVIGIINNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLG DISGINASVVNIQKEIDRLNEXKNLNESLIDLQELGKYEQYI KWPWYWLGFIAGLIAIVMVTILLCCMTSCCSCLKGACSCGS CCKFDEDDSEPVLKGVKLHYT	32	
Novel_MERS_S2	MIHSVFLLMFLLTPTESDCKLPLGQSLCALPDTPSTLTPRSVR SVPGEMRLASIAFNHPIQVDQLNSSYFKLSIPTNPSFGVTQEYI QTTIQKVTVDCKQYVCNGFQKCEQLLREYGQPCSKINQALH GANLRQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSIS TGSRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPASAR DLICAQYVAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTA GLSSPAAIPFAQSIFYRLNGVGITQQVLSENQKLIANKFNQAL GAMQTGFTTTNEAFQKVQDAVNNNAQALSKLASELSNTFG AISASIGDIIQRLDVLEQDAQIDRLINGRLTTLNAFVAQQLVRS ESAALSAQLAKDKVNECVKAQSKRSGPCGQGTHIVSFVVNA PNGLYFMHVGYYPSNHIEVVSAYGLCDANPTNCIAFVNGY FIKTNNTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNI STNLPPPLLGNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTL LDLTYEMLSLQQVVKALNESYIDLKELGNYTYYNKWP	33	
Novel_Trimeric_SARS_S2	MFIFLLFLTLTSGSDLDRALSGIAAEQDRNTREVFAQVKQMY KTPTLKYFGGFNFSQILPDPLKPTKRSFIEDLLFNKVTLADAG FMKQYGECLGDINARDLICAQKFNGLTVLPPLLTDDMIAAYT AALVSGTATAGWTFGAGAALQIPFAMQMAYRFNGIGVTQN VLYENQKQIANQFNKAISQIQESLTTTSTALGKLQDVVNQNA QALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITG RLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRV DFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTAPAIC HEGKAYFPREGVFVFNGTSWFITQRNFFSPQIITTDNTFVSGN CDVVIGIINNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLG DISGINASVVNIQKEIDRLNEVAKNLESSLIDLQELGKYEQYI KWPWYVWLGFIAGLIAIVMVTILLCCMTSCCSCLKGACSCGS CCKFDEDDSEPVLKGVKLHYT	34	

TABLE 12

enBank ccession	Country	Collection Date	Release Date	Virus Name
FY13307	United	2012 Sep. 11	2012 Dec. 5	Betacoronavirus England 1,
FS88936	Kingdom	2012 Jun. 13	2012 Sep. 27	complete genome Human betacoronavirus 2c
GG22542	United	2012 Sep. 19	2013 Feb. 27	EMC/2012, complete genome Human betacoronavirus 2c England-
HY21469	Kingdom Jordan	2012	2014 May 4	Qatar/2012, complete genome Human betacoronavirus 2c Jordan- N3/2012 isolate MG167, complete
GH58717	Jordan	2012 April	2013 Mar. 25	genome Human betacoronavirus 2c Jordan-
GV08444	Saudi Arabia	2013 May 7	2013 Sep. 17	N3/2012, complete genome Middle East respiratory syndrome coronavirus isolate Al-
GV08546	Saudi Arabia	2013 May 11	2013 Sep. 17	Hasa_12_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-
GV08535	Saudi Arabia	2013 May 12	2013 Sep. 17	Hasa_15_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-
GV08558	Saudi Arabia	2013 May 15	2013 Sep. 17	Hasa_16_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-
GV08573	Saudi Arabia	2013 May 23	2013 Sep. 17	Hasa_17_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-
GV08480	Saudi Arabia	2013 May 23	2013 Sep. 17	Hasa_18_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-
GN70962	Saudi Arabia	2013 May 9	2013 Jun. 10	Hasa_19_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-
GV08492	Saudi Arabia	2013 May 30	2013 Sep. 17	Hasa_1_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-
HI48517	Saudi Arabia	2013 May 2	2014 Feb. 6	Hasa_21_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-
GN70951	Saudi Arabia	2013 Apr. 21	2013 Jun. 10	Hasa_25_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-
GN70973	Saudi Arabia	2013 Apr. 22	2013 Jun. 10	Hasa_2_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-
GN70929	Saudi Arabia	2013 May 1	2013 Jun. 10	Hasa_3_2013, complete genome Middle East respiratory syndrome coronavirus isolate Al-
GV08408	Saudi Arabia	2012 Jun. 19	2013 Sep. 17	Hasa_4_2013, complete genome Middle East respiratory syndrome coronavirus isolate Bisha_1_2012,
GV08467	Saudi Arabia	2013 May 13	2013 Sep. 17	complete genome Middle East respiratory syndrome coronavirus isolate
ID50418	United Kingdom	2013 Feb. 10	2014 Jun. 18	Buraidah_1_2013, complete genome Middle East respiratory syndrome coronavirus isolate England/2/2013,
ID81451	United Kingdom	2013 Feb. 10	2015 Jan. 18	complete genome Middle East respiratory syndrome coronavirus isolate England/3/2013,
JD81440	United Kingdom	2013 Feb. 13	2015 Jan. 18	complete genome Middle East respiratory syndrome coronavirus isolate England/4/2013,
HB33326	France	2013 May 7	2013 Dec. 7	complete genome Middle East respiratory syndrome coronavirus isolate FRA/UAE,
Z48760	USA	2014 June	2014 Dec. 14	complete genome Middle East respiratory syndrome coronavirus isolate Florida/USA- 2_Saudi Arabia_2014, complete
GV08455	Saudi Arabia	2013 Jun. 4	2013 Sep. 17	genome Middle East respiratory syndrome coronavirus isolate Hafr-Al-
HI48561	Saudi Arabia	2013 Aug. 5	2014 Feb. 6	Batin_1_2013, complete genome Middle East respiratory syndrome coronavirus isolate Hafr-Al-

287

TABLE 12-continued

GenBank Accession	Country	Collection Date	Release Date	Virus Name
AHI48539	Saudi Arabia	2013 Aug. 28	2014 Feb. 6	Middle East respiratory syndrome coronavirus isolate Hafr-Al-
\IZ744 17	France	2013 Apr. 26	2015 Mar. 10	Batin_6_2013, complete genome Middle East respiratory syndrome coronavirus isolate Hu-France (UAE) - FRA1_1627- 2013_BAL_Sanger, complete
AIZ74433	France	2013 May 7	2015 Mar. 10	genome Middle East respiratory syndrome coronavirus isolate Hu-France - FRA2_130569-2013_IS_HTS,
AIZ74439	France	2013 May 7	2015 Mar. 10	complete genome Middle East respiratory syndrome coronavirus isolate Hu-France - FRA2_130569-2013_InSpu_Sanger,
AIZ7445 0	France	2013 May 7	2015 Mar. 10	complete genome Middle East respiratory syndrome coronavirus isolate Hu-France - FRA2_130569-2013_Isolate_Sanger,
KK52602	Saudi Arabia	2015 Feb. 10	2015 Jun. 8	complete genome Middle East respiratory syndrome coronavirus isolate Hu/Riyadh_KSA_2959_2015,
AKK52612	Saudi Arabia	2015 Mar. 1	2015 Jun. 8	complete genome Middle East respiratory syndrome coronavirus isolate Hu/Riyadh_KSA_4050_2015,
AHN10812	Saudi Arabia	2013 Nov. 6	2014 Mar. 24	complete genome Middle East respiratory syndrome coronavirus isolate Jeddah_1_2013, complete genome
AD55071	Saudi Arabia	2014 Apr. 21	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate Jeddah_C10306/KSA/2014-04-20,
AID55066	Saudi Arabia	2014	2014 Nov. 12	complete genome Middle East respiratory syndrome coronavirus isolate Jeddah_C7149/KSA/2014-04-05,
AID55067	Saudi Arabia	2014	2014 Nov. 12	complete genome Middle East respiratory syndrome coronavirus isolate Jeddah_C7569/KSA/2014-04-03,
AID55068	Saudi Arabia	2014 Apr. 7	2014 Nov. 12	complete genome Middle East respiratory syndrome coronavirus isolate Jeddah_C7770/KSA/2014-04-07,
AID55069	Saudi Arabia	2014 Apr. 12	2014 Nov. 12	complete genome Middle East respiratory syndrome coronavirus isolate Jeddah_C8826/KSA/2014-04-12,
AID55070	Saudi Arabia	2014 Apr. 14	2014 Nov. 12	complete genome Middle East respiratory syndrome coronavirus isolate Jeddah_C9055/KSA/2014-04-14,
AHE78108	Saudi Arabia	2013 Nov. 5	2014 May 1	complete genome Middle East respiratory syndrome coronavirus isolate MERS-CoV-
KL59401	South Korea	2015 May 20	2015 Jun. 9	Jeddah-human-1, complete genome Middle East respiratory syndrome coronavirus isolate MERS- CoV/KOR/KNIH/002_05_2015,
LD51904	Thailand	2015 Jun. 17	2015 Jul. 7	complete genome Middle East respiratory syndrome coronavirus isolate MERS- CoV/THA/CU/17_06_2015, complete genome
AID55072	Saudi Arabia	2014 Apr. 15	2014 Nov. 12	Middle East respiratory syndrome coronavirus isolate Makkah_C9355/KSA/Makkah/2014-
AHC74088	Qatar	2013 Oct. 13	2013 Dec. 23	04-15, complete genome Middle East respiratory syndrome coronavirus isolate Qatar3, complete genome

2	8	9
_	v	/

TABLE 12-continued

ccession	Country	Collection Date	Release Date	Virus Name
AHC74098	Qatar	2013 Oct. 17	2013 Dec. 23	Middle East respiratory syndrome coronavirus isolate Qatar4, complete
AHI48572	Saudi Arabia	2013 Aug. 15	2014 Feb. 6	genome Middle East respiratory syndrome coronavirus isolate
GV08379	Saudi Arabia	2012 Oct. 23	2013 Sep. 17	Riyadh_14_2013, complete genome Middle East respiratory syndrome coronavirus isolate Riyadh_1_2012,
AID55073	Saudi Arabia	2014 Apr. 22	2014 Nov. 12	complete genome Middle East respiratory syndrome coronavirus isolate Riyadh_2014KSA_683/KSA/2014,
GV08584	Saudi Arabia	2012 Oct. 30	2013 Sep. 17	complete genome Middle East respiratory syndrome coronavirus isolate Riyadh_2_2012,
GV0839 0	Saudi Arabia	2013 Feb. 5	2013 Sep. 17	complete genome Middle East respiratory syndrome coronavirus isolate Riyadh_3_2013,
AHI48605	Saudi Arabia	2013 Mar. 1	2014 Feb. 6	complete genome Middle East respiratory syndrome coronavirus isolate Riyadh_4_2013,
AHI48583	Saudi Arabia	2013 Jul. 2	2014 Feb. 6	complete genome Middle East respiratory syndrome coronavirus isolate Riyadh_5_2013,
AHI48528	Saudi Arabia	2013 Jul. 17	2014 Feb. 6	complete genome Middle East respiratory syndrome coronavirus isolate Riyadh_9_2013,
AHI48594	Saudi Arabia	2013 Jun. 12	2014 Feb. 6	complete genome Middle East respiratory syndrome coronavirus isolate Taif_1_2013,
AHI48550	Saudi Arabia	2013 Jun. 12	2014 Feb. 6	complete genome Middle East respiratory syndrome coronavirus isolate Wadi-Ad-
AI¥60558	United Arab Emirates	2014 Mar. 7	2014 Dec. 6	Dawasir_1_2013, complete genome Middle East respiratory syndrome coronavirus strain Abu Dhabi/Gayathi_UAE_2_2014,
AIY60538	United Arab Emirates	2014 Apr. 10	2014 Dec. 6	complete genome Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_16_2014, complete genome
AIY60528	United Arab Emirates	2014 Apr. 10	2014 Dec. 6	Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_18_2014, complete
AI¥60588	United Arab Emirates	2014 Apr. 13	2014 Dec. 6	genome Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_26_2014, complete
AIY60548	United Arab Emirates	2014 Apr. 19	2014 Dec. 6	genome Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_30_2014, complete
AFY60568	United Arab Emirates	2014 Apr. 17	2014 Dec. 6	genome Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_33_2014, complete
AI¥60518	United Arab Emirates	2014 Apr. 7	2014 Dec. 6	genome Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_8_2014, complete
AIY60578	United Arab Emirates	2013 Nov. 15	2014 Dec. 6	genome Middle East respiratory syndrome coronavirus strain Abu Dhabi_UAE_9_2013, complete
KJ80137	China	2015 May 27	2015 Jun. 5	genome Middle East respiratory syndrome coronavirus strain ChinaGD01,
AHZ64057	USA	2014 May 10	2014 May 14	complete genome Middle East respiratory syndrome coronavirus strain Florida/USA- 2_Saudi Arabia_2014, complete
KM76229	Oman	2013 Oct. 28	2015 Jun. 23	genome Middle East respiratory syndrome coronavirus strain

2	Q	1
-	-	

TABLE 12-continued

GenBank Accession	Country	Collection Date	Release Date	Virus Name
AKM76239	Oman	2013 Dec. 28	2015 Jun. 23	Hu/Oman_2285_2013, complete genome Middle East respiratory syndrome coronavirus strain Hu/Oman_2874_2013, complete
AKI29284	Saudi Arabia	2015 Jan. 6	2015 May 27	genome Middle East respiratory syndrome coronavirus strain Hu/Riyadh-KSA- 2049/2015, complete genome
AKI29265	Saudi Arabia	2015 Jan. 21	2015 May 27	Middle East respiratory syndrome coronavirus strain Hu/Riyadh-KSA- 2343/2015, complete genome
AKI29255	Saudi Arabia	2015 Jan. 21	2015 May 27	Middle East respiratory syndrome coronavirus strain Hu/Riyadh-KSA- 2345/2015, complete genome
AKI29275	Saudi Arabia	2015 Jan. 26	2015 May 27	Middle East respiratory syndrome coronavirus strain Hu/Riyadh-KSA- 2466/2015, complete genome
AKK52582	Saudi Arabia	2015 Feb. 10	2015 Jun. 8	Middle East respiratory syndrome coronavirus strain Hu/Riyadh_KSA_2959_2015, complete genome
AKK52592	Saudi Arabia	2015 Mar. 1	2015 Jun. 8	Middle East respiratory syndrome coronavirus strain Hu/Riyadh_KSA_4050_2015, complete genome
AHZ58501	USA	2014 Apr. 30	2014 May 13	Middle East respiratory syndrome coronavirus strain Indiana/USA- 1_Saudi Arabia_2014, complete genome
AGN52936	United Arab Emirates	2013	2013 Jun. 10	Middle East respiratory syndrome coronavirus, complete genome

TABLE	12
IADUG	13

-	MeV Nucleic Acid Sequences	
Description	Sequence	SEQ II NO:
GC_F_MEASLES_B3.1	TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACT	35
Sequence, NT (5'	CACTATAGGGAAATAAGAGAGAAAAGAAGAGTAAGAA	
UTR, ORF, 3'	GAAATATAAGAGCCACCATGGGTCTCAAGGTGAACGTC	
UTR)	TCTGCCGTATTCATGGCAGTACTGTTAACTCTCCAAACA	
Sequence Length:	CCCGCCGGTCAAATTCATTGGGGCAATCTCTCTAAGAT	
1864	AGGGGTAGTAGGAATAGGAAGTGCAAGCTACAAAGTT	
	ATGACTCGTTCCAGCCATCAATCATTAGTCATAAAATT	
	AATGCCCAATATAACTCTCCTCAATAACTGCACGAGGG	
	TAGAGATTGCAGAATACAGGAGACTACTAAGAACAGTT	
	TTGGAACCAATTAGGGATGCACTTAATGCAATGACCCA	
	GAACATAAGGCCGGTTCAGAGCGTAGCTTCAAGTAGGA	
	GACACAAGAGATTTGCGGGAGTAGTCCTGGCAGGTGCG	
	GCCCTAGGTGTTGCCACAGCTGCTCAGATAACAGCCGG	
	CATTGCACTTCACCGGTCCATGCTGAACTCTCAGGCCAT	
	CGACAATCTGAGAGCGAGCCTGGAAACTACTAATCAGG	
	CAATTGAGGCAATCAGACAAGCAGGGCAGGAGATGAT	
	ATTGGCTGTTCAGGGTGTCCAAGACTACATCAATAATG	
	AGCTGATACCGTCTATGAACCAGCTATCTTGTGATCTA	
	ATCGGTCAGAAGCTCGGGCTCAAATTGCTTAGATACTA	
	TACAGAAATCCTGTCATTATTTGGCCCCAGCCTACGGG	
	ACCCCATATCTGCGGAGATATCTATCCAGGCTTTGAGTT	
	ATGCACTTGGAGGAGATATCAATAAGGTGTTAGAAAAG	
	CTCGGATACAGTGGAGGCGATTTACTAGGCATCTTAGA	
	GAGCAGAGGAATAAAGGCTCGGATAACTCACGTCGAC	
	ACAGAGTCCTACTTCATAGTCCTCAGTATAGCCTATCCG	
	ACGCTGTCCGAGATTAAGGGGGGTGATTGTCCACCGGCT	
	AGAGGGGGTCTCGTACAACATAGGCTCTCAAGAGTGGT	
	ATACCACTGTGCCCAAGTATGTTGCAACCCAAGGGTAC	
	CTTATCTCGAATTTTGATGAGTCATCATGTACTTTCATG	
	CCAGAGGGGGACTGTGTGCAGCCAAAATGCCTTGTACCC	
	GATGAGTCCTCTGCTCCAAGAATGCCTCCGGGGGTCCA	

TABLE 13-continued

SEQ ID			
Description	Sequence	NO:	
	CCAAGTCCTGTGCTCGTACACTCGTATCCGGGTCTTTTG GGAACCGGTTCATTTTATCACAAGGGAACCTAATAGCC AATTGTGCATCAATTCTTTGTAAGGGTACCAAACAGGT ACGATTATTAATCAAGACCCTGACAAGATCCAACACGG GCGTGGCGACCATCCAAGTCGGCGCGGGGGGGGGG		
GC_F_MEASLES_B3.1 ORF Sequence, NT	ACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC ATGGGTCTCAAGGTGAACGTCTCTGCCGTATTCATGGC AGTACTGTTAACTCTCCAAAGACACCCGCCGGTCAAATTC ATTGGGGCAATCTCTCTAAGATAAGGGTAGTAGGAATA GAAGTCAACAAGTCTGCAGAGGTAGTAGGAATA GGAAGTACTACAAAGTTATGAACCGTTCCAGCCA TCAATCATTAGTCACAAAGTTATGAACCCAATAAACTCT CCTCAATAACTGCACGAGGGTAGAAGATTGCGAGAATAAC GGAGCTACTAAGAACAGTTTGGGAACCAATAAGGCCGGGTCA GAGCGTAGCTCCAGGCAGGGCACAAGAGATTGCG GGAGTAGTCCTGGCAGGTGCGGCCCTAGGTGTTGCCAC AGCTGCTCAGATAACAGCCGGCATTGCACTTCACCGGT CCATGCTGAACTACTAACAGCCGGCATTGCACTTCACCGGT CCATGCTGAACTACTAACAGCCGGCATTGCACTTCACGGGT GCCGGAAACTACTAATCAGGCAATGAGGCAATCG GCCCGGAACTACTAATCAGGCAATTGAGGCAATCG GCCCAGGCAAGCTACTAATCAGGCCATCAGAACCGG CCCAAGCTACTAATAATGAGCTGATACCGTCTATG AACCAGCTACTACTAATCAGGCCACAAATCGGAGGA TTCCAAATTGCTTAGGATCTAATCGGTCAGAAGCTGG GCTCAAATTGCTAGGTATATTGGCTCTGGCGACA TATCTATCCAGGCTTTGAGTTATGCACTGGGAGG GCTCGGATACTCACGTCTAGGACCCCATATCGGGGAGA TATCTATCCAGGCTTTGAGTTATGCACTGGGAGG GCTCGGATAACTCACGTCGACACAGGTCCTACTT ATTGGCCCCAGCTTCGAGACCCGATACGGTGG GCTCGGATAACTCACGTCGACACAGGTCCTACTTCAT AGGGGTGATTGTCCACGGGCTAGCTGGAC GCTCGGATAACTCACGTCGACACAGGTCCTACTTCAT AGGGGTGATTGTCCACGGGCTACGTGCTGGTC AACATAGGCTCTCAAGAGGGCCTACTTCAT AGGGGTGATTGTCCACGGGCACAGGGCCTCGTGC AACATAGGCTCCCAAGGGGCCCCACTACTTGA GTATGTTGCAACCTAGGCCAAGGGCCTCGTGC CAAGAATGCCTCCAGAGGGGCCCCCAATTTG ACACACGAGACCTAATTCCCGACGAGGGCCTGGTC CAAGAATGCCTCGGGGGTCCCCCAAGTCCTGGCCCA GTATGTTGCAACCTAATGCCAAGGGCCCTGGTC CAAGAATGCCTCGGGGGTCCCCCAAGTCCTGGCCGA GTCGGGAGCAAAATGCCTTATTCGCGAGGGCCTGGTC CCGGGAGCAGAGGCTACCTACTTGGCAACCAGGGCCTGGCTG CTGCGGAGCAGGAGCAACCCAATGGCCTGGCC	36	
mRNA Sequence	G*GGGAAATAAGAGAGAAAAGAAGAGGTAAGAAGAAT ATAAGAGCCACCATGGGTCTCAAGGTGAACGTCTCTGC CGTATTCATGGGCAGTACTGTTAACTCTCCAAACACCCG CCGGTCAAATCATTGGGCCAATCTCTCTAAGATAGGG GTAGTAGGAATAGGAAGTGCAAGCTACAAAGTTATGA CTCGTTCCAGCCATCAATCATTAGTCATAAAATTAATGC CCAATATAACTCTCCTCAATAACTGCACGAGGGTAGAG ATTGCAGAATACAGGAGACTACTAAAGAACAGTTTTGGA ACCAATTAGGGAGTGCACTTAATGCACCAGAACA TAAGGCCGGTTCAGAGCGTAGCTTCAAGTAGGAGACAC AAGAGATTGCGGGAGTAGTCCTGGCAGGTCGGCCCT	37	

TABLE 13-continued

		SEQ ID
escription	Sequence	NO:
Jescription	AGGTGTTGCCACAGCTGCTCAGATAACAGCCGGCATTG CACTTCACCGGTCCATGCTGAACTCTCAGGCCATCGAC AATCTGAGAGCGAGCCTGGAACTACTAATAATGAGCA TGAGGCAATCAGACAAGCAGGCAGGAGAGAGATGATATTG GCTGTTCAGGGTGTCCAAGACTACATCAATAATGAGCT GATACCGTCATGAACCAGCTATCTTGGATCTAATG GTCAGAAGCTCGGGCTCAAATTGCTTAGATACTATACA GAAATCCTGTCATTATTTGGCCCCAGCCTACGGGACCC CATATCTGCGGAGATATCATCACGGCTTGGAGTTATGC ACTTGGAGGAGATACTATCCAGGCTTTGAGATATGC ACTTGGAGGAGATCAATAAGGTGTTAGAAAAGCCG GATACAGTGGAGCGATTACTAGGGCATCTTAGAGAGC AGAGGAATAAAGGCTCGGATAACTCACGGCGACAGG AGTCCTACTTCATAGGGGGTGATACCCACGGCTAGAG GGGGTCTGTACAACATAGGCTCTCAAGAGTGGTATAC CACTGCGCCAAGATAGGCTCTCAAGAGTGGTATAC CACTGCCCAAGATAGGCCCCCAGAGAGGGTGCACCAA GGGGGTCGTCGTACAACATAGGCCTCTCAAGAGTGGTATAC CACTGCCCAAGATATGCCACCGGGGTCCCCCAG AGGCGACTGTGCGACAACATGGCCTTGAAGTGGTCACCGAG GGGTCCTGTCGTACAACATGGCCTTCGGGGGTCCACCAA GTCCTGTGCTCGAAGAATGCCTTCGGGGGTCCACCAA GTCCTGTGCTCGAAGAATGCCTTGCGGGGTCCACCAA GTCCTGTGCTCGAAGAATGCCTTGCGGGGTCCACCAA GTCCTGTGCTCGTACACGGAAGCCTAATAGCCACTA GTGCACAATTCTTTGTAAGTGTTACCCAACAGGTAG ATTATAATCAAGACCCTGGAAGTGCACACAATG GTGCACCAAGTCGGGGCCACAAATGCCTACCGGAGCGC GTGTACTTGGCGCGGAGCAGGAGGAGTATCCGGGACGC GTGTACTCGCACGAAGATGCCTACGGGATGCCACAAT TGCGCGAATGGCTGCGGGGCCCCCCCATATCA TTGCGCGAATGGCGCGGGAGCAGAGGAGTATCCAGACGCC GTGTACTGCCCAGGAATTGGACGGCGTGTGTGCGAG CAATTGCCAAATTGGAGGACCCAACGAAATCCGGGATGCC CAAGGGCCTGGAGCTAGGGACCCACTTTCGGGAATG CAATGCCAAGCATGGCTCCCCCCCTTTCGCGAGGTGACGCC GCGGGCCTGGACGACAAACTCGGGCCTTCTGCGGAAGG CAATGCCAAGCAAGGATCCCACGACAAGTTGG CAATGCCAAATCCTAGGAACCCCACCTTTCCAGAGAA CATCAAAACCCAGGCCTAAAGGCCGACAAATTGGGGAACAGTGG TATCTACAGACCAGGCCTAAAGGCTGACGACAAGTTGG CACGAGCCTGGTGACACAAAAGGCAGAACTTACAGGAAA CATCAAAACCCATGGCACAAACGCCTGCCCCCCCCTTGCGGCCCCCCCC	NG :
C_F_MEASLES_D8 Sequence, NT (5' JTR, ORF, 3' JTR) Sequence Length: .864	CCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAA	38

TABLE 13-continued

		SEQ ID
Description	Sequence	NO :
	ACATTGCTGCCGATCACTGCCCGGTGGTCGAGGTGAAT GGCGTGACCATCCAAGTCGGGAGCAGGAGGTATCCGG	
	ACGCTGTGTACTTGCACAGGATTGACCTCGGTCCTCCC	
	ATATCTTTCGAGAGGTTGGACGTAGGGACAAATCTGGG	
	GAATGCAATTGCTAAGTTGGAGGATGCCAAGGAATTGT	
	TGGAGTCATCGGACCAGATATTGAGGAGTATGAAAGGT	
	TTATCGAGCACTAGTATAGTTTACATCCTGATTGCAGTG	
	TGTCTTGGAGGATTGATAGGGATCCCCGCTTTAATATGT	
	TGCTGCAGGGGGCGTTGTAACAAGAAGGGAGAACAAG	
	GGAACATCAAAATCCTATGTAAGGTCACTCTGATGATA ATAGGCTGGAGCCTCGGTGGCCAAGCTTCTTGCCCCTT	
	GGGCCTCCCCCAGCCCCTCCTCCCCCTTCCTGCACCCGT	
	ACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC	
C F MEASLES D8	ATGGGTCTCAAGGTGAACGTCTCTGTCATATTCATGGC	39
RF Sequence, NT	AGTACTGTTAACTCTTCAAACACCCCACCGGTCAAATCC	
,	ATTEGGGCAATCTCTCTAAGATAGGGGTGGTAGGGGTA	
	GGAAGTGCAAGCTACAAAGTTATGACTCGTTCCAGCCA	
	TCAATCATTAGTCATAAAGTTAATGCCCAATATAACTCT	
	CCTCAACAATTGCACGAGGGTAGGGATTGCAGAATACA	
	GGAGACTACTGAGAACAGTTCTGGAACCAATTAGAGAT	
	GCACTTAATGCAATGACCCAGAATATAAGACCGGTTCA	
	GAGTGTAGCTTCAAGTAGGAGACACAAGAGATTTGCGG	
	GAGTTGTCCTGGCAGGTGCGGCCCTAGGCGTTGCCACA GCTGCTCAAATAACAGCCGGTATTGCACTTCACCAGTC	
	CATGCTGAACTCTCAAGCCATCGACAATCTGAGAGCGA	
	GCCTAGAAACTACTAATCAGGCAATTGAGGCAATCAGA	
	CAAGCAGGGCAGGAGATGATATTGGCTGTTCAGGGTGT	
	CCAAGACTACATCAATAATGAGCTGATACCGTCTATGA	
	ATCAACTATCTTGTGATTTAATCGGCCAGAAGCTAGGG	
	CTCAAATTGCTCAGATACTATACAGAAATCCTGTCATT	
	ATTTGGCCCCAGCTTACGGGACCCCATATCTGCGGAGA	
	TATCTATCCAGGCTTTGAGCTATGCGCTTGGAGGAGAA ATCAATAAGGTGTTGGAAAAGCTCGGATACAGTGGAG	
	GTGATCTACTGGGCATCTTAGAGAGCAGAGGAATAAAG	
	GCCCGGATAACTCACGTCGACACAGAGTCCTACTTCAT	
	TGTACTCAGTATAGCCTATCCGACGCTATCCGAGATTA	
	AGGGGGTGATTGTCCACCGGCTAGAGGGGGTCTCGTAC	
	AACATAGGCTCTCAAGAGTGGTATACCACTGTGCCCAA	
	GTATGTTGCAACCCAAGGGTACCTTATCTCGAATTTTGA	
	TGAGTCATCATGCACTTTCATGCCAGAGGGGACTGTGT	
	GCAGCCAGAATGCCTTGTACCCGATGAGTCCTCTGCTC	
	TACACTCGTATCCGGGTCTTTCGGGAACCGGTTCATTTT ATCACAGGGGAACCTAATAGCCAATTGTGCATCAATCC	
	TTTGCAAGTGTTACACAACAGGAACAATCATTAATCAA	
	GACCCTGACAAGATCCTAACATACATTGCTGCCGATCA	
	CTGCCCGGTGGTCGAGGTGAATGGCGTGACCATCCAAG	
	TCGGGAGCAGGAGGTATCCGGACGCTGTGTACTTGCAC	
	AGGATTGACCTCGGTCCTCCCATATCTTTGGAGAGGTT	
	GGACGTAGGGACAAATCTGGGGGAATGCAATTGCTAAGT	
	TGGAGGATGCCAAGGAATTGTTGGAGTCATCGGACCAG	
	ATATTGAGGAGTATGAAAGGTTTATCGAGCACTAGTAT	
	AGTTTACATCCTGATTGCAGTGTGTCTTGGAGGATTGAT AGGGATCCCCGCTTTAATATGTTGCTGCAGGGGGGGCGTT	
	GTAACAAGAAGGGAGAACAAGTTGGTATGTCAAGACC	
	AGGCCTAAAGCCTGATCTTACAGGAACATCAAAATCCT	
	ATGTAAGGTCACTCTGA	
GC F MEASLES D8	G*GCGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAAT	40
NRNA Sequence	ATAAGAGCCACCATGGGTCTCAAGGTGAACGTCTCTGT	
(assumes T100 tail)	CATATTCATGGCAGTACTGTTAACTCTTCAAACACCCAC	
Sequence Length:	CGGTCAAATCCATTGGGGGCAATCTCTCTAAGATAGGGG	
1925	TGGTAGGGGTAGGAAGTGCAAGCTACAAAGTTATGACT	
	CGTTCCAGCCATCAATCATTAGTCATAAAGTTAATGCC	
	TTGCAGAATACAGGAGACTACTGAGAACAGTTCTGGAA CCAATTAGAGATGCACTTAATGCAATGACCCAGAATAT	
	AAGACCGGTTCAGAGTGTAGCTTCAAGTAGGAGAGACACA	
	AGAGATTTGCGGGGAGTTGTCCTGGCAGGTGCGGCCCTA	
	GGCGTTGCCACAGCTGCTCAAATAACAGCCGGTATTGC	
	ACTTCACCAGTCCATGCTGAACTCTCAAGCCATCGACA	

ACTTCACCAGTCCATGCTGAACTCTCAAGCCATCGACA ATCTGAGAGCGAGCCTAGAAACTACTAATCAGGCAATT

TABLE 13-continued

escription	Sequence	SEQ ID NO:
	GAGGCAATCAGACAAGCAGGGCAGGAGATGATATTGG	
	CTGTTCAGGGTGTCCAAGACTACATCAATAATGAGCTG	
	ATACCGTCTATGAATCAACTATCTTGTGATTTAATCGGC	
	CAGAAGCTAGGGCTCAAATTGCTCAGATACTATACAGA	
	AATCCTGTCATTATTTGGCCCCAGCTTACGGGACCCCAT ATCTGCGGAGATATCTATCCAGGCTTTGAGCTATGCGC	
	TTGGAGGAGATATCAATAAGGTGTTGGAAAAGCTCGGA	
	TACAGTGGAGGTGATCTACTGGGCATCTTAGAGAGCAG	
	AGGAATAAAGGCCCGGATAACTCACGTCGACACAGAG	
	TCCTACTTCATTGTACTCAGTATAGCCTATCCGACGCTA TCCGAGATTAAGGGGGTGATTGTCCACCGGCTAGAGGG	
	GGTCTCGTACAACATAGGCTCTCAAGAGTGGTATACCA	
	CTGTGCCCAAGTATGTTGCAACCCAAGGGTACCTTATC	
	TCGAATTTTGATGAGTCATCATGCACTTTCATGCCAGAG	
	GGGACTGTGTGCAGCCAGAATGCCTTGTACCCGATGAG	
	TCCTCTGCTCCAAGAATGCCTCCGGGGGTCCACTAAGT CCTGTGCTCGTACACTCGTATCCGGGTCTTTCGGGAACC	
	GGTTCATTTTATCACAGGGGAACCTAATAGCCAATTGT	
	GCATCAATCCTTTGCAAGTGTTACACAACAGGAACAAT	
	CATTAATCAAGACCCTGACAAGATCCTAACATACATTG	
	CTGCCGATCACTGCCCGGTGGTCGAGGTGAATGGCGTG ACCATCCAAGTCGGGAGCAGGAGGTATCCGGACGCTGT	
	GTACTTGCACAGGATTGACCTCGGTCCTCCCATATCTTT	
	GGAGAGGTTGGACGTAGGGACAAATCTGGGGAATGCA	
	ATTGCTAAGTTGGAGGATGCCAAGGAATTGTTGGAGTC	
	ATCGGACCAGATATTGAGGAGTATGAAAGGTTTATCGA	
	GCACTAGTATAGTTTACATCCTGATTGCAGTGTGTCTTG GAGGATTGATAGGGATCCCCGCTTTAATATGTTGCTGC	
	AGGGGCGTTGTAACAAGAAGGGAGAACAAGTTGGTA	
	TGTCAAGACCAGGCCTAAAGCCTGATCTTACAGGAACA	
	TCAAAATCCTATGTAAGGTCACTCTGATGATAATAGGC	
	TGGAGCCTCGGTGGCCAAGCTTCTTGCCCCTTGGGCCTC CCCCCAGCCCCTCCTCCCTGCACCCGTACCCCCG	
	TGGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAAAAA	
	ААААААААААААААААААААААААААААААААААААА	
	ААААААААААААААААААТСТАG	
H MEASLES B3	TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACT	41
quence, NT (5'	CACTATAGGGAAATAAGAGAGAAAAGAAGAGTAAGAA	
R, ORF, 3'	GAAATATAAGAGCCACCATGTCACCGCAACGAGACCG	
R)	GATAAATGCCTTCTACAAAGATAACCCTTATCCCAAGG GAAGTAGGATAGTTATTAACAGAGAACATCTTATGATT	
uence Length: 5	GACAGACCCTATGTTCTGCTGGCTGTCTGTTCGTCGTCATG	
2065	TTTCTGAGCTTGATCGGATTGCTGGCAATTGCAGGCATT	
	AGACTTCATCGGGCAGCCATCTACACCGCGGAGATCCA	
	TAAAAGCCTCAGTACCAATCTGGATGTGACTAACTCCA	
	TCGAGCATCAGGTCAAGGACGTGCTGACACCACTCTTT AAAATCATCGGGGGATGAAGTGGGCCTGAGAACACCTC	
	AGAGATTCACTGAGGGATGAAGTGGGCCTGAGAACACCTC AGAGATTCACTGACCTAGTGAAATTCATCTCGGACAAG	
	ATTAAATTCCTTAATCCGGATAGGGAGTACGACTTCAG	
	AGATCTCACTTGGTGCATCAACCCGCCAGAGAGGATCA	
	GAAGAGCTCATGAATGCATTGGTGAACTCAACTCTACT GGAGACCAGAACAACCACTCAGTTCCTAGCTGTCTCAA	
	AGGGAAACTGCTCAGGGCCCACTACAATCAGAGGTCA	
	ATTCTCAAACATGTCGCTGTCCTTGTTGGACTTGTACTT	
	AGGTCGAGGTTACAATGTGTCATCTATAGTCACTATGA	
	CATCCCAGGGAATGTATGGGGGGAACCTACCTAGTTGAA AAGCCTAATCTGAACAGCAAAGGGTCAGAGTTGTCACA	
	AGCCTAATCTGAACAGCAAAGGGTCAGAGTTGTCACA	
	GAAACCCGGGTTTGGGGGGCTCCGGTGTTCCATATGACA	
	AACTATTTTGAGCAACCAGTCAGTAATGGTCTCGGCAA	
	CTGTATGGTGGCTTTGGGGGGGGGCTCAAACTCGCAGCCC	
	TTTGTCACGGGGACGATTCTATCATAATTCCCTATCAGG GATCAGGGAAAGGTGTCAGCTTCCAGCTCGTCAAGCTG	
	GATCAGGGAAAGGTGTCAGCTTCCAGCTCGTCAAGCTG	
	CCCCTTATCAACGGATGATCCAGTGGTAGACAGGCTTT	
	ACCTCTCATCTCACAGAGGTGTCATCGCTGACAATCAA	
	GCAAAATGGGCTGTCCCGACAACACGAACAGATGACA	
	AGTTGCGAATGGAGACATGCTTCCAGCAGGCGTGTAAA GGTAAAATCCAAGCACTCTGCGAGAATCCCGAGTGGGT	
	CONTRACTOR CONSCRETCION CONTRACTOR CONT	
	ACCATTGAAGGATAACAGGATTCCTTCATACGGGGTCC	
	ACCATTGAAGGATAACAGGATTCCTTCATACGGGGTCC TGTCTGTTGATCTGAGTCTGACGGTTGAGCTTAAAATCA	

TABLE 13-continued

Description	Sequence	SEQ ID NO:
r	TCAGGGATGGACCTATACAAATCCAACTGCAACAATGT	
	GTATTGGCTGACTATTCCGCCAATGAGAAATCTAGCCT	
	TAGGCGTAATCAACACATTGGAGTGGATACCGAGATTC	
	AAGGTTAGTCCCAACCTCTTCACTGTCCCAATTAAGGA	
	AGCAGGCGAAGACTGCCATGCCCCAACATACCTACCTG CGGAGGTGGACGGTGATGTCAAACTCAGTTCCAACCTG	
	GTGATTCTACCTGGTCAAGATCTCCAATATGTTTTGGCA	
	ACCTACGATACCTCCAGGGTTGAGCATGCTGTGGTTTA	
	TTACGTTTACAGCCCAAGCCGCTCATTTTCTTACTTTA TCCTTTTACAGCCCCAAGCCGCTCATTTTCTTACTTTA	
	TCCTTTTAGGTTGCCTATAAAGGGGGGTCCCAATCGAAC TACAAGTGGAATGCTTCACATGGGATCAAAAACTCTGG	
	TGCCGTCACTTCTGTGTGCTTGCGGACTCAGAATCCGGT	
	GGACTTATCACTCACTCTGGGATGGTGGGCATGGGAGT	
	CAGCTGCACAGCTACCCGGGAAGATGGAACCAATCGC AGATAATGATAATAGGCTGGAGCCTCGGTGGCCAAGCT	
	TCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCCTT	
	CCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTG	
	AGTCGGCGGC	
GC_H_MEASLES_B3	ATGTCACCGCAACGAGACCGGATAAATGCCTTCTACAA	42
ORF Sequence, NT	AGATAACCCTTATCCCAAGGGAAGTAGGATAGTTATTA	
	ACAGAGAACATCTTATGATTGACAGACCCTATGTTCTG CTGGCTGTTCTGTT	
	TTGCTGGCAATTGCAGGCATTAGACTTCATCGGGCAGC	
	CATCTACACCGCGGAGATCCATAAAAGCCTCAGTACCA	
	ATCTGGATGTGACTAACTCCATCGAGCATCAGGTCAAG GACGTGCTGACACCACTCTTTAAAATCATCGGGGATGA	
	AGTGGGCCTGAGAACACCACTCAGAGATTCACCGGGGATGA	
	TGAAATTCATCTCGGACAAGATTAAATTCCTTAATCCG	
	GATAGGGAGTACGACTTCAGAGATCTCACTTGGTGCAT	
	CAACCCGCCAGAGAGGATCAAACTAGATTATGATCAAT ACTGTGCAGATGTGGCTGCTGAAGAGCTCATGAATGCA	
	TTGGTGAACTCAACTCTACTGGAGACCAGAACAACCAC	
	TCAGTTCCTAGCTGTCTCAAAGGGAAACTGCTCAGGGC	
	CCACTACAATCAGAGGTCAATTCTCAAACATGTCGCTG	
	TCCTTGTTGGACTTGTACTTAGGTCGAGGTTACAATGTG TCATCTATAGTCACTATGACATCCCAGGGAATGTATGG	
	GGGAACCTACCTAGTTGAAAAGCCTAATCTGAACAGCA	
	AAGGGTCAGAGTTGTCACAACTGAGCATGTACCGAGTG	
	TTTGAAGTAGGTGTGATCAGAAACCCGGGTTTGGGGGC TCCGGTGTTCCATATGACAAACTATTTTGAGCAACCAG	
	TCAGTAATGGTCTCCGGCAACTGTATGGTGGCTTTGGGG	
	GAGCTCAAACTCGCAGCCCTTTGTCACGGGGACGATTC	
	TATCATAATTCCCTATCAGGGATCAGGGAAAGGTGTCA	
	GCTTCCAGCTCGTCAAGCTGGGTGTCTGGAAATCCCCA ACCGACATGCAATCCTGGGTCCCCTTATCAACGGATGA	
	TCCAGTGGTAGACAGGCTTTACCTCTCATCTCACAGAG	
	GTGTCATCGCTGACAATCAAGCAAAATGGGCTGTCCCG	
	ACAACACGAACAGATGACAAGTTGCGAATGGAGACAT	
	GCTTCCAGCAGGCGTGTAAAAGGTAAAATCCAAGCACTC TGCGAGAATCCCCGAGTGGGTACCATTGAAGGATAACAG	
	GATTCCTTCATACGGGGTCCTGTCTGTTGATCTGAGTCT	
	GACGGTTGAGCTTAAAATCAAAATTGCTTCGGGATTCG	
	GGCCATTGATCACACACGGCTCAGGGATGGACCTATAC AAATCCAACTGCAACAATGTGTATTGGCTGACTATTCC	
	GCCAATGAGAAAATCTAGCCTTAGGCGTAATCAACACAT	
	TGGAGTGGATACCGAGATTCAAGGTTAGTCCCAACCTC	
	TTCACTGTCCCAATTAAGGAAGCAGGCGAAGACTGCCA	
	TGCCCCAACATACCTACCTGCGGAGGTGGACGGTGATG TCAAACTCAGTTCCAACCTGGTGATTCTACCTGGTCAA	
	GATCTCCAATATGTTTTGGCAACCTACGATACCTCCAG	
	GGTTGAGCATGCTGTGGTTTATTACGTTTACAGCCCAA	
	GCCGCTCATTTTCTTACTTTTATCCTTTTAGGTTGCCTAT	
	AAAGGGGGTCCCAATCGAACTACAAGTGGAATGCTTCA CATGGGATCAAAAACTCTGGTGCCGTCACTTCTGTGTG	
	CTTGCGGACTCAGAATCCGGTGGACTTATCACTCACTCT	
	GGGATGGTGGGCATGGGAGTCAGCTGCACAGCTACCCG GGAAGATGGAACCAATCGCAGATAA	
GC_H_MEASLES_B3 mRNA Sequence	G*GGGAAATAAGAGAGAAAAGAGAGAGAAGAAGAAAAT ATAAGAGCCACCATGTCACCGCAACGAGACCGGATAA	43
•	ATGCCTTCTACAAAGATAACCCTTATCCCAAGGGAAGT	
Sequence Length:	AGGATAGTTATTAACAGAGAACATCTTATGATTGACAG	
126	ACCCTATGTTCTGCTGGCTGTTCTGTTCGTCATGTTTCT	
	GAGCTTGATCGGATTGCTGGCAATTGCAGGCATTAGAC	

302

TABLE 13-continued

MeV Nucleic Acid Sequences		
Description	Sequence	SEQ II NO:
	TTCATCGGGCAGCCATCTACACCGCGGAGATCCATAAA	
	AGCCTCAGTACCAATCTGGATGTGACTAACTCCATCGA	
	GCATCAGGTCAAGGACGTGCTGACACCACTCTTTAAAA TCATCGGGGATGAAGTGGGCCTGAGAACACCTCAGAG	
	ATTCACTGACCTAGTGAAATTCATCTCGGACAAGATTA	
	AATTCCTTAATCCGGATAGGGAGTACGACTTCAGAGAT	
	CTCACTTGGTGCATCAACCCGCCAGAGAGGATCAAACT AGATTATGATCAATACTGTGCAGATGTGGCTGCTGAAG	
	AGATTATGATGAATACTGIGCAGATGIGGCIGCIGAAG	
	ACCAGAACAACCACTCAGTTCCTAGCTGTCTCAAAGGG	
	AAACTGCTCAGGGCCCACTACAATCAGAGGTCAATTCT	
	CAAACATGTCGCTGTCCTTGTTGGACTTGTACTTAGGTC GAGGTTACAATGTGTCATCTATAGTCACTATGACATCC	
	CAGGGAATGTATGGGGGGAACCTACCTAGTTGAAAAGCC	
	TAATCTGAACAGCAAAGGGTCAGAGTTGTCACAACTGA	
	GCATGTACCGAGTGTTTGAAGTAGGTGTGATCAGAAAC	
	CCGGGTTTGGGGGGCTCCGGTGTTCCATATGACAAACTA TTTTGAGCAACCAGTCAGTAATGGTCTCGGCAACTGTA	
	TGGTGGCTTTGGGGGGGGGGGGGGGGGGGGGGGGGGGCCCTTTGT	
	CACGGGGACGATTCTATCATAATTCCCTATCAGGGATC	
	AGGGAAAGGTGTCAGCTTCCAGCTCGTCAAGCTGGGTG	
	TCTGGAAATCCCCAACCGACATGCAATCCTGGGTCCCC TTATCAACGGATGATCCAGTGGTAGACAGGCTTTACCT	
	CTCATCTCACAGAGGTGTCATCGCTGACAGGCTTTACCT	
	AATGGGCTGTCCCGACAACACGAACAGATGACAAGTTG	
	CGAATGGAGACATGCTTCCAGCAGGCGTGTAAAGGTAA	
	AATCCAAGCACTCTGCGAGAATCCCGAGTGGGTACCAT TGAAGGATAACAGGATTCCTTCATACGGGGTCCTGTCT	
	GTTGATCTGAGTCTGACGGTTGAGCTTAAAATCAAAAT	
	TGCTTCGGGATTCGGGCCATTGATCACACGCGCTCAG	
	GGATGGACCTATACAAATCCAACTGCAACAATGTGTAT	
	TGGCTGACTATTCCGCCAATGAGAAATCTAGCCTTAGG CGTAATCAACACATTGGAGTGGATACCGAGATTCAAGG	
	TTAGTCCCAACCTCTTCACTGTCCCAATTAAGGAAGCA	
	GGCGAAGACTGCCATGCCCCAACATACCTACCTGCGGA	
	GGTGGACGGTGATGTCAAACTCAGTTCCAACCTGGTGA	
	TTCTACCTGGTCAAGATCTCCAATATGTTTTGGCAACCT ACGATACCTCCAGGGTTGAGCATGCTGTGGTTTATTAC	
	GTTTACAGCCCAAGCCGCTCATTTTCTTACTTTATCCT	
	TTTAGGTTGCCTATAAAGGGGGTCCCAATCGAACTACA	
	AGTGGAATGCTTCACATGGGATCAAAAACTCTGGTGCC	
	GTCACTTCTGTGTGCTTGCGGACTCAGAATCCGGTGGA CTTATCACTCACTCTGGGATGGTGGGCATGGGAGTCAG	
	CTTATCACTCACTCTGGGATGGTGGGCATGGGAGTCAG	
	AATGATAATAGGCTGGAGCCTCGGTGGCCAAGCTTCTT	
	GCCCCTTGGGCCTCCCCCAGCCCCTCCTCCCCTG	
	CACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTG	
	GGCGGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	АЛЛООЧИЛЛИЧТООЧИЛЛИТОООТЛИЧТООЧИЛ АААААААААААААААААААААААААААААААААААА	
	TAG	
C H MEASLES D8	TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACT	44
equence, NT (5'	CACTATAGGGAAATAAGAGAGAAAAGAGAGAGAAGAA	
R, ORF, 3'	GAAATATAAGAGCCACCATGTCACCACAACGAGACCG	
IR)	GATAAATGCCTTCTACAAAGACAACCCCCCATCCTAAGG GAAGTAGGATAGTTATTAACAGAGAACATCTTATGATT	
equence Length: 065	GAAGTAGGATAGTTATTAACAGAGAACATCTTATGATT GATAGACCTTATGTTTTGCTGGCTGTTCTATTCGTCATG	
	TTTCTGAGCTTGATCGGGTTGCTAGCCATTGCAGGCATT	
	AGACTTCATCGGGCAGCCATCTACACCGCAGAGATCCA	
	TCGAGCATCAGGTTAAGGACGTGCTGACACCACTCTTC AAGATCATCGGTGATGAAGTGGGCTTGAGGACACCTCA	
	GAGATTCACTGACCTAGTGAAGTTCATCTCTGACAAGA	
	TTAAATTCCTTAATCCGGACAGGGAATACGACTTCAGA	
	GATCTCACTTGGTGTATCAACCCGCCAGAGAGAATCAA	
	ATTGGATTATGATCAATACTGTGCAGATGTGGCTGCTG AAGAACTCATGAATGCATTGGTGAACTCAACTC	
	GAGACCCAGGGCAACCAATGCATGGGGGAACTCAACTCTACTG	
	GGGAAACTGCTCAGGGCCCACTACAATCAGAGGCCAAT	
	TCTCAAACATGTCGCTGTCCCTGTTGGACTTGTATTTAA	
	GTCGAGGTTACAATGTGTCATCTATAGTCACTATGACA	
	TCCCAGGGAATGTACGGGGGGAACTTACCTAGTGGAAAA	
	GCCTAATCTGAGCAGCAAAGGGTCAGAGTTGTCACAAC	

TABLE 13-continued

Description	Sequence	SEQ ID NO:
Jesei peron	~	10.
	AATCCGGGTTTGGGGGGCTCCGGTATTCCATATGACAAA CTATCTTGAGCAACCAGTCAGTAATGATTTCAGCAACT	
	GCATGGTGGCTTTGGGGGGGGCTCAAGTTCGCAGCCCTC	
	TGTCACAGGGAAGATTCTATCACAATTCCCTATCAGGG	
	ATCAGGGAAAGGTGTCAGCTTCCAGCTTGTCAAGCTAG	
	GTGTCTGGAAATCCCCCAACCGACATGCAATCCTGGGTC CCCCTATCAACGGATGATCCAGTGATAGACAGGCTTTA	
	CCTCTCATCTCACAGAGGGCGTTATCGCTGACAATCAAG	
	CAAAATGGGCTGTCCCGACAACACGGACAGATGACAA	
	GTTGCGAATGGAGACATGCTTCCAGCAGGCGTGTAAGG	
	GTAAAATCCAAGCACTTTGCGAGAATCCCGAGTGGACA	
	CCATTGAAGGATAACAGGATTCCTTCATACGGGGTCTT GTCTGTTGATCTGAGTCTGACAGTTGAGCTTAAAATCA	
	AAATTGTTTCAGGATTCGGGCCATTGATCACACACGGT	
	TCAGGGATGGACCTATACAAATCCAACCACAACAATAT	
	GTATTGGCTGACTATCCCGCCAATGAAGAACCTGGCCT	
	TAGGTGTAATCAACACATTGGAGTGGATACCGAGATTC	
	AAGGTTAGTCCCAACCTCTTCACTGTTCCAATTAAGGA AGCAGGCGAGGACTGCCCATGCCCCAACATACCTACCTG	
	CGGAGGTGGATGGTGATGTCAAACTCAGTTCCAATCTG	
	GTGATTCTACCTGGTCAAGATCTCCAATATGTTCTGGCA	
	ACCTACGATACTTCCAGAGTTGAACATGCTGTAGTTTAT	
	TACGTTTACAGCCCAAGCCGCTCATTTTCTTACTTTAT	
	CCTTTTAGGTTGCCTGTAAGGGGGGTCCCCATTGAATTA CAAGTGGAATGCTTCACATGGGACCAAAAACTCTGGTG	
	CCGTCACTTCTGTGTGTGCTTGCGGACTCAGAATCTGGTGG	
	ACATATCACTCACTCTGGGATGGTGGGCATGGGAGTCA	
	GCTGCACAGCCACTCGGGAAGATGGAACCAGCCGCAG	
	ATAGTGATAATAGGCTGGAGCCTCGGTGGCCAAGCTTC	
	TTGCCCCTTGGGCCTCCCCCAGCCCCTCCTCCCCTTCC TGCACCCGTACCCCGTGGTCTTTGAATAAAGTCTGAG	
	TGGGCGGC	
C_H_MEASLES_D8	ATGTCACCACAACGAGACCGGATAAATGCCTTCTACAA	45
RF Sequence, NT	AGACAACCCCCATCCTAAGGGAAGTAGGATAGTTATTA	
	ACAGAGAACATCTTATGATTGATAGACCTTATGTTTTGC	
	TGGCTGTTCTATTCGTCATGTTTCTGAGCTTGATCGGGT TGCTAGCCATTGCAGGCATTAGACTTCATCGGGCAGCC	
	ATCTACACCGCAGAGATCCATAAAAGCCTCAGCACCAA	
	TCTGGATGTAACTAACTCAATCGAGCATCAGGTTAAGG	
	ACGTGCTGACACCACTCTTCAAGATCATCGGTGATGAA	
	GTGGGCTTGAGGACACCTCAGAGATTCACTGACCTAGT	
	GAAGTTCATCTCTGACAAGATTAAATTCCTTAATCCGG ACAGGGAATACGACTTCAGAGATCTCACTTGGTGTATC	
	ACCCCGCCAGAGAGAATCAAATTGGATTATGATCAATA	
	CTGTGCAGATGTGGCTGCTGAAGAACTCATGAATGCAT	
	TGGTGAACTCAACTCTACTGGAGACCAGGGCAACCAAT	
	CAGTTCCTAGCTGTCTCAAAGGGAAACTGCTCAGGGCC	
	CACTACAATCAGAGGCCAATTCTCAAACATGTCGCTGT CCCTGTTGGACTTGTATTTAAGTCGAGGTTACAATGTGT	
	CATCTATAGTCACTATGACATCCCAGGGAATGTACGGG	
	GGAACTTACCTAGTGGAAAAGCCTAATCTGAGCAGCAA	
	AGGGTCAGAGTTGTCACAACTGAGCATGCACCGAGTGT	
	TTGAAGTAGGTGTTATCAGAAATCCGGGTTTGGGGGGCT	
	CCGGTATTCCATATGACAAACTATCTTGAGCAACCAGT CAGTAATGATTTCAGCAACTGCATGGTGGCTTTGGGGGG	
	AGCTCAAGTTCGCAGCCCTCTGTCACAGGGAAGATTCT	
	ATCACAATTCCCTATCAGGGATCAGGGAAAGGTGTCAG	
	CTTCCAGCTTGTCAAGCTAGGTGTCTGGAAATCCCCCAA	
	CCGACATGCAATCCTGGGTCCCCCTATCAACGGATGAT	
	CGTTATCGCTGACAATCAAGCAAAATGGGCTGTCCCGA CAACACGGACAGATGACAAGTTGCGAATGGAGACATG	
	CAACACGGACAGATGACAAGTTGCGAATGGAGACATG CTTCCAGCAGGCGTGTAAGGGTAAAATCCAAGCACTTT	
	GCGAGAATCCCGAGTGGACACCATTGAAGGATAACAG	
	GATTCCTTCATACGGGGTCTTGTCTGTTGATCTGAGTCT	
	GACAGTTGAGCTTAAAATCAAAATTGTTTCAGGATTCG	
	GGCCATTGATCACACACGGTTCAGGGATGGACCTATAC	
	AAATCCAACCACAACAATATGTATTGGCTGACTATCCC	
	GCCAATGAAGAACCTGGCCTTAGGTGTAATCAACACAT TGGAGTGGATACCGAGATTCAAGGTTAGTCCCAACCTC	
	TTCACTGTTCCAATTAAGGAAGCAGGCGAGGACTGCCA	
	TGCCCCAACATACCTACCTGCGGAGGTGGATGGTGATG	
	TCAAACTCAGTTCCAATCTGGTGATTCTACCTGGTCAAG	

Description	Sequence	SEQ ID
Description	Sequence GTTGAACATGCTGTAGTTTATTACGTTTACAGCCCAAGC CGCTCATTTTCTTACTTTATTACCTTTTAGGTTGCCTGTAA	NO :
	GGGGGGTCCCCATTGAATTACAAGTGGAATGCTTCACA	
	TGGGACCAAAAACTCTGGTGCCGTCACTTCTGTGTGCCTT GCGGACTCAGAATCTGGTGGACATATCACTCACTCTGG	
	GATGGTGGGCATGGGAGTCAGCTGCACAGCCACTCGGG	
	AAGATGGAACCAGCCGCAGATAG	
GC_H_MEASLES_D8 mRNA Sequence	G*GGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAAT ATAAGAGCCACCATGTCACCACAACGAGACCGGATAA	46
	ATGCCTTCTACAAAGACAACCCCCATCCTAAGGGAAGT	
Sequence Length: 2126	AGGATAGTTATTAACAGAGAACATCTTATGATTGATAG ACCTTATGTTTGCTGGCTGTTCTATTCGTCATGTTTCTG	
	AGCTTGATCGGGTTGCTAGCCATTGCAGGCATTAGACT	
	TCATCGGGCAGCCATCTACACCGCAGAGATCCATAAAA GCCTCAGCACCAATCTGGATGTAACTAACTCAATCGAG	
	CATCAGGTTAAGGACGTGCTGACACCACTCTTCAAGAT CATCGGTGATGAAGTGGGCTTGAGGACACCTCAGAGAT	
	TCACTGACCTAGTGAAGTGGGGCTTGAGGACACCTCAGAGAT	
	TTCCTTAATCCGGACAGGGAATACGACTTCAGAGATCT	
	CACTTGGTGTATCAACCCGCCAGAGAGAATCAAATTGG ATTATGATCAATACTGTGCAGATGTGGCTGCTGAAGAA	
	CTCATGAATGCATTGGTGAACTCAACTCTACTGGAGAC	
	CAGGGCAACCAATCAGTTCCTAGCTGTCTCAAAGGGAA	
	ACTGCTCAGGGCCCACTACAATCAGAGGCCCAATTCTCA AACATGTCGCTGTCCCTGTTGGACTTGTATTTAAGTCGA	
	GGTTACAATGTGTCATCTATAGTCACTATGACATCCCA	
	GGGAATGTACGGGGGAACTTACCTAGTGGAAAAGCCT	
	AATCTGAGCAGCAAAGGGTCAGAGTTGTCACAACTGAG CATGCACCGAGTGTTTGAAGTAGGTGTTATCAGAAATC	
	CGGGTTTGGGGGGCTCCGGTATTCCATATGACAAACTAT	
	CTTGAGCAACCAGTCAGTAATGATTTCAGCAACTGCAT	
	GGTGGCTTTGGGGGGAGCTCAAGTTCGCAGCCCTCTGTC ACAGGGAAGATTCTATCACAATTCCCTATCAGGGATCA	
	GGGAAAGGTGTCAGCTTCCAGCTTGTCAAGCTAGGTGT	
	CTGGAAATCCCCAACCGACATGCAATCCTGGGTCCCCC	
	TATCAACGGATGATCCAGTGATAGACAGGCTTTACCTC TCATCTCACAGAGGCGTTATCGCTGACAATCAAGCAAA	
	ATGGGCTGTCCCGACAACACGGACAGATGACAAGTTGC	
	GAATGGAGACATGCTTCCAGCAGGCGTGTAAGGGTAA	
	AATCCAAGCACTTTGCGAGAATCCCGAGTGGACACCAT TGAAGGATAACAGGATTCCTTCATACGGGGTCTTGTCT	
	GTTGATCTGAGTCTGACAGTTGAGCTTAAAATCAAAAT	
	TGTTTCAGGATTCGGGCCATTGATCACACACGGTTCAG	
	GGATGGACCTATACAAATCCAACCACAACAATATGTAT TGGCTGACTATCCCGCCAATGAAGAACCTGGCCTTAGG	
	TGTAATCAACACATTGGAGTGGATACCGAGATTCAAGG	
	TTAGTCCCAACCTCTTCACTGTTCCAATTAAGGAAGCA	
	GGCGAGGACTGCCATGCCCCAACATACCTACCTGCGGA GGTGGATGGTGATGTCAAACTCAGTTCCAATCTGGTGA	
	TTCTACCTGGTCAAGATCTCCAATATGTTCTGGCAACCT	
	ACGATACTTCCAGAGTTGAACATGCTGTAGTTTATTAC GTTTACAGCCCAAGCCGCTCATTTTCTTACTTTATCCT	
	TTTAGGTTGCCTGTAAGCCGCTCATTTTCTTACTTTTATCCT	
	AGTGGAATGCTTCACATGGGACCAAAAACTCTGGTGCC	
	GTCACTTCTGTGTGCGTCGGACTCAGAATCTGGTGGA	
	CATATCACTCACTCTGGGATGGTGGGCATGGGAGTCAG CTGCACAGCCACTCGGGAAGATGGAACCAGCCGCAGA	
	TAGTGATAATAGGCTGGAGCCTCGGTGGCCAAGCTTCT	
	TGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCTCCT GCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGT	
	GCACCCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGT GGGCGCCAAAAAAAAAA	
	АААААААААААААААААААААААААААААААААААА	
	ААААААААААААААААААААААААААААААААААААА	
	MeV mRNA Sequences	

GC_F_MEASLES_B3.1 Sequence, NT (5' UTR, ORF, 3' UTR) Sequence Length: 1864 UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGAC UCACUAUAGGGAAUAAGAGAGAAAAGAAGAGUAAG AAGAAUAUAAGAGCCACCAUGGUCUCAAGGUGAA CGUUCUGCCGUAUUCAUGGCAUCUGUUAACUCUC CAAACACCCGCCGGUCAAUUCAUUGGGGCAUCUCU CUAAGAUAGGGGUAGUAGAAUAGGAAGUGCAAGCU ACAAAGUUAUGACUCGUUCCAGCCAUCAAUCAUUAGU

TABLE 13-continued

	MeV Nucleic Acid Sequences	
escription	Sequence	SEQ I NO:
	CAUAAAAUUAAUGCCCAAUAUAACUCUCCUCAAUAAC	
	UGCACGAGGGUAGAGAUUGCAGAAUACAGGAGACUA	
	CUAAGAACAGUUUUGGAACCAAUUAGGGAUGCACUU	
	AAUGCAAUGACCCAGAACAUAAGGCCGGUUCAGAGCG UAGCUUCAAGUAGGAGACACAAGAGAUUUGCCGGGAG	
	UAGUCCUGGCAGGUGCGGCCCUAGGUGUUGCCACAGC	
	UGCUCAGAUAACAGCCGGCAUUGCACUUCACCGGUCC	
	AUGCUGAACUCUCAGGCCAUCGACAAUCUGAGAGCGA	
	GCCUGGAAACUACUAAUCAGGCAAUUGAGGCAAUCAG ACAAGCAGGGCAGG	
	UGUCCAAGACUACAUCAAUAAUGAGCUGAUACCGUCU	
	AUGAACCAGCUAUCUUGUGAUCUAAUCGGUCAGAAGC	
	UCGGGCUCAAAUUGCUUAGAUACUAUACAGAAAUCCU	
	GUCAUUAUUUGGCCCCAGCCUACGGGACCCCAUAUCU	
	GCGGAGAUAUCUAUCCAGGCUUUGAGUUAUGCACUU GGACGAGAUAUCAAUAAGGUGUUAGAAAAGCUCGGA	
	UACAGUGGAGGCGAUUUACUAGGCAUCUUAGAGAGGC	
	AGAGGAAUAAAGGCUCGGAUAACUCACGUCGACACAG	
	AGUCCUACUUCAUAGUCCUCAGUAUAGCCUAUCCGAC	
	GCUGUCCGAGAUUAAGGGGGUGAUUGUCCACCGGCUA	
	GAGGGGGUCUCGUACAACAUAGGCUCUCAAGAGUGG	
	UAUACCACUGUGCCCAAGUAUGUUGCAACCCAAGGGU ACCUUAUCUCGAAUUUUGAUGAGUCAUCAUGUACUU	
	UCAUGCCAGAGGGGACUGUGUGCAGCCAAAAUGCCUU	
	GUACCCGAUGAGUCCUCUGCUCCAAGAAUGCCUCCGG	
	GGGUCCACCAAGUCCUGUGCUCGUACACUCGUAUCCG	
	GGUCUUUUGGGAACCGGUUCAUUUUAUCACAAGGGA	
	ACCUAAUAGCCAAUUGUGCAUCAAUUCUUUGUAAGU GUUACACAACAGGUACGAUUAUUAAUCAAGACCCUGA	
	CAAGAUCCUAACAUACAUUGCUGCCGAUCGCUGCCCG	
	GUAGUCGAGGUGAACGGCGUGACCAUCCAAGUCGGGA	
	GCAGGAGGUAUCCAGACGCUGUGUACUUGCACAGAAU	
	UGACCUCGGUCCUCCCAUAUCAUUGGAGAGGUUGGAC	
	GUAGGGACAAAUCUGGGGAAUGCAAUUGCCAAAUUG GAGGAUGCCAAGGAAUUGUUGGAAUCAUCGGACCAG	
	AUAUUGAGAAGUAUGAAAGGUUUAUCGAGCACUAGC	
	AUAGUCUACAUCCUGAUUGCAGUGUGUCUUGGAGGG	
	UUGAUAGGGAUCCCCACUUUAAUAUGUUGCUGCAGG	
	GGGCGUUGUAACAAAAGGGAGAACAAGUUGGUAUG	
	UCAAGACCAGGCCUAAAGCCUGACCUUACAGGAACAU CAAAAUCCUAUGUAAGAUCGCUUUGAUGAUAAUAGG	
	CUGGAGCCUCGGUGGCCAAGCUUCUUGCCCCUUGGGC	
	CUCCCCCCAGCCCUCCUCCCCUUCCUGCACCCGUACC	
	CCCGUGGUCUUUGAAUAAAGUCUGAGUGGGCGGC	
C_F_MEASLES_B3.1	AUGGGUCUCAAGGUGAACGUCUCUGCCGUAUUCAUGG	70
RF Sequence, NT	CAGUACUGUUAACUCUCCAAACACCCGCCGGUCAAAU	
	UCAUUGGGGCAAUCUCUCUAAGAUAGGGGUAGUAGG	
	AAUAGGAAGUGCAAGCUACAAAGUUAUGACUCGUUC CAGCCAUCAAUCAUUAGUCAUAAAAUUAAUGCCCAAU	
	AUAACUCUCCUCAAUAACUGCACGAGGGUAGAGAUUG	
	CAGAAUACAGGAGACUACUAAGAACAGUUUUGGAAC	
	CAAUUAGGGAUGCACUUAAUGCAAUGACCCAGAACAU	
	AAGGCCGGUUCAGAGCGUAGCUUCAAGUAGGAGACAC	
	AAGAGAUUUGCGGGAGUAGUCCUGGCAGGUGCGGCCC UAGGUGUUGCCACAGCUGCUCAGAUAACAGCCGGCAU	
	UGCACUUCACCGGUCCAUGCUGAACUCUCAGGCCAUC	
	GACAAUCUGAGAGCGAGCCUGGAAACUACUAAUCAGG	
	CAAUUGAGGCAAUCAGACAAGCAGGGCAGGAGAUGA	
	UAUUGGCUGUUCAGGGUGUCCAAGACUACAUCAAUA	
	UAUUGGCUGUUCAGGGUGUCCAAGACUACAUCAAUA AUGAGCUGAUACCGUCUAUGAACCAGCUAUCUUGUGA	
	UAUUGGCUGUUCAGGGUGUCCAAGACUACAUCAAUA AUGAGCUGAUACCGUCUAUGAACCAGCUAUCUUGUGA UCUAAUCGGUCAGAAGCUCGGGCUCAAAUUGCUUAGA	
	UAUUGGCUGUUCAGGGUGUCCAAGACUACAUCAAUA AUGAGCUGAUACCGUCUAUGAACCAGCUAUCUUGUGA	
	UAUUGGCUGUUCAGGGUGUCCAAGACUACAUCAAUA AUGAGCUGAUACCGUCUAUGAACCAGCUAUCUUGUGA UCUAAUCGGUCAGAAGCUCGGGCUCAAAUUGCUUAGA UACUAUACAGAAAUCCUGUCAUUAUUUGGCCCCAGCC UACGGGACCCCAUAUCUGCGGAGAUAUCUAUCCAGGC UUUGAGUUAUGCACUUGGAGGAGAUAUCAAUAAGGU	
	UAUUGGCUGUUCAGGGUGUCCAAGACUACAUCAAUA AUGAGCUGAUACCGUCUAUGAACCAGCUAUCUUGUGA UCUAAUCGGUCAGAAGCUCGGGCUCAAAUUGCUUAGA UACUAUACAGAAAUCCUGUCAUUAUUUGGCCCCAGCC UACGGGACCCCAUAUCUGCGGAGAUAUCUAUCCAGGC UUUGAGUUAUGCACUUGGAGGAAUAUCAAUAAGGU GUUAGAAAAGCUCGGAUACAGUGGAGGCGAUUUACU	
	UAUUGGCUGUUCAGGGUGUCCAAGACUACAUCAAUA AUGAGCUGAUACCGUCUAUGAACCAGCUAUCUUGUGA UCUAAUCGGUCAGAAGCUCGGGCUCAAAUUGCUUAGA UACUAUACAGAAAUCCUGUCAUUAUUUGGCCCCAGCC UACGGGACCCCAUAUCUGCGGGGAGAUAUCCAUGCC UUUGAGUUAUGCACUUGGAGGGAAUAUCAAUAAGGU GUUAGAAAAGCUCGGAUACAGUGGAGGCGAUUUACU AGGCAUCUUAGAGAGCAGAGGAAUAAAGGCUCGGAU	
	UAUUGGCUGUUCAGGGUGUCCAAGACUACAUCAAUA AUGAGCUGAUACCGUCUAUGAACCAGCUAUCUUGUGA UCUAAUCGGUCAGAAGCUCGGGCUCAAAUUGCUUAGA UACUAUACAGAAAUCCUGUCAUUAUUUGGCCCCAGCC UACGGACCCCAUAUCUGGGGGGAUAUCUAUCCAGGC UUUGAGUUAUGCACUUGGAGGGGAUAUCAAUAAGGU GUUAGAAAAGCUCGGAUACAGUGGAGGCGUUUUACU AGGCAUCUUAGAGAGCAGAGGGAUUAAAGGCUCGGAU AACUCACGUCGACACAGAGUCCUACUUCAUAGUCCUC	
	UAUUGGCUGUUCAGGGUGUCCAAGACUACAUCAAUA AUGAGCUGUUACGGUCUAUGAACCAGCUAUCUUGUGA UCUAAUCGGUCAGAAGUCCGGCUCAAUUGCUUAGA UACUAUACAGAAAUCCUGUCAUUAUUUGGCCCAGCC UACGGGACCCCAUAUCUGCGGAGAUAUCUAUCCAGGC UUUGAGUUAUGCACUUGGAGGAGAUAUCAAUAAGGU GUUAGAAAAGCUCGGAUACAGUGGAGCGAUUUACU AGGCAUCUUAGAGAGCAGAGGAAUAAAGGCUCGGAU AACUCACGUCGACACAGAGGAAUAAAGGCUCCGGAU AAGUCACGUCGACACAGAGUCCUACUUCAUAGGCCUC AGUAUAGCCUAUCCGACGCUGUCCGAGAUUAAGGGGG	
	UAUUGGCUGUUCAGGGUGUCCAAGACUACAUCAAUA AUGAGCUGAUACCGUCUAUGAACCAGCUAUCUUGUGA UCUAAUCGGUCAGAAGCUCGGGCUCAAAUUGCUUAGA UACUAUACAGAAAUCCUGUCAUUAUUUGGCCCCAGCC UACGGACCCCAUAUCUGGGGGGAUAUCUAUCCAGGC UUUGAGUUAUGCACUUGGAGGGGAUAUCAAUAAGGU GUUAGAAAAGCUCGGAUACAGUGGAGGCGUUUUACU AGGCAUCUUAGAGAGCAGAGGGAUUAAAGGCUCGGAU AACUCACGUCGACACAGAGUCCUACUUCAUAGUCCUC	
	UAUUGGCUGUUCAGGGUGUCCAAGACUACAUCAAUA AUGAGCUGAUACCGUCUAUGAACCAGCUAUCUUGUGA UCUAAUCGGUCAGAAGCUCGGGCUCAAUUCUUGUGA UACUAUACAGAAAUCCUGUCAUUAUUUGCCCAGCC UACGGGACCCCAUAUCUGCGGAGAUAUUCUAUCCAGGC UUUGAAUUAUCCACUUGGAGGAAUAUCAAUAAGGU GUUAGAAAAGCUCGGAUACAGUGGAGGCGAUUUACU AGGCAUCUUAGAGAGCAGAGGGAAUAAAGGCUCGGAU AACUCACGUCGACACAAAGUCCUACUUCAUAGUCCUC AGUAUAGCCUAUCCGACGCUGUCCGAGAUUAAGGGG UGAUUGUCCACCGGCUAGAGGGGGUUCGUACAACAU AGGCUCUCAAAGUGGUAACACCUGGACUCGUACAACAU GUUGCAACCCAAGGGUACCUUGUCCGAAUUUUGAUG	
	UAUUGGCUGUUCAGGGUGUCCAAGACUACAUCAAUA AUGAGCUGAUACCGUCUAUGAACCAGCUAUCUUGUGA UCUAAUCGGUCAGAAGCUCGGGCUCAAAUUGCUUAGA UACUAUACAGAAAUCCUQUCAUUAUUUGGCCCCAGCC UACGGGACCCCAUAUCUGGGGGAAUAUCAUCAGGC UUUGAGUUAUGCACUUGGAGGAGAUAUCAAUAAGGU GUUAGAAAAGCUCGGAUACAGUGGGAGGCGAUUUACU AGGCAUCUUAAGAGGCGAGGGAUAAAGGCUCGGAU AACUCACGUCGACACAGAGUCCUACUUCAUAGUCCUC AGUAUAUCCGACCGACGCUGUCCGAGAUUAAGGGG UQAUUGUCCACCGGCUAGAGGGGGUCUCGUACAACAU AGGCUCUCAAGAGUGGUAUACCACUGUGCCCAAGUAU	

		SEQ ID
Description	Sequence	NO :
	CGUACACUCGUAUCCGGGUCUUUUGGGAACCGGUUCA	
	UUUUAUCACAAGGGAACCUAAUAGCCAAUUGUGCAUC	
	AAUUCUUUGUAAGUGUUACACAACAGGUACGAUUAU UAAUCAAGACCCUGACAAGAUCCUAACAUACAUUGCU	
	GCCGAUCGCUGCCCCGGUAGUCGAGGUGAACGGCGUGA	
	CCAUCCAAGUCGGGAGCAGGAGGUAUCCAGACGCUGU	
	GUACUUGCACAGAAUUGACCUCGGUCCUCCCAUAUCA	
	UUGGAGAGGUUGGACGUAGGGACAAAUCUGGGGAAU	
	GCAAUUGCCAAAUUGGAGGAUGCCAAGGAAUUGUUG	
	GAAUCAUCGGACCAGAUAUUGAGAAGUAUGAAAGGU	
	UUAUCGAGCACUAGCAUAGUCUACAUCCUGAUUGCAG	
	UGUGUCUUGGAGGGUUGAUAGGGAUCCCCACUUUAA	
	UAUGUUGCUGCAGGGGGGGGUUGUAACAAAAAGGGAG AACAAGUUGGUAUGUCAAGACCAGGCCUAAAGCCUGA	
	CCUUACAGGAACAUCAAAAUCCUAUGUAAGAUCGCUU	
	UGA	
C_F_MEASLES_B3.1	G*GCGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAA	71
nRNA Sequence	UAUAAGAGCCACCAUGGGUCUCAAGGUGAACGUCUCU	
	GCCGUAUUCAUGGCAGUACUGUUAACUCUCCAAACAC	
nRNA Sequence	CCGCCGGUCAAAUUCAUUGGGGCAAUCUCUCUAAGAU	
Length: 1925	AGGGGUAGUAGGAAUAGGAAGUGCAAGCUACAAAGU	
	UAUGACUCGUUCCAGCCAUCAAUCAUUAGUCAUAAAA UUAAUGCCCAAUAUAACUCUCCUCAAUAACUGCACGA	
	GGGUAGAGAUUGCAGAAUACAGGAGACUACUAAGAA	
	CAGUUUUGGAACCAAUUAGGGAUGCACUUAAUGCAA	
	UGACCCAGAACAUAAGGCCGGUUCAGAGCGUAGCUUC	
	AAGUAGGAGACACAAGAGAUUUGCGGGAGUAGUCCU	
	GGCAGGUGCGGCCCUAGGUGUUGCCACAGCUGCUCAG	
	AUAACAGCCGGCAUUGCACUUCACCGGUCCAUGCUGA	
	ACUCUCAGGCCAUCGACAAUCUGAGAGCGAGCCUGGA	
	AACUACUAAUCAGGCAAUUGAGGCAAUCAGACAAGCA	
	GGGCAGGAGAUGAUAUUGGCUGUUCAGGGUGUCCAA GACUACAUCAAUAAUGAGCUGAUACCGUCUAUGAACC	
	AGCUAUCUUGUGAUCUAAUCGGUCAGAAGCUCGGGCU	
	CAAAUUGCUUAGAUACUAUACAGAAAUCCUGUCAUU	
	AUUUGGCCCCAGCCUACGGGACCCCAUAUCUGCGGAG	
	AUAUCUAUCCAGGCUUUGAGUUAUGCACUUGGAGGA	
	GAUAUCAAUAAGGUGUUAGAAAAGCUCGGAUACAGU	
	GGAGGCGAUUUACUAGGCAUCUUAGAGAGCAGAGGA	
	AUAAAGGCUCGGAUAACUCACGUCGACACAGAGUCCU	
	ACUUCAUAGUCCUCAGUAUAGCCUAUCCGACGCUGUC	
	CGAGAUUAAGGGGGUGAUUGUCCACCGGCUAGAGGG GGUCUCGUACAACAUAGGCUCUCAAGAGUGGUAUACC	
	ACUGUGCCCAAGUAUGUUGCAACCCCAAGGGUACCCUUA	
	UCUCGAAUUUUGAUGAGUCAUCAUGUACUUUCAUGCC	
	AGAGGGGACUGUGUGCAGCCAAAAUGCCUUGUACCCG	
	AUGAGUCCUCUGCUCCAAGAAUGCCUCCGGGGGGUCCA	
	CCAAGUCCUGUGCUCGUACACUCGUAUCCGGGUCUUU	
	UGGGAACCGGUUCAUUUUAUCACAAGGGAACCUAAU	
	AGCCAAUUGUGCAUCAAUUCUUUGUAAGUGUUACAC	
	AACAGGUACGAUUAUUAAUCAAGACCCUGACAAGAUC	
	CUAACAUACAUUGCUGCCGAUCGCUGCCCGGUAGUCG	
	AGGUGAACGGCGUGACCAUCCAAGUCGGGAGCAGGAG	
	GUAUCCAGACGCUGUGUACUUGCACAGAAUUGACCUC GGUCCUCCCAUAUCAUUGGAGAGGUUGGACGUAGGG	
	ACAAAUCUGGGGAAUGCAAUUGCCAAAUUGGAGGAU	
	GCCAAGGAAUUGUUGGAAUCAUCGGACCAGAUAUUG	
	AGAAGUAUGAAAGGUUUAUCGAGCACUAGCAUAGUC	
	UACAUCCUGAUUGCAGUGUGUCUUGGAGGGUUGAUA	
	GGGAUCCCCACUUUAAUAUGUUGCUGCAGGGGGGCGUU	
	GUAACAAAAAGGGAGAACAAGUUGGUAUGUCAAGAC	
	CAGGCCUAAAGCCUGACCUUACAGGAACAUCAAAAUC	
	CUAUGUAAGAUCGCUUUGAUGAUAAUAGGCUGGAGC	
	CUCGGUGGCCAAGCUUCUUGCCCCUUGGGCCUCCCCC	
	UCUUUGAAUAAAGUCUGAGUGGGCGGCAAAAAAAAA AAAAAAAAAA	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	AAAAAAAAAAAAAAAAAAAAAUCUAG	
GC_F_MEASLES_D8	UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGAC	72
equence, NT (5'	UCACUAUAGGGAAAUAAGAGAGAAAAGAAGAGUAAG	
JTR, ORF, 3'	AAGAAAUAUAAGAGCCACCAUGGGUCUCAAGGUGAA	

UTR, ORF, 3 UTR)

AAGAAAUAUAAGAGCCACCAUGGGUCUCAAGGUGAA CGUCUCUGUCAUAUUCAUGGCAGUACUGUUAACUCUU

		SEQ ID
Description	Sequence	NO :
Sequence Length:	CAAACACCCACCGGUCAAAUCCAUUGGGGCAAUCUCU	
.864	CUAAGAUAGGGGUGGUAGGGGUAGGAAGUGCAAGCU ACAAAGUUAUGACUCGUUCCAGCCAUCAAUCAUUAGU	
	CAUAAAGUUAAUGCCCAAUAUAACUCUCCUCAACAAU	
	UGCACGAGGGUAGGGAUUGCAGAAUACAGGAGACUA	
	CUGAGAACAGUUCUGGAACCAAUUAGAGAUGCACUU	
	AAUGCAAUGACCCAGAAUAUAAGACCGGUUCAGAGU	
	GUAGCUUCAAGUAGGAGACACAAGAGAUUUGCGGGA GUUGUCCUGGCAGGUGCGGCCCUAGGCGUUGCCACAG	
	CUGCUCAAAUAACAGCCGGUAUUGCACUUCACCAGUC	
	CAUGCUGAACUCUCAAGCCAUCGACAAUCUGAGAGCG	
	AGCCUAGAAACUACUAAUCAGGCAAUUGAGGCAAUCA	
	GACAAGCAGGGCAGGAGAUGAUAUUGGCUGUUCAGG	
	GUGUCCAAGACUACAUCAAUAAUGAGCUGAUACCGUC UAUGAAUCAACUAUCUUGUGAUUUAAUCGGCCAGAA	
	GCUAGGGCUCAAAUUGCUCAGAUACUAUACAGAAAUC	
	CUGUCAUUAUUUGGCCCCAGCUUACGGGACCCCAUAU	
	CUGCGGAGAUAUCUAUCCAGGCUUUGAGCUAUGCGCU	
	UGGAGGAGAUAUCAAUAAGGUGUUGGAAAAGCUCGG	
	AUACAGUGGAGGUGAUCUACUGGGCAUCUUAGAGAG CAGAGGAAUAAAGGCCCGGAUAACUCACGUCGACACA	
	GAGUCCUACUUCAUUGUACUCAGUAUAGCCUAUCCGA	
	CGCUAUCCGAGAUUAAGGGGGUGAUUGUCCACCGGCU	
	AGAGGGGGUCUCGUACAACAUAGGCUCUCAAGAGUG	
	GUAUACCACUGUGCCCAAGUAUGUUGCAACCCAAGGG	
	UACCUUAUCUCGAAUUUUGAUGAGUCAUCAUGCACUU	
	UCAUGCCAGAGGGGACUGUGUGCAGCCAGAAUGCCUU GUACCCGAUGAGUCCUCUGCUCCAAGAAUGCCUCCGG	
	GGGUCCACUAAGUCCUCUGCUCCAAGAAUGCCUCCGG GGGUCCACUAAGUCCUGUGCUCGUACACUCGUAUCCG	
	GGUCUUUCGGGAACCGGUUCAUUUUAUCACAGGGGA	
	ACCUAAUAGCCAAUUGUGCAUCAAUCCUUUGCAAGUG	
	UUACACAACAGGAACAAUCAUUAAUCAAGACCCUGAC	
	AAGAUCCUAACAUACAUUGCUGCCGAUCACUGCCCGG	
	UGGUCGAGGUGAAUGGCGUGACCAUCCAAGUCGGGA GCAGGAGGUAUCCGGACGCUGUGUACUUGCACAGGAU	
	UGACCUCGGUCCUCCCAUAUCUUUGGAGAGGUUGGAC	
	GUAGGGACAAAUCUGGGGAAUGCAAUUGCUAAGUUG	
	GAGGAUGCCAAGGAAUUGUUGGAGUCAUCGGACCAG	
	AUAUUGAGGAGUAUGAAAGGUUUAUCGAGCACUAGU	
	AUAGUUUACAUCCUGAUUGCAGUGUGUCUUGGAGGA	
	UUGAUAGGGAUCCCCGCUUUAAUAUGUUGCUGCAGG GGGCGUUGUAACAAGAAGGGAGAACAAGUUGGUAUG	
	UCAAGACCAGGCCUAAAGCCUGAUCUUACAGGAACAU	
	CAAAAUCCUAUGUAAGGUCACUCUGAUGAUAAUAGG	
	CUGGAGCCUCGGUGGCCAAGCUUCUUGCCCCUUGGGC	
	CUCCCCCCAGCCCCUCCUCCCUCCUGCACCCGUACC	
	CCCGUGGUCUUUGAAUAAAGUCUGAGUGGGCGGC	
C_F_MEASLES_D8	AUGGGUCUCAAGGUGAACGUCUCUGUCAUAUUCAUG	73
RF Sequence, NT	GCAGUACUGUUAACUCUUCAAACACCCACCGGUCAAA	
	UCCAUUGGGGCAAUCUCUCUAAGAUAGGGGUGGUAG GGGUAGGAAGUGCAAGCUACAAAGUUAUGACUCGUU	
	CCAGCCAUCAAUCAUUAGUCAUAAAGUUAAUGCCCAA	
	UAUAACUCUCCUCAACAAUUGCACGAGGGUAGGGAUU	
	GCAGAAUACAGGAGACUACUGAGAACAGUUCUGGAA	
	CCAAUUAGAGAUGCACUUAAUGCAAUGACCCAGAAUA	
	UAAGACCGGUUCAGAGUGUAGCUUCAAGUAGGAGAC	
	ACAAGAGAUUUGCGGGAGUUGUCCUGGCAGGUGCGG CCCUAGGCGUUGCCACAGCUGCUCAAAUAACAGCCGG	
	UAUUGCACUUCACCAGUCCAUGCUGAACUCUCAAGCC	
	AUCGACAAUCUGAGAGCGAGCCUAGAAACUACUAAUC	
	AGGCAAUUGAGGCAAUCAGACAAGCAGGGCAGGAGA	
	UGAUAUUGGCUGUUCAGGGUGUCCAAGACUACAUCA	
	AUAAUGAGCUGAUACCGUCUAUGAAUCAACUAUCUU	
	GUGAUJUJAAUCGGCCAGAAGCUAGGGCUCAAAUUGC UCAGAUACUAUACAGAAAUCCUGUCAUUAUUUGGCCC	
	CAGCUUACGGGACCCCAUAUCUGCGGAGAUAUCUAUC	
	CAGGCUUUGAGCUAUGCGCUUGGAGGAGAUAUCAAU	
	AAGGUGUUGGAAAAGCUCGGAUACAGUGGAGGUGAU	
	CUACUGGGCAUCUUAGAGAGCAGAGGAAUAAAGGCCC	
	GGAUAACUCACGUCGACACAGAGUCCUACUUCAUUGU	
	ACUCAGUAUAGCCUAUCCGACGCUAUCCGAGAUUAAG GGGGUGAUUGUCCACCGGCUAGAGGGGGUCUCGUACA	
	ACAUAGGCUCUCAAGAGUGGUAUACCACUGUGCCCAA	

	MeV Nucleic Acid Sequences	
Description	Sequence	SEQ ID NO:
	GAUGAGUCAUCAUGCACUUUCAUGCCAGAGGGGACUG UGUGCAGCCAGAAUGCCUUGUACCCGAUGAGUCCUCU GCUCCAAGAAUGCCUCCGGGGGUCCACUAAGUCCUGU GCUCGUACACUCGUAUCCGGGUCUUUCGGGAACCGGU UCAUUUUAUCACAGGGGAACCUAAUAGCCAAUUGUGC	
	AUCAAUCCUUUGCAAGUGUUACACAACAGGAACAAUC AUUAAUCAAGACCCUGACAAGAUCCUAACAUACAUUG CUGCCGAUCACUGCCCGGUGGUCGAGGUGAAUGGCGU GACCAUCCAAGUCGGGAGCAGGAGGUAUCCGGACGCU	
	GUGUACUUGCACAGGAUUGACCUCGGUCCUCCCAUAU CUUUGGACAGGUUGGACGUAGGACAAAUCUGGGGA AUGCAAUUGCUAAGUUGGAGGAUGCCAAGGAAUUGU UGGAGUCAUCGGACCAGAUAUUGAGGAGUAUGAAAG GUUUAUCGAGCACUAGUAUAGUUUACAUCCUGAUUG	
	CASUGUGUCUUUGGAGGAUUGAUAGGAUCCCGCUU UAAUAUGUUGCUGCAGGGGCGUUGUAACAAGAAGG GAGAACAAGUUGGUAUGUCAAGACCAGGCCUAAAGCC UGAUCUUACAGGAACAUCAAAAUCCUAUGUAAGGUC ACUCUGA	
GC_F_MEASLES_D8 mRMA Sequence (assumes T100 tail) Sequence Length: 1925	G*GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAA UAUAAGAGCCACCAUGGGUCUCAAGGUGAACGUCUCU GUCAUAUUCAUGGCAGUACUGUUAACUCUUCAAACAC CCACCGGUCAAAUCCAUUGGGGCAAUCUCUCUAAGAU AGGGUGGUAGGGUAG	74
	GGGUAGGGAUUGCAGAAUACAGGAGACUACUGAGAA CAGUUCUGGAACCAAUUAGAGAUGCACUUAAUGCAA UGACCCAGAAUAUAAGACCGGUUCAGAGUGUAGCUUC AAGUAGGAGACACAAGAGAUUUGCGGGAGUUGUCCU	
	GGCAGGUGCGGCCCUAGGCGUUGCCACAGCUGCUCAA AUAACAGCCGGUAUUGCACUUCACCAGUCCAUGCUGA ACUCUCAAGCCAUCGACAAUCUGAGAGCGAGCCUAGA AACUACUAAUCAGGCAAUUGAGGCAAUCAGACAAGCA	
	GGGCAGGAGAUGAUAUUGGCUGUUCAGGGUGUCCAA GACUACAUCAAUAAUGAGCUGAUACCGUCUAUGAAUC AACUAUCUUGUGAUUUAAUCGGCCAGAAGCUAGGGC UCAAAUUGCUCAGAUACUAUACAGAAAUCCUGUCAUU AUUUGGCCCCAGCUACGGACCCCAUAUCUGCGGAG	
	AUAUCUAUCCAGGCUUUGAGCUAUGCGCUUGGAGGA GAUAUCAAUAAGGUGUUGGAAAAGCUCGGAUACAGU GGAGGUGAUCUACUGGGCAUCUUAGAGAGCAGAGGA	
	AUAAAGGCCCGGAUAACUCACGUCGACACAGAGUCCU ACUUCAUUGUACUCAGUAUAGCCUAUCCGACGCUAUC CGAGAUUAAGGGGGUGAUUGUCCACCGGCUAGAGGG GGUCUCGUACAACAUAGGCUCUCAAGAGUGGUAUACC	
	ACUGUGCCCAAGUAUGUUGCAACCCAAGGGUACCUUA UCUCGAAUUUUGAUGAGUCAUCAUGCACUUUCAUGCC AGAGGGGACUGUGUGCAGCCAGAAUGCCUUGUACCCG AUGAGUCCUCUGCUCCAAGAAUGCCUCCGGGGGUCCA	
	CUAAGUCCUGUGCUCGUACACUCGUAUCCGGGUCUUU CGGGAACCGGUUCAUUUUAUCACAGGGGAACCUAAUA GCCAAUUGUGCAUCAAUCCUUUGCAAGUGUUACACAA CAGGAACAAUCAUUAAUCAAGACCCUGACAAGAUCCU	
	AACAUACAUUGCUGCCGAUCACUGCCCGGUGGUCGAG GUGAAUGGCGUGACCAUCCAAGUCGGGAGCAGGAGG UAUCCGGACGCUGUGUACUUGCACAGGAUUGACCUCG	
	GUCCUCCCAUAUCUUUGGAGAGGUUGGACGUAGGGAC AAAUCUGGGGAAUGCAAUUGCUAAGUUGGAGGAUGC CAAGGAAUUGUUGGAGUCAUCGGACCAGAUAUUGAG GAGUAUGAAAGGUUUAUCGAGCACUAGUAUAGUUUA	
	CAUCCUGAUUGCAGUGUGUCUUGGAGGAUUGAUAGG GAUCCCCGCUUUAAUAUGUUGCUGCAGGGGGGCUUUGU AACAAGAAGGGAGAACAAGUUGGUAUGUCAAGACCA GGCCUAAAGCCUGAUCUUACAGGAACAUCAAAAUCCU	
	AUGUAAGGUCACUCUGAUGAUAAUAGGCUGGAGCCU CGGUGGCCAAGCUUCUUGCCCCUUGGGCCUCCCCCCA GCCCCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUC	
	UUUGAAUAAAGUCUGAGUGGGCGGCAAAAAAAAAA АЛАЛАЛАЛАЛАЛАЛАЛАЛАЛАЛАЛАЛАЛА	

Description	Sequence	SEQ ID NO:
GC_H_MEASLES_B3	UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGAC	75
Sequence, NT (5'	UCACUAUAGGGAAAUAAGAGAGAAAAGAAGAGUAAG	
UTR, ORF, 3'	AAGAAAUAUAAGAGCCACCAUGUCACCGCAACGAGAC	
UTR)	CGGAUAAAUGCCUUCUACAAAGAUAACCCUUAUCCCA	
Sequence Length:	AGGGAAGUAGGAUAGUUAUUAACAGAGAACAUCUUA	
2065	UGAUUGACAGACCCUAUGUUCUGCUGGCUGUUCUGUU	
2065		
	CGUCAUGUUUCUGAGCUUGAUCGGAUUGCUGGCAAU	
	UGCAGGCAUUAGACUUCAUCGGGCAGCCAUCUACACC	
	GCGGAGAUCCAUAAAAGCCUCAGUACCAAUCUGGAUG	
	UGACUAACUCCAUCGAGCAUCAGGUCAAGGACGUGCU	
	GACACCACUCUUUAAAAUCAUCGGGGAUGAAGUGGGC	
	CUGAGAACACCUCAGAGAUUCACUGACCUAGUGAAAU	
	UCAUCUCGGACAAGAUUAAAUUCCUUAAUCCGGAUAG	
	GGAGUACGACUUCAGAGAUCUCACUUGGUGCAUCAAC	
	CCGCCAGAGAGGAUCAAACUAGAUUAUGAUCAAUACU	
	GUGCAGAUGUGGCUGCUGAAGAGCUCAUGAAUGCAU	
	UGGUGAACUCAACUCUACUGGAGACCAGAACAACCAC	
	UCAGUUCCUAGCUGUCUCAAAGGGAAACUGCUCAGGG	
	UGUCCUUGUUGGACUUGUACUUAGGUCGAGGUUACA	
	AUGUGUCAUCUAUAGUCACUAUGACAUCCCAGGGAAU	
	GUAUGGGGGAACCUACCUAGUUGAAAAGCCUAAUCU	
	GAACAGCAAAGGGUCAGAGUUGUCACAACUGAGCAU	
	GUACCGAGUGUUUGAAGUAGGUGUGAUCAGAAACCC	
	GGGUUUGGGGGCUCCGGUGUUCCAUAUGACAAACUA	
	UUUUGAGCAACCAGUCAGUAAUGGUCUCGGCAACUGU	
	AUGGUGGCUUUGGGGGAGCUCAAACUCGCAGCCCUUU	
	GUCACGGGGACGAUUCUAUCAUAAUUCCCUAUCAGGG	
	AUCAGGGAAAGGUGUCAGCUUCCAGCUCGUCAAGCUG	
	GGUGUCUGGAAAUCCCCAACCGACAUGCAAUCCUGGG	
	UCCCCUUAUCAACGGAUGAUCCAGUGGUAGACAGGCU	
	UUACCUCUCAUCUCACAGAGGUGUCAUCGCUGACAAU	
	CAAGCAAAAUGGGCUGUCCCGACAACACGAACAGAUG	
	ACAAGUUGCGAAUGGAGACAUGCUUCCAGCAGGCGUG	
	UAAAGGUAAAAUCCAAGCACUCUGCGAGAAUCCCGAG	
	UGGGUACCAUUGAAGGAUAACAGGAUUCCUUCAUAC	
	GGGGUCCUGUCUGUUGAUCUGAGUCUGACGGUUGAG	
	CUUAAAAUCAAAAUUGCUUCGGGAUUCGGGCCAUUG	
	AUCACACGGCUCAGGGAUGGACCUAUACAAAUCCA	
	ACUGCAACAAUGUGUAUUGGCUGACUAUUCCGCCAAU	
	GAGAAAUCUAGCCUUAGGCGUAAUCAACACAUUGGA	
	GUGGAUACCGAGAUUCAAGGUUAGUCCCAACCUCUUC	
	ACUGUCCCAAUUAAGGAAGCAGGCGAAGACUGCCAUG	
	CCCCAACAUACCUACCUGCGGAGGUGGACGGUGAUGU	
	CAAACUCAGUUCCAACCUGGUGAUUCUACCUGGUCAA	
	GAUCUCCAAUAUGUUUUGGCAACCUACGAUACCUCCA	
	GGGUUGAGCAUGCUGUGGUUUAUUACGUUUACAGCC	
	CAAGCCGCUCAUUUUCUUACUUUUAUCCUUUUAGGUU	
	GCCUAUAAAGGGGGUCCCAAUCGAACUACAAGUGGAA	
	UGCUUCACAUGGGAUCAAAAACUCUGGUGCCGUCACU	
	UCUGUGUGCUUGCGGACUCAGAAUCCGGUGGACUUAU	
	CACUCACUCUGGGAUGGUGGGCAUGGGAGUCAGCUGC	
	ACAGCUACCCGGGAAGAUGGAACCAAUCGCAGAUAAU	
	GAUAAUAGGCUGGAGCCUCGGUGGCCAAGCUUCUUGC	
	CCCUUGGGCCUCCCCCAGCCCCUCCUCCCCUUCCUGC	
	ACCCGUACCCCCGUGGUCUUUGAAUAAAGUCUGAGUG	
	GGCGGC	
GC H MEASLES B3	AUGUCACCGCAACGAGACCGGAUAAAUGCCUUCUACA	76
		/6
ORF Sequence, NT	AAGAUAACCCUUAUCCCAAGGGAAGUAGGAUAGUUA	
	UUAACAGAGAACAUCUUAUGAUUGACAGACCCUAUG	
	UUCUGCUGGCUGUUCUGUUCGUCAUGUUUCUGAGCUU	
	GAUCGGAUUGCUGGCAAUUGCAGGCAUUAGACUUCA	
	UCGGGCAGCCAUCUACACCGCGGAGAUCCAUAAAAGC	
	CUCAGUACCAAUCUGGAUGUGACUAACUCCAUCGAGC	
	AUCAGGUCAAGGACGUGCUGACACCACUCUUUAAAAU	
	CAUCGGGGAUGAAGUGGGCCUGAGAACACCUCAGAGA	
	UUCACUGACCUAGUGAAAUUCAUCUCGGACAAGAUUA	
	ABUUCCUUAAUCCGGAUACGGACUACGGACUUCAGAG	

AAUUCCUUAAUCCGGAUAGGGAGUACGACUUCAGAG AUCUCACUUGGUGCAUCAACCCGCCAGAGAGGAUCAA ACUGGAGACCAGAACAACCACUCAGUUCCUAGCUGUC UCAAAGGGAAACUGCUCAGGGCCCACUACAAUCAGAG

TABLE 13-continued

SEQ ID		
Description	Sequence	NO:
	GUCAAUUCUCAAACAUGUCGCUGUCCUUGUUGGACUU	
	GUACUUAGGUCGAGGUUACAAUGUGUCAUCUAUAGU	
	CACUAUGACAUCCCAGGGAAUGUAUGGGGGGAACCUAC	
	CUAGUUGAAAAGCCUAAUCUGAACAGCAAAGGGUCA GAGUUGUCACAACUGAGCAUGUACCGAGUGUUUGAA	
	GUAGGUGUGAUCAGAAACCCGGGUUUGGGGGGCUCCG	
	GUGUUCCAUAUGACAAACUAUUUUGAGCAACCAGUCA	
	GUAAUGGUCUCGGCAACUGUAUGGUGGCUUUGGGGG	
	AGCUCAAACUCGCAGCCCUUUGUCACGGGGACGAUUC	
	UAUCAUAAUUCCCUAUCAGGGAUCAGGGAAAGGUGU	
	CAGCUUCCAGCUCGUCAAGCUGGGUGUCUGGAAAUCC	
	CCAACCGACAUGCAAUCCUGGGUCCCCUUAUCAACGG	
	AUGAUCCAGUGGUAGACAGGCUUUACCUCUCAUCUCA CAGAGGUGUCAUCGCUGACAAUCAAGCAAAAUGGGCU	
	GUCCCGACAACACGAACAGAUGACAAGUUGCGAAUGG	
	AGACAUGCUUCCAGCAGGCGUGUAAAGGUAAAAUCCA	
	AGCACUCUGCGAGAAUCCCGAGUGGGUACCAUUGAAG	
	GAUAACAGGAUUCCUUCAUACGGGGUCCUGUCUGUUG	
	AUCUGAGUCUGACGGUUGAGCUUAAAAUCAAAAUUG	
	CUUCGGGAUUCGGGCCAUUGAUCACACACGGCUCAGG	
	GAUGGACCUAUACAAAUCCAACUGCAACAAUGUGUAU	
	UGGCUGACUAUUCCGCCAAUGAGAAAUCUAGCCUUAG GCGUAAUCAACACAUUGGAGUGGAUACCGAGAUUCA	
	AGGUUAGUCCCAACCUCUUCACUGUCCCAAUUAAGGA	
	AGCAGGCGAAGACUGCCAUGCCCCAACAUACCUACCU	
	GCGGAGGUGGACGGUGAUGUCAAACUCAGUUCCAACC	
	UGGUGAUUCUACCUGGUCAAGAUCUCCAAUAUGUUU	
	UGGCAACCUACGAUACCUCCAGGGUUGAGCAUGCUGU	
	GGUUUAUUACGUUUACAGCCCAAGCCGCUCAUUUUCU	
	UACUUUUAUCCUUUUAGGUUGCCUAUAAAGGGGGUC	
	CCAAUCGAACUACAAGUGGAAUGCUUCACAUGGGAUC AAAAACUCUGGUGCCGUCACUUCUGUGUGCCUUGCGGA	
	CUCAGAAUCCGGUGGACUUAUCACUCACUCUGGGAUG	
	GUGGGCAUGGGAGUCAGCUGCACAGCUACCCGGGAAG	
	AUGGAACCAAUCGCAGAUAA	
GC H MEASLES B3	G*GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAA	77
mRNA Sequence	UAUAAGAGCCACCAUGUCACCGCAACGAGACCGGAUA	
(assumes T100	AAUGCCUUCUACAAAGAUAACCCUUAUCCCAAGGGAA	
Tail)	GUAGGAUAGUUAUUAACAGAGAACAUCUUAUGAUUG	
Sequence Length:	ACAGACCCUAUGUUCUGCUGGCUGUUCUGUUCGUCAU	
2126	GUUUCUGAGCUUGAUCGGAUUGCUGGCAAUUGCAGG	
	CAUUAGACUUCAUCGGGCAGCCAUCUACACCGCGGAG AUCCAUAAAAGCCUCAGUACCAAUCUGGAUGUGACUA	
	ACUCCAUCGAGCAUCAGGUCAAGGACGUGCUGACACC	
	ACUCUUUAAAAUCAUCGGGGAUGAAGUGGGCCUGAG	
	AACACCUCAGAGAUUCACUGACCUAGUGAAAUUCAUC	
	UCGGACAAGAUUAAAUUCCUUAAUCCGGAUAGGGAG	
	UACGACUUCAGAGAUCUCACUUGGUGCAUCAACCCGC	
	CAGAGAGGAUCAAACUAGAUUAUGAUCAAUACUGUG	
	UGAACUCAACUCUACUGGAGACCAGAACAACCACUCA GUUCCUAGCUGUCUCAAAGGGAAACUGCUCAGGGCCC	
	ACUACAAUCAGAGGUCAAUUCUCAAACUGCUCAGGGCCC	
	CCUUGUUGGACUUGUACUUAGGUCGAGGUUACAAUG	
	UGUCAUCUAUAGUCACUAUGACAUCCCAGGGAAUGUA	
	UGGGGGAACCUACCUAGUUGAAAAGCCUAAUCUGAAC	
	AGCAAAGGGUCAGAGUUGUCACAACUGAGCAUGUACC	
	GAGUGUUUGAAGUAGGUGUGAUCAGAAACCCGGGUU	
	UGGGGGCUCCGGUGUUCCAUAUGACAAACUAUUUUG	
	AGCAACCAGUCAGUAAUGGUCUCGGCAACUGUAUGGU	
	GGCUUUGGGGGAGCUCAAACUCGCAGCCCUUUGUCAC GGGGACGAUUCUAUCAUAAUUCCCUAUCAGGGAUCAG	
	GGGAAGGUGUCAGCUUCCAGCUCGUCAAGCUGGGUGU	
	CUGGAAAUCCCCAACCGACAUGCAAUCCUGGGUCCCC	
	UUAUCAACGGAUGAUCCAGUGGUAGACAGGCUUUACC	
	UCUCAUCUCACAGAGGUGUCAUCGCUGACAAUCAAGC	
	AAAAUGGGCUGUCCCGACAACACGAACAGAUGACAAG	
	UUGCGAAUGGAGACAUGCUUCCAGCAGGCGUGUAAA	
	GGUAAAAUCCAAGCACUCUGCGAGAAUCCCGAGUGGG	
	UACCAUUGAAGGAUAACAGGAUUCCUUCAUACGGGG	
	UCCUGUCUGUUGAUCUGAGUCUGACGGUUGAGCUUA	

	MeV Nucleic Acid Sequences	
Description	Sequence	SEQ ID NO:
	AAUCUAGCCUUAGGCGUAAUCAACACAUUGGAGUGG	
	AUACCGAGAUUCAAGGUUAGUCCCAACCUCUUCACUG	
	UCCCAAUUAAGGAAGCAGGCGAAGACUGCCAUGCCCC	
	AACAUACCUACCUGCGGAGGUGGACGGUGAUGUCAAA CUCAGUUCCAACCUGGUGAUUCUACCUGGUCAAGAUC	
	UCCAAUAUGUUUUGGCAACCUACGAUACCUCCAGGU	
	UGAGCAUGCUGUGGUUUAUUACGUUUACAGCCCAAGC	
	CGCUCAUUUUCUUACUUUUAUCCUUUUAGGUUGCCUA	
	UAAAGGGGGUCCCAAUCGAACUACAAGUGGAAUGCU	
	UCACAUGGGAUCAAAAACUCUGGUGCCGUCACUUCUG UGUGCUUGCGGACUCAGAAUCCGGUGGACUUAUCACU	
	CACUCUGGGAUGGUGGGCAUGGGAGUCAGCUGCACAG	
	CUACCCGGGAAGAUGGAACCAAUCGCAGAUAAUGAUA	
	AUAGGCUGGAGCCUCGGUGGCCAAGCUUCUUGCCCCU	
	UGGGCCUCCCCCAGCCCCUCCUCCCCUUCCUGCACCC	
	GUACCCCCGUGGUCUUUGAAUAAAGUCUGAGUGGGCG	
	ССААААААААААААААААААААААААААААААААААА	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
C_H_MEASLES_D8	UCAAGCUUUUGGACCCUCGUACAGAAGCUAAUACGAC	78
Sequence, NT (5' JTR, ORF, 3'	UCACUAUAGGGAAAUAAGAGAGAAAAGAAGAGUAAG AAGAAAUAUAAGAGCCACCAUGUCACCACAACGAGAC	
JTR, ORF, 3	CGGAUAAAUGCCUUCUACAAAGACAACCCCCAUCCUA	
Sequence Length:	AGGGAAGUAGGAUAGUUAUUAACAGAGAACAUCUUA	
2065	UGAUUGAUAGACCUUAUGUUUUGCUGGCUGUUCUAU	
	UCGUCAUGUUUCUGAGCUUGAUCGGGUUGCUAGCCAU	
	UGCAGGCAUUAGACUUCAUCGGGCAGCCAUCUACACC	
	GCAGAGAUCCAUAAAAGCCUCAGCACCAAUCUGGAUG UAACUAACUCAAUCGAGCAUCAGGUUAAGGACGUGCU	
	GACACCACUCAAUCGAGCAUCAGGUUAAGGACGUGCU GACACCACUCUUCAAGAUCAUCGGUGAUGAAGUGGGC	
	UUGAGGACACCUCAGAGAUUCACUGACCUAGUGAAGU	
	UCAUCUCUGACAAGAUUAAAUUCCUUAAUCCGGACAG	
	GGAAUACGACUUCAGAGAUCUCACUUGGUGUAUCAAC	
	CCGCCAGAGAGAAUCAAAUUGGAUUAUGAUCAAUAC	
	UGUGCAGAUGUGGCUGCUGAAGAACUCAUGAAUGCA	
	UUGGUGAACUCAACUCUACUGGAGACCAGGGCAACCA	
	AUCAGUUCCUAGCUGUCUCAAAGGGAAACUGCUCAGG GCCCACUACAAUCAGAGGCCAAUUCUCAAACAUGUCG	
	CUGUCCCUGUUGGACUUGUAUUUAAGUCGAGGUUAC	
	AAUGUGUCAUCUAUAGUCACUAUGACAUCCCAGGGAA	
	UGUACGGGGGAACUUACCUAGUGGAAAAGCCUAAUC	
	UGAGCAGCAAAGGGUCAGAGUUGUCACAACUGAGCA	
	UGCACCGAGUGUUUGAAGUAGGUGUUAUCAGAAAUC CGGGUUUGGGGGCUCCGGUAUUCCAUAUGACAAACUA	
	UCUUGAGCAACCAGUCAGUAAUGAUUUCAGCAACUAC	
	AUGGUGGCUUUGGGGGAGCUCAAGUUCGCAGCCCUCU	
	GUCACAGGGAAGAUUCUAUCACAAUUCCCUAUCAGGG	
	AUCAGGGAAAGGUGUCAGCUUCCAGCUUGUCAAGCUA	
	GGUGUCUGGAAAUCCCCAACCGACAUGCAAUCCUGGG	
	UCCCCCUAUCAACGGAUGAUCCAGUGAUAGACAGGCU UUACCUCUCAUCUCA	
	CAAGCAAAAUGGGCUGUCCCGACAACACGGACAAU	
	ACAAGUUGCGAAUGGAGACAUGCUUCCAGCAGGCGUG	
	UAAGGGUAAAAUCCAAGCACUUUGCGAGAAUCCCGAG	
	UGGACACCAUUGAAGGAUAACAGGAUUCCUUCAUACG	
	GGGUCUUGUCUGUUGAUCUGAGUCUGACAGUUGAGC	
	UUAAAAUCAAAAUUGUUUCAGGAUUCGGGCCAUUGA	
	UCACACACGGUUCAGGGAUGGACCUAUACAAAUCCAA	
	CCACAACAAUAUGUAUUGGCUGACUAUCCCGCCAAUG AAGAACCUGGCCUUAGGUGUAAUCAACACAUUGGAG	
	UGGAUACCGAGAUUCAAGGUUAGUCCCAACCUCUUCA	
	CUGUUCCAAUUAAGGAAGCAGGCGAGGACUGCCAUGC	
	CCCAACAUACCUACCUGCGGAGGUGGAUGGUGAUGUC	
	AAACUCAGUUCCAAUCUGGUGAUUCUACCUGGUCAAG	
	AUCUCCAAUAUGUUCUGGCAACCUACGAUACUUCCAG	
	AGUUGAACAUGCUGUAGUUUAUUACGUUUACAGCCC	
	AAGCCGCUCAUUUUCUUACUUUUAUCCUUUUAGGUUG CCUGUAAGGGGGGGUCCCCAUUGAAUUACAAGUGGAA	
	UGCUUCACAUGGGACCAAAAACUCUGGUGCCGUCACU	
	UCUGUGUGCUUGCGGACUCAGAAUCUGGUGGACAUA	
	UCACUCACUCUGGGAUGGUGGGCAUGGGAGUCAGCUG	
	CACAGCCACUCGGGAAGAUGGAACCAGCCGCAGAUAG	
	UGAUAAUAGGCUGGAGCCUCGGUGGCCAAGCUUCUUG	
	CCCCUUGGGCCUCCCCCAGCCCCUCCUCCCUCCUG	

	MeV Nucleic Acid Sequences	
Description	Sequence	SEQ II NO:
	CACCCGUACCCCGUGGUCUUUGAAUAAAGUCUGAGU GGGCGGC	
GC_H_MEASLES_D8 ORF Sequence, NT	AUGUCACCACAACGAGACCGGAUAAAUGCCUUCUACA AAGACAACCCCCCAUCCUAAGGGAAGUAGGAUAGUUAU UAACAGAGAACAUCUUAUGAUUGAUAGACCUUAUGU UUGCUGGCUGUUCUAUUCGAGGCAUUAGACUUCAU GAUCGGGUUCCAAUCGACGCAUUAGACUUCUGACAGC UCAGCACCAAUCUGGAUGAACUAACUCAUUCAAUCGAGCA UCAGGUUAAGACGGCGUGACGACACCACUCUUCAAAAUC AUCGGUGAUGAAGUGGGCUUGAGGACACCUCAGAGA UUCACUUAAUCCGGACAGGAAUACGACUUCAAGAGA UUCACUUAGUGUAUCAACCGCCCAGAGAUUCA AAUUCCUUAAUCCGGACAGGAAUACGACUUCAAGAGA UUCACUUAGUGAUGAAGUUGAGGACACCUCAGAGA UUCACUUAGUGAUCAAUACUGUGCAGAGUUGGC GAAGAACUCAUGAUCAAUCGGUGUCCU GAAGAACUCAUGAUCAAUCGUUGCCAGAUGUGUCUC AAAGGGAACUGCUCAGGGCCCACUACAAUCAG UUGACUUCAAAACAUGUCGCUGUCCUAGAGAGUUAC UUGAGAUCAGGGUUACAAUCGUGUCCUAGUGUCUC AAAGGGAAACUGCUCAGGGCCCACUACAAUCAGUGC CAAUUCUCAAAACAUGUCGCUGUCCUAGUGUCUC AAGGGAAACUGCUCAGGGCCCACUACAAUCAGUGC CUUAGACAUCCAGGGAUCUGGCGGGAACUUACCU AUUUAAGUCCAGGGUUACAGGGGCAACUUACCU AUUUAAGUCCAGGGAUGCCGGGUAUUGAAGU AGUGUUAUCAGAAAUCUGGGGGCACCUAUGAGG CUCAAGUUCGCAGACAAUCGGGUUUGGGGAACUUACCU AUGAGAUUCCAGAAAUCUGGGGCACCAGUCAGG AUUGCCACAACUGACAGGGAUGUUGGAGGU CUCAGGUUUCAGCAACUGCCUGUUGGGGAACUCCGGU AUUCCAUAUGACAAACUAUCUUGAGCAACCAGUCAGG AUGCUUUCAGCAACUGCAUGGUGUGGGAAAUUCUA UCACAAUUUCAGCAACUGCAUGGGGAAGUUCUA CUCCAGUUGUCAAGGAUGCCGGUUUGGGGAAGUUCAA CUCCAGUUGCCAGCACUGGGUCUGGGAAAUCCCCA ACCGACUCGCUGGCAAUGAGGGUGUUGAAGGAG AUCCAUUCAGCAACUGCGUUAGGGAAAUCCCCA ACCGACUGCAUCCAGGGUUUAGGGAAAUCCCCA ACCGACAUCCAACUGGGUUUACCUCUCAUCUCA	79
GC_H_MEASLES_D8 mRNA Sequence (assumes T100 tail) Sequence Length: 2126	G*GGGAAUAAGAGAGAAAAGAAGAUAAGAAGAA UAUAAGAGCCACCAUGUCACCACACGAGACCGGAUA AAUGCCUUCUACAAAGACAACCCCCAUCCUAAGGGAA GUAGAUAGUUAUUAACAGAGAACAUCUUAUGAUUG AUAGACCUUAUUGUCUGCUGCUUCUAUUCGUCA UGUUUCUGAGCUUGAUCGGCUGCUUCUAUUCGAG GAUUCUGAGCUUGAUCGGGCAGCCAUCUACACCGCAGA GAUCCAUAAAAGCCUCAGCACCAAUCUGGAUGUAACU AACUCAAUCGAGCAUCAGGUUAAGGACGUGCUGACAC CACUCUUCAAGAUCAUCGGUGAUGAAGUUGCAU GGACACCUCAGAGAUUCACUGACCUAGUGAAGUUCAU CUCUGACAAGAUAAUCCCUUAGUGUAAGUUCAU UACGACUUCAAGAGUCACUUGACCUAGUGAAGUUCAU	80
	CAGAGAGAAUCAAUUGGAUUAUGAUCAAUACUGUG CAGAUGUGGCUGCUGAAGAACUCAUGAAUGCAUGG UGAACUCAACUC	

CCCUGUUGGACUUGUAUUUAAGUCGAGGUUACAAUG UGUCAUCUAUAGUCACUAUGACAUCCCAGGGAAUGUA

TABLE 13-continued

Description	Sequence	SEQ ID NO:
	CGGGGGAACUUACCUAGUGGAAAAGCCUAAUCUGAGC	
	AGCAAAGGGUCAGAGUUGUCACAACUGAGCAUGCACC	
	GAGUGUUUGAAGUAGGUGUUAUCAGAAAUCCGGGUU	
	UGGGGGCUCCGGUAUUCCAUAUGACAAACUAUCUUGA	
	GCAACCAGUCAGUAAUGAUUUCAGCAACUGCAUGGUG	
	GCUUUGGGGGAGCUCAAGUUCGCAGCCCUCUGUCACA	
	GGGAAGAUUCUAUCACAAUUCCCUAUCAGGGAUCAGG	
	GAAAGGUGUCAGCUUCCAGCUUGUCAAGCUAGGUGUC	
	UGGAAAUCCCCAACCGACAUGCAAUCCUGGGUCCCCC	
	UAUCAACGGAUGAUCCAGUGAUAGACAGGCUUUACCU	
	CUCAUCUCACAGAGGCGUUAUCGCUGACAAUCAAGCA	
	AAAUGGGCUGUCCCGACAACACGGACAGAUGACAAGU	
	UGCGAAUGGAGACAUGCUUCCAGCAGGCGUGUAAGG	
	GUAAAAUCCAAGCACUUUGCGAGAAUCCCGAGUGGAC	
	ACCAUUGAAGGAUAACAGGAUUCCUUCAUACGGGGUC	
	UUGUCUGUUGAUCUGAGUCUGACAGUUGAGCUUAAA	
	AUCAAAAUUGUUUCAGGAUUCGGGCCAUUGAUCACAC	
	ACGGUUCAGGGAUGGACCUAUACAAAUCCAACCACAA	
	CAAUAUGUAUUGGCUGACUAUCCCGCCAAUGAAGAAC	
	CUGGCCUUAGGUGUAAUCAACACAUUGGAGUGGAUA	
	CCGAGAUUCAAGGUUAGUCCCAACCUCUUCACUGUUC	
	CAAUUAAGGAAGCAGGCGAGGACUGCCAUGCCCCAAC	
	AUACCUACCUGCGGAGGUGGAUGGUGAUGUCAAACUC	
	AGUUCCAAUCUGGUGAUUCUACCUGGUCAAGAUCUCC	
	AAUAUGUUCUGGCAACCUACGAUACUUCCAGAGUUGA	
	ACAUGCUGUAGUUUAUUACGUUUACAGCCCAAGCCGC	
	UCAUUUUCUUACUUUUAUCCUUUUAGGUUGCCUGUA	
	AGGGGGGUCCCCAUUGAAUUACAAGUGGAAUGCUUC	
	ACAUGGGACCAAAAACUCUGGUGCCGUCACUUCUGUG	
	UGCUUGCGGACUCAGAAUCUGGUGGACAUAUCACUCA	
	CUCUGGGAUGGUGGGCAUGGGAGUCAGCUGCACAGCC	
	ACUCGGGAAGAUGGAACCAGCCGCAGAUAGUGAUAA	
	UAGGCUGGAGCCUCGGUGGCCAAGCUUCUUGCCCCUU	
	GGGCCUCCCCCAGCCCUCCUCCCCUUCCUGCACCCG	
	UACCCCCGUGGUCUUUGAAUAAAGUCUGAGUGGGCGG	
	Саадаалаалаалаалаалаалаалаалаалаалаалаа	
	<u>AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA</u>	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	

TABLE 14

MeV Amino Acid Sequences		
Description	Sequence	SEQ ID NO:
GC_F_MEASLES_B3.1 ORF Sequence, AA	MGLKVNVSAVFMAVLLTLQTPAGQIHWGNLSKIGVV GIGSASYKVMTRSSHQSLVIKLMPNITLLNNCTRVEIA EYRRLRTVLEPIRDALNAMTQNIRPVQSVASSRHK RPAGVVLAGAALGVATAAQITAGIALHRSMLNSQAID NLRASLETTNQAIEAIRQAGQEMILAVQGVQVINNE LIPSMNQLSCDLIGQKLGLKLRYYTEILSLFGPSLRDP ISAEISIQALSYALGGDINKVLEKLGYSGGDLLGILESR GIKARITHVDTESYFIVLSIAYPTLSEIKGVIVHRLEGVS YNIGSQEWYTTVPKYVATQGYLISNFDESSCTFMPEG TVCSQNALYPMSPLLQECLRGSTKSCARTLVSGSFGN RFILSQGNLIANCASILCKCYTTGTINQDPDKILTYIAA DRCPVVEVNGVTIQVGSRRYPDAVYLHRIDLGPPISLE RLDVGTNLGNAIAKLEDAKELLESSDQILRSMKGLSST SIVYILIAVCLGGLIGIPTLICCCRGRCNKKGEQVGMSR PGLKPDLTGTSKSYVRSL*	47
GC_F_MEASLES_D8 ORF Sequence, AA	MGLKVNVSVIFMAVLLTLQTPTGQIHWGNLSKIGVVG VGSASYKVMTRSSHQSLVIKLMPNITLLNNCTRVGIAE YRRLLRTVLEPIRDALNAMTQNIRPVQSVASSRRHKR FAGVVLAGAALGVATAAQITAGIALHQSMLNSQAIDN LRASLETTNQAIEAIRQAGQEMILAVQGVQDYINNELI PSMNQLSCDLIGQKLGLKLRYYTEILSLFGPSLRDPIS AEISIQALSYALGGDINKVLEKLGYSGGDLLGILESRGI KARITHVDTESYFIVLSIAYPTLSEIKGVIVHRLEGVSY NIGSQEWYTTVPKYVATQGYLISNFDESSCTFMPEGT VCSQNALYPMSPLLQECLRGSTKSCARTLVSGSFGNR	48

	MeV Amino Acid Sequences	CEO ID
Description	Sequence	SEQ ID NO:
	FILSQGNLIANCASILCKCYTTGTIINQDPDKILTYIAAD HCPVVEVNGVTIQVGSRRYPDAVYLHRIDLGPPISLER LDVGTNLGNAIAKLEDAKELLESSDQILRSMKGLSSTS IVYILIAVCLGGLIGIPALICCCRGRCNKKGEQVGMSRP GLKPDLTGTSKSYVRSL*	
GC_H_MEASLES_B3 ORF Sequence, AA	MSPQRDRINAFYKDNPYPKGSRIVINREHLMIDRPYVL LAVLFVMFLSLIGLLAIAGIRLHRAAIYTAEIHKSLSTN LDVTNSIEHQVKDVLTPLPKIIGDEVGLRTPQRFTDLV KFISDKIKFLNPDREYDRRDLTWCINPPERIKLDYDQY CADVAAEELMNALVNSTLLETRTTTQFLAVSKGNCS GPTTIRGQFSNMSLSLLDLYLGRGYNVSSIVTMTSQG MYGGTYLVEKPNLNSKGSELSQLSMYRVPEVGVIRNP GLGAPVFHMTNYFBQPVSNGLGNCMVALGELKLAAL CHGDDSIIPYQGSGKGVSFQLVKLGVKSPTDMQSW VPLSTDDPVVDRLVLSSHEVIADNQAKWAVPTTRT DDKLRMETCFQQACKGKIQALCENPEWVPLKDNRIPS YGVLSVDLSLTVELKIKIASGFGPLITHGSGMDLYKSN CNNVYWLTIPPMRNLALGVINTLEWIPRKVSPNLFTV PIKEAGEDCHAPTYLPAEVDGDVKLSSNLVILPGQDL QYVLATYDTSRVEHAVVYVYSPSRSFSVPYPFLPIK GVPIELQVECFTWDQKLWCRHFCVLADSESGGLITHS GMVGMGVSCTATREDGTNRR*	49
GC_H_MEASLES_D8 ORF Sequence, AA	MSPQRDRINAFYKDNPHPKGSRIVINREHLMIDRPYVL LAVLFVMFLSLIGLLAIAGIRLHRAAIYTAEIHKSLSTN LDVTNSIEHQVKDVLTPLFKIIGDEVGLRTPQRFTDLV KFISDKIKFLNPDREYDFRDLTWCINPPERIKLDYDQY CADVAAEELMNALVNSTLLETRATNQFLAVSKGNCS GPTTIRGQFSNMSLSLLDLYLSRGYNVSSIVTMTSQGM YGGTYLVEKPNLSSKGSELSQLSMHRVFEVGVIRNPG LGAPVFHMTNYLEQPVSNDFSNCMVALGELKFAALC HREDSITIPYQGSCKGVSFQLVKLGVMKSPTDMQSW VPLSTDDPVIDRLYLSSHRGVIADNQAKWAVPTTRTD DKLRMETCFQQACKGKIQALCENFEWTPLKDNRIFSY GVLSVDLSLTVELKIKIVSGFGPLITHGSGMDLYKSNH NNMYWLTIPPMKNLALGVINTLEWIPRFKVSPNLFTV PIKEAGEDCHAPTYLPAEVDGDVKLSSNLVILPGQDL QVVLATYDTSRVEHAVVYVYSPSRSFSYPYPRLPV RGVPIELQVECFTWDQKLWCRHFCVLADSESGGHITH SGWCMGVSCTATREDGTSRR*	50

TABLE 15

Туре	Virus Name	GenBank Accession
hemagglutinin	hemagglutinin [Measles virus strain Moraten]	AAF85673.1
hemagglutinin	hemagglutinin [Measles virus strain Rubeovax]	AAF85689.1
hemagglutinin	hemagglutinin [Measles virus]	AAF89824.1
hemagglutinin	hemagglutinin protein [Measles virus]	CAA91369.1
hemagglutinin	hemagglutinin [Measles virus]	BAJ23068.1
hemagglutinin	hemagglutinin protein [Measles virus]	BAB39848.1
hemagglutinin	hemagglutinin [Measles virus]	AAA50551.1
hemagglutinin	RecName: Full = Hemagglutinin glycoprotein	P08362.1
hemagglutinin	hemagglutinin [Measles virus]	AAB63802.1
hemagglutinin	hemagglutinin [Measles virus]	AAA56650.1
hemagglutinin	hemagglutinin [Measles virus]	AAA56642.1
hemagglutinin	hemagglutinin [Measles virus]	AAA74936.1
hemagglutinin	hemagglutinin protein [Measles virus]	BAH56665.1
hemagglutinin	hemagglutinin [Measles virus]	ACC86105.1
hemagglutinin	hemagglutinin [Measles virus strain Edmonston-Zagreb]	AAF85697.1
hemagglutinin	hemagglutinin [Measles virus]	AAR89413.1
hemagglutinin	hemagglutinin [Measles virus]	AAA56653.1
hemagglutinin	RecName: Full = Hemagglutinin glycoprotein	P35971.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94916.1
hemagglutinin	hemagglutinin [Measles virus]	AAC03036.1
hemagglutinin	hemagglutinin [Measles virus]	AAF85681.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94927.1
hemagglutinin	Hemagglutinin [Measles virus]	CAB94925.1
hemagglutinin	hemagglutinin protein [Measles virus]	BAB39835.1

TABLE 15-continued

Гуре	Virus Name	GenBank Accession
hemagglutinin	Hemagglutinin [Measles virus]	CAB94931.1
hemagglutinin	hemagglutinin [Measles virus genotype A]	AFO84712.1
nemagglutinin	hemagglutinin [Measles virus]	AAA56639.1
nemagglutinin	Hemagglutinin [Measles virus]	CAB94926.1
nemagglutinin	hemagglutinin protein [Measles virus]	BAB39836.1
nemagglutinin	Hemagglutinin [Measles virus]	CAB94929.1
nemagglutinin	RecName: Full = Hemagglutinin glycoprotein	P06830.1
nemagglutinin	Hemagglutinin [Measles virus]	CAB94928.1
nemagglutinin	hemagglutinin protein [Measles virus]	BAB39837.1 AAA74935.1
nemagglutinin nemagglutinin	hemagglutinin [Measles virus] hemagglutinin protein [Measles virus]	CAB43780.1
iemagglutinin	hemagglutinin [Measles virus]	BAA09952.1
emagglutinin	hemagglutinin protein [Measles virus]	CAB43815.1
emagglutinin	hemagglutinin [Measles virus]	AAF28390.1
emagglutinin	Hemagglutinin [Measles virus]	CAB94923.1
emagglutinin	hemagglutinin protein [Measles virus]	CAB43785.1
emagglutinin	hemagglutinin [Measles virus]	ABD34001.1
emagglutinin	hemagglutinin protein [Measles virus]	CAB43782.1
nemagglutinin	hemagglutinin protein [Measles virus]	CAB43781.1
emagglutinin	hemagglutinin [Measles virus]	BAH22353.1
emagglutinin	hemagglutinin [Measles virus]	AAC35878.2
emagglutinin	hemagglutinin protein [Measles virus]	AAL86996.1
emagglutinin	hemagglutinin [Measles virus]	CAA76066.2
nemagglutinin	hemagglutinin [Measles virus]	AAA46428.1
emagglutinin	hemagglutinin protein [Measles virus]	CAB43803.1
emagglutinin	Hemagglutinin [Measles virus]	CAB94918.1 AAF72162.1
nemagglutinin nemagglutinin	hemagglutinin [Measles virus] hemagglutinin [Measles virus]	AAF72162.1 AAM70154.1
nemagglutinin	hemagglutinin protein [Measles virus]	CAB43776.1
iemagglutinin	hemagglutinin [Measles virus genotype D4]	ACT78395.1
emagglutinin	hemagglutinin [Measles virus genotype D7]	AAL02030.1
emagglutinin	hemagglutinin protein [Measles virus]	CAB43789.1
emagglutinin	hemagglutinin protein [Measles virus]	CAB43774.1
emagglutinin	Hemagglutinin [Measles virus]	CAB94920.1
emagglutinin	Hemagglutinin [Measles virus]	CAB94922.1
nemagglutinin	hemagglutinin [Measles virus]	ABB59491.1
nemagglutinin	hemagglutinin protein [Measles virus]	BAB39843.1
nemagglutinin	hemagglutinin protein [Measles virus]	CAB43804.1
remagglutinin	hemagglutinin [Measles virus]	AAX52048.1
nemagglutinin	Hemagglutinin [Measles virus]	CAB94930.1
nemagglutinin	hemagglutinin [Measles virus]	AAA74526.1
nemagglutinin	hemagglutinin protein [Measles virus]	CAB43814.1 ABB59493.1
nemagglutinin nemagglutinin	hemagglutinin [Measles virus] hemagglutinin [Measles virus genotype D4]	AAL02019.1
nemagglutinin	Hemagglutinin [Measles virus]	CAB94919.1
emagglutinin	hemagglutinin protein [Measles virus]	AAL86997.1
emagglutinin	hemagglutinin [Measles virus genotype C2]	AAL02017.1
emagglutinin	hemagglutinin protein [Measles virus]	CAB43769.1
emagglutinin	hemagglutinin protein [Measles virus]	CAB43808.1
emagglutinin	hemagglutinin [Measles virus]	BAO97032.1
emagglutinin	hemagglutinin protein [Measles virus]	CAB43805.1
emagglutinin	hemagglutinin protein [Measles virus]	CAB43777.1
emagglutinin	hemagglutinin [Measles virus]	AAL67793.1
emagglutinin	hemagglutinin [Measles virus]	AAF89816.1
emagglutinin	hemagglutinin [Measles virus genotype D4]	AAL02020.1
emagglutinin	hemagglutinin protein [Measles virus]	CAB43786.1
emagglutinin	hemagglutinin protein [Measles virus strain	AEP40452.1
	MVi/New Jersey.USA/45.05]	
emagglutinin	hemagglutinin [Measles virus]	AAA74531.1
emagglutinin	hemagglutinin [Measles virus]	AAB63800.1
emagglutinin emagglutinin	hemagglutinin [Measles virus] hemagglutinin [Measles virus genotype D8]	AAO21711.1 ALE27189.1
iemagglutinin	hemagglutinin protein [Measles virus]	CAB43810.1
iemagglutinin	hemagglutinin [Measles virus]	AAF89817.1
emagglutinin	hemagglutinin [Measles virus] hemagglutinin [Measles virus genotype D6]	AAL02022.1
emagglutinin	hemagglutinin protein [Measles virus]	CAB43800.1
emagglutinin	hemagglutinin protein [Measles virus]	AGA17219.1
nemagglutinin	hemagglutinin protein [Measles virus]	CAB43770.1
emagglutinin	hemagglutinin protein [Measles virus strain	AEP40444.1
	MVI/Texas.USA/4.07]	
nemagglutinin	hemagglutinin [Measles virus]	AAX52047.1
emagglutinin	hemagglutinin [Measles virus]	AAB63794.1
nemagglutinin	hemagglutinin [Measles virus]	AAB63796.1
nemagglutinin	hemagglutinin [Measles virus]	AAA74528.1
nemagglutinin	hemagglutinin [Measles virus]	AAB63774.1
emagglutinin	hemagglutinin [Measles virus]	AAB63795.1

TypeVins NameGenBank Accessionhemagglutininhemagglutinin [Measles virus]AAA74519.1fasion proteinfasion protein [Measles virus]AAA765645.1fasion proteinfasion protein [Measles virus]AAA76665.1fasion proteinfasion protein [Measles virus]AAF8568.1fasion proteinfasion protein [Measles virus]AAF8568.1fasion proteinfasion protein [Measles virus]AA78568.1fasion proteinfasion protein [Measles virus]AA78568.1fasion proteinfasion protein [Measles virus]AA78677.1fasion proteinfasion protein [Measles virus]AA78678.1fasion proteinfasion protein [Measles virus]AA7439.4fasion proteinfasion protein [Measles virus]AA7439.4fasion proteinfasion protein [Measles virus]AA7439.4fasion proteinfasion protein [Measles virus]AA7439.4fasion proteinfasion protein [Measles virus]AA74259.1fasion p	MeV NCBI Accession Numbers (Amino Acid Sequences)		
herasgutuiniberasgutuiniprotein(CAB4378.1)fasion proteinfasion protein(Messlev virus inin Monten)AA56645.1fasion proteinfasion protein(Messlev virus)AA56645.1fasion proteinfasion protein(Messlev virus)AAF85788.1fasion proteinfasion protein(Messlev virus)AA789578.1fasion proteinfasion protein(Messlev virus)AV48957.1fasion proteinfasion protein(Messlev virus)AV48957.1fasion proteinfasion protein(Messlev virus)AA5664.1fasion proteinfasion protein(Messlev virus)AA5662.1fasion proteinfasion protein(Messlev virus)AB57662.1fasion proteinfasion protein(Messlev virus)AB57662.1fasion proteinfasion protein(Messlev virus)AB780661.1fasion proteinfasion protein(Messlev virus)AB780661.1fasion proteinfasion protein(Messlev virus)AB780661.1fasion proteinfasion protein(Messlev virus)AA783661.1fasion proteinfasion protein(Messlev virus)AA783661.1fasion proteinfasion protein(Messlev virus)AA783661.1fasion proteinfasion protein(Messlev virus)AA78376.1fasion proteinfasion protein(Messlev virus)AA78376.1fasion proteinfasion protein(Messlev virus)AA7434.1fasion proteinfasion protein(Messlev virus)AA702896.1 <th>Туре</th> <th>Virus Name</th> <th>GenBank Accession</th>	Туре	Virus Name	GenBank Accession
fasion protein [Measles virus] AAF8572.1 fasion protein [Mision protein [Measles virus] AAF85688.1 fasion protein [Mision protein [Measles virus] AAF85688.1 fasion protein [Mision protein [Measles virus] AAF85688.1 fasion protein [Mision protein [Measles virus] AAV84957.1 fasion protein fusion protein [Measles virus] AAV84957.1 fasion protein fusion protein [Measles virus] AAV84957.1 fasion protein fusion protein [Measles virus] AAX56641.1 fasion protein fusion protein [Measles virus] AAA56641.1 fasion protein fusion protein [Measles virus] AAA56643.1 fusion protein fusion protein [Measles virus] AAP56663.1 fusion protein fusion protein [Measles virus] AAP6063.1 fusion protein fusion protein [Measles virus] AAP74334.1 fusion protein fusion protein [Measles virus] AAF8664.1 fusion protein fusion protein [Measles virus] AAF0249.1 fusio			
fasion protein fusion protein fusio			
fasion proteinJuston protein[Measles virus]AAF85680.1fusion proteinfusion protein[Measles virus]AAF85680.1fusion proteinfusion protein[Measles virus]AAA50957.1fusion proteinfusion protein[Measles virus]AAA50957.1fusion proteinfusion protein[Measles virus]AAA50647.1fusion proteinfusion protein[Measles virus]AAA56641.1fusion proteinfusion protein[Measles virus]AAA56641.1fusion proteinfusion protein[Measles virus]AAA56652.1fusion proteinfusion protein[Measles virus]ABX6022.1fusion proteinfusion protein[Measles virus]ABS71645.1fusion proteinfusion protein[Measles virus]BAB0665.1fusion proteinfusion protein[Measles virus]AAA78930.1fusion proteinfusion protein[Measles virus]AAA78930.1fusion proteinfusion protein[Measles virus]AAA78930.1fusion proteinfusion protein[Measles virus]AAA7934.1fusion proteinfusion protein[Measles virus]AAA7934.1fusion proteinfusion protein[Measles virus]AAF62696.1fusion proteinfusion protein[Measles virus]AAF62696.1fusion proteinfusion protein[Measles virus]AAF62696.1fusion proteinfusion protein[Measles virus]AAF62696.1fusion proteinfusion protein[Measles virus]AAF6			
fusion protein Massion protein MAPE5800.1 fusion protein Musion protein Measles virus] BAA09097.1 fusion protein fusion protein Musion protein Musion protein fusion protein fusion protein Measles virus] AAV48097.1 fusion protein fusion protein Measles virus] AAV48097.1 fusion protein fusion protein Measles virus] AAA36641.1 fusion protein fusion protein Measles virus] AAA36652.1 fusion protein fusion protein Measles virus] AAA36652.1 fusion protein fusion protein Measles virus] AAA56652.1 fusion protein fusion protein Measles virus] AAA56651.1 fusion protein fusion protein Measles virus] AAA74934.1 fusion protein fusion protein Measles virus] AAA74934.1 fusion protein fusion protein Measles virus] AAF02695.1 fusion protein fusion protein Measles virus] AAF02695.1 fusion protein fusion protein Measles virus] AAF02696.1 fusion protein<			
fasion proteinJuston proteinMeasles virus]AEF3039.1fasion proteinfusion proteinMeasles virus]AAV49957.1fasion proteinfusion proteinMeasles virus]AAY49057.1fasion proteinfusion proteinMeasles virus]AAY49038.1fasion proteinfusion proteinMeasles virus]AAA5665.21fasion proteinfusion proteinMeasles virus]AAA5665.1fasion proteinfusion proteinMeasles virus]BAB0065.1fasion proteinfusion proteinMeasles virus]AAA7934.1fasion proteinfusion proteinMeasles virus]AAA70295.1fasion proteinfusion proteinMeasles virus]AAA70295.1fasion proteinfusion proteinMeasles virus]AAA702676.1fusion proteinfusion proteinMeasles virus]AAF02269.1fusion proteinfusion proteinMeasles virus]AAF02695.1fusion proteinfusion proteinMeasles virus]AAF02695.1fusion proteinfusion proteinMeasles virus]AAF02695.1fusion proteinfusion proteinMeasles virus]AAF02695.1fusion proteinfusion proteinMeasles virus]AAF02695.1			
fusion protein fusion protein Measles virus] BAA09957.1 fusion protein fusion protein Measles virus] AV84957.1 fusion protein fusion protein Measles virus] BAA19838.1 fusion protein fusion protein Measles virus] AA55641.1 fusion protein fusion protein Measles virus] AB45652.1 fusion protein fusion protein Measles virus] AB578012.1 fusion protein fusion protein Measles virus] AB578017.1 fusion protein fusion protein Measles virus] AB578017.1 fusion protein fusion protein Measles virus] AB60865.1 fusion protein fusion protein Measles virus] AA47934.1 fusion protein fusion protein Measles virus] AA47934.1 fusion protein fusion protein Measles virus] AA47934.1 fusion protein fusion protein Measles virus] AA47034.1 fusion protein fusion protein Measles virus] AA470265.1 fusion protein fusion protein Measles virus] AA470266.1 <t< td=""><td></td><td></td><td></td></t<>			
fusion protein Mesales virus AAV84957.1 fusion protein Mesales virus ADY8018.1 fusion protein Mesales virus ADY8018.1 fusion protein fusion protein Mesales virus AAA56641.1 fusion protein fusion protein Mesales virus AAA56652.1 fusion protein fusion protein Mesales virus AAA56652.1 fusion protein fusion protein Mesales virus ABY8007.1 fusion protein fusion protein Mesales virus ABY8007.1 fusion protein fusion protein Mesales virus ABY807.1 fusion protein fusion protein Mesales virus BAB00685.1 fusion protein fusion protein Mesales virus CAA74934.1 fusion protein fusion protein Mesales virus CAA74934.1 fusion protein fusion protein Mesales virus AAF02665.1 fusion protein fusion protein Mesales virus AAF02665.1 fusion protein fusion protein Mesales virus AAF02665.1 fusion protein fusion protein Mesales virus AAF02665.1 </td <td></td> <td></td> <td></td>			
facion protein Messles virus Methods fusion protein fusion protein Messles virus Messles fusion protein fusion protein Messles virus Messles Messles fusion protein fusion protein Messles virus Messles Messles fusion protein fusion protein Messles virus AAA749341 Messles fusion protein fusion protein Messles virus AAAF026951 fusion protein fusion protein Messles virus AAF026961 fusion protein fusion protein Messles virus AAF026961 fusion protein fusion protein Messles virus AAF026961			
fasion protein fasion protein [Measles vins] AASS018.1 fasion protein fasion protein [Measles vins] AAAS83.1 fasion protein fasion protein [Measles vins] AAAS662.1 fasion protein fasion protein [Measles vins] ABS60529.1 fasion protein fasion protein [Measles vins] ABS7017.1 fasion protein fasion protein [Measles vins] ABS70165.1 fasion protein fasion protein [Measles vins] ABS70165.1 fasion protein fasion protein [Measles vins] ABS70165.1 fasion protein fasion protein [Measles vins] BAB60865.1 fasion protein fasion protein [Measles vins] BAB60865.1 fasion protein fasion protein [Measles vins] BAB60865.1 fasion protein fasion protein [Measles vins] BAB0575.1 fasion protein fasion protein [Measles vins] AAA78936.1 fasion protein fasion protein [Measles vins] AAA79930.1 fasion protein fasion protein [Measles vins] AAF02695.1 fasion protein fasion protein [Measles vins] AAF02695.1 fasion protein fasion protein [Measles vins] AAF02696.1 fasion protein fasion protein [Measles vins] AAF02695.1 fasion protein fasion protein [Measles vins] AAF02696.1 fasion protein fasion protein [Measles vins] AAF02696.1 fasion protein fasion protein [Measles vins] AAF02697.1 fasion protein fasion protein [Measl			
fusion protein fusion protein [Measles vins] BAA19838.1 fusion protein fusion protein [Measles vins] AAA56611. fusion protein fusion protein [Measles vins] AAA56621. fusion protein fusion protein [Measles vins] ABY58077.1 fusion protein fusion protein [Measles vins] BAA60855.1 fusion protein fusion protein [Measles vins] AAF740403.1 MVI/New YorkUSA/26.09/3] fusion protein fusion protein [Measles vins] AAF740403.1 MVI/New YorkUSA/26.09/3] fusion protein fusion protein [Measles vins] AAF02695.1 fusion protein fusion protein [Measles vins] BAF96592.1 fusion protein fusion protein [Measles vins] BAF96592.1 fusion protein fusion protein [Measl			
fusion protein fusion protein mision protein fusion protein <b< td=""><td></td><td></td><td></td></b<>			
fusion protein fusion protein Measles vinaj AAS5652.1 fusion protein fusion protein Measles vinaj ABT7845.1 fusion protein fusion protein Measles vinaj NP.056922.1 fusion protein fusion protein Measles vinaj NP.056922.1 fusion protein fusion protein Measles vinaj DAA6856564.1 fusion protein fusion protein Measles vinas AA7856564.1 fusion protein fusion protein Measles vinas AA78374.1 fusion protein fusion protein Measles vinas AA74934.1 fusion protein fusion protein Measles vinas AA70206.1 fusion protein fusion protein Measles vinas AA70206.1 fusion protein fusion protein Measles vinas AB702090.1 fusion protein fusion protein Measles vinas AB702090.1 fusion protein fusion protein Measles vinas AB702090.1 fusion protein fusion protein Measles vinas AB70209.1 fusion protein fusion protein Measles vinas AB70209.1 fusion p	fusion protein	fusion protein [Measles virus]	AAA56641.1
fusion proteinfusion protein[Measles vins]AB 78017.1fusion proteinfusion protein[Measles vins]NP_056922.1fusion proteinfusion protein[Measles vins]NP_056922.1fusion proteinfusion protein[Measles vins]BAA606851.1fusion proteinfusion protein[Measles vins]BAA06955.1fusion proteinfusion protein[Measles vins]BAA0731.1fusion protein[Measles vins]AA74934.1fusion protein[Measles vins]AA74934.1fusion protein[Measles vins]AA74934.1fusion protein[fusion protein[Measles vins]AA702695.1fusion proteinfusion protein[Measles vins]AA702697.1fusion proteinfusion protein[Measles vins] </td <td>fusion protein</td> <td>F protein [Measles virus]</td> <td>ABK40529.1</td>	fusion protein	F protein [Measles virus]	ABK40529.1
fusion proteinfusion proteinMessles virus]NP. 05692.1fusion proteinfusion proteinMessles virus]NP. 05692.1fusion proteinfusion proteinMessles virus]BAA60865.1fusion proteinfusion proteinMessles virus]BAA0995.1fusion proteinfusion proteinMessles virus]AA74934.1fusion proteinfusion proteinMessles virus]AA74934.1fusion proteinfusion proteinMessles virus]AA74034.1fusion proteinfusion proteinMessles virus]AA702695.1fusion proteinfusion proteinMessles virus]AAF02695.1fusion proteinfusion proteinMessles virus]AAF02696.1fusion proteinfusion proteinMessles virus]AAF02696.1fusion proteinfusion proteinMessles virus]AAF02696.1fusion proteinfusion proteinMessles virus]AAF02697.1fusion proteinfusion proteinMessles virus]AAF02697.1fusion proteinfusion proteinMessles virusAAF02697.1fusion proteinfusion proteinMessles virusAAF02697.1fusion proteinfusion proteinMessles virusAAF02697.1fusion proteinfusion proteinMessles virusAAA60269.1fusion proteinfusion proteinMessles virusAAA60269.1fusion proteinfusion proteinMessles virusAAA60269.1fusion proteinfusion proteinMessles virusAAA6021.1fus	fusion protein	fusion protein [Measles virus]	AAA56652.1
fusion proteinFusion proteinNP_056922.1fusion proteinfusion proteinMeasles virusBAB60865.1fusion proteinfusion proteinMeasles virusBAA09950.1fusion proteinfusion proteinMeasles virusBAA09950.1fusion proteinfusion proteinAA74903.1fusion proteinfusion proteinAA74934.1fusion proteinfusion proteinAA74934.1fusion proteinfusion proteinAA74934.1fusion proteinfusion proteinAA702695.1fusion proteinfusion proteinfusion proteinfusion proteinfusion proteinMeasles virusfusion proteinfusion f			
fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion fusion fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein fusion protein <tr< td=""><td></td><td></td><td></td></tr<>			
fusion proteinfusion proteinMessles virus]BAB60865.1fusion proteinfusion proteinMessles virus]BAA09950.1fusion proteinfusion proteinMessles virus]AA74934.1fusion proteinfusion proteinMessles virus]CAB38075.1fusion proteinfusion proteinMessles virus]CAB38075.1fusion proteinfusion proteinMessles virusAAF02695.1fusion proteinfusion proteinfusion proteinMessles virus]AAF02696.1fusion proteinfusion proteinfusion proteinMessles virus]AAF02696.1fusion proteinfusion proteinfusion proteinMessles virus]AAF02697.1fusion proteinfusion proteinfusion proteinMessles virus]BAK08874.1fusion proteinfusion proteinMessles virusAAF02697.1fusion proteinfusion proteinfusion proteinMessles virus]AAF02697.1fusion proteinfusion proteinMessles virusAAF02697.1fusion proteinfusion proteinMessles virusAAF02697.1 <td></td> <td></td> <td></td>			
fusion protein fusion protein Messles vinus BAA09950.1 fusion protein fusion protein Messles vinus strain AEP40403.1 MV/New York.USA/26.09/3] AAA74934.1 fusion protein fusion protein Messles vinus CAB38075.1 fusion protein fusion protein Messles vinus Status AEP40443.1 fusion protein fusion protein Messles vinus AAF02696.1 fusion protein fusion protein Messles vinus AAF02696.1 fusion protein fusion protein Messles vinus AAF02697.1 fusion protein fusion protein Messles vinus genotype D4] AFY12704.1 fusion protein fusion protein Messles vinus genotype D8] AHN0789.1 fusion protein fusion protein Messles vinus genotype D8] ALE2720.1 fusion protein fusion protein Messles vinus genotype D8] ALE2724.1			
fusion proteinfusion protein[Measles vins strain MV/New York:USA/26.09/3]AEP4040.1fusion proteinfusion protein[Measles vins]AAA74934.1fusion proteinfusion protein[Measles vins]CAB38075.1fusion proteinfusion protein[Measles vins]AF02695.1fusion proteinfusion protein[Measles vins]AAF02696.1fusion proteinfusion protein[Measles vins]AAF02696.1fusion proteinfusion protein[Measles vins]AAF02696.1fusion proteinfusion protein[Measles vins]AAF02696.1fusion proteinfusion protein[Measles vins]AAF02697.1fusion proteinfusion protein[Measles vins]AAF02697.1fusion proteinfusion protein[Measles vins]AAA6067.1fusion proteinfusion protein[Measles vins]AAA6608.1fusion proteinfusion protein[Measles vins]AAA6638.1fusion proteinfusion protein[Measles vins]AAA6638.1fusion proteinfusion protein[Measles vins strainAEP40419.1fusion proteinfusion protein[Measles vins genotype D8]ALE2720.1fusion proteinfusion protein[Measles vins]AAA5638.1fusion proteinfusion protein[Measles vins]AAA56459.1fusion proteinfusion protein[Measles vins]AAA56459.1fusion proteinfusion protein[Measles vins]AAA56638.1fusion proteinfusion protein <td< td=""><td></td><td></td><td></td></td<>			
MV(New York USA/26.09/3)fusion proteinfusion protein [Measles virus]AAA74934.1fusion proteinfusion protein [Measles virus]CAB38075.1fusion proteinfusion protein [Measles virus]AAF02695.1fusion proteinfusion protein [Measles virus]AAF02696.1fusion proteinfusion protein [Measles virus]AAF02696.1fusion proteinfusion protein [Measles virus]AAF02697.1fusion proteinfusion protein [Measles virus]BAK08874.1fusion proteinfusion protein [Measles virus]AAF02697.1fusion proteinfusion protein [Measles virus]AAF02697.1fusion proteinfusion protein [Measles virus genotype D4]AFY12704.1fusion proteinfusion protein [Measles virus genotype D8]AHN07989.1fusion proteinfusion protein [Measles virus]AAA46638.1fusion proteinfusion protein [Measles virus]AAA46638.1fusion proteinfusion protein [Measles virus]AAA46638.1fusion proteinfusion protein [Measles virus]AAA46638.1fusion proteinfusion protein [Measles virus]AAF12950.1fusion proteinfusion protein [Measles virus]AAF2695.1fusion proteinfusion protein [Measles virus]AAF2605.1fusion proteinfusion protein [Measles virus]AAF2605.1fusion proteinfusion protein [Measles virus]AAF2605.1fusion proteinfusion protein [Measles virus]AAF2605.1fusion proteinfusion protein [Measles virus]AAF27280.1 </td <td></td> <td></td> <td></td>			
fusion proteinfusion protein [Measles virus]AAA74933.1fusion proteinfusion protein [Measles virus]CAB38075.1fusion proteinfusion protein [Measles virus]AEF02695.1fusion proteinfusion protein [Measles virus]AAF02696.1fusion proteinfusion protein [Measles virus]AAF02696.1fusion proteinfusion protein [Measles virus]ABT9301.1fusion proteinfusion protein [Measles virus]ABT9301.1fusion proteinfusion protein [Measles virus]AAF02697.1fusion proteinfusion protein [Measles virus]AAA5638.1fusion proteinfusion protein [Measles virus]AAA5638.1fusion proteinfusion protein [Measles virus]AAA5638.1fusion proteinfusion protein [Measles virus]ALE27200.1fusion proteinfusion protein [Measles virus]ALE2720.1fusion proteinfusion protein [Measles virus]ALE27248.1fusion proteinfusion protein [Measles virus]ALE2724.1fusion proteinfusion protein [Measles virus]ALE2724.1fusion proteinfusion protein [Measles virus]ALE2724.1fusion proteinfusion protein [Measles virus]ALE2724.1fusion proteinfusion protein [Measles virus] <t< td=""><td>rusion protein</td><td></td><td>ALT40403.1</td></t<>	rusion protein		ALT40403.1
fusion proteinMessles virus]CAB38075.1fusion proteinfusion protein [Messles virus]AEP40443.1MV/Texas.USA4.07]AAF02695.1fusion proteinfusion protein [Messles virus]AAF02696.1fusion proteinfusion protein [Messles virus]AAF02696.1fusion proteinfusion protein [Messles virus]AAF02697.1fusion proteinfusion protein [Messles virus]AAA4021.1fusion proteinfusion protein [Messles virus]AAA4621.1fusion proteinfusion protein [Messles virus]AAA4621.1fusion proteinfusion protein [Messles virus]AAA4621.1fusion proteinfusion protein [Messles virus]AAA4621.1fusion proteinfusion protein [Messles virus genotype D8]ALE27200.1fusion proteinfusion protein [Messles virus genotype D8]ALE2724.1fusion proteinfusion protein [Messles virus genotype D8]ALE2724.1fusion proteinfusion protein [Messles virus]AAF0659.1fusion proteinfusion protein [Messles virus]AAF0493.1fusion proteinfusion protein [Messles virus]ALE2724.1fusion proteinfusion protein [Messles virus]ALE2724.1fusion proteinfusion protein [Messles virus]BAH06592.1	fusion protein		A A A 74934 1
fusion proteinMessles virus strain MVi/Texas.USA/4.07]AEP40443.1 MVi/Texas.USA/4.07]fusion proteinfusion protein [Messles virus]AAF02695.1fusion proteinfusion protein [Messles virus]AAF02696.1fusion proteinfusion protein [Messles virus]ABB71661.1fusion proteinfusion protein [Messles virus]ABB71661.1fusion proteinfusion protein [Messles virus]AF02697.1fusion proteinfusion protein [Messles virus genotype D4]AFY12704.1fusion proteinfusion protein [Messles virus genotype D8]AHN07989.1fusion proteinfusion protein [Messles virus]AAA56638.1fusion proteinfusion protein [Messles virus]AAA56638.1fusion proteinfusion protein [Messles virus]AEP40419.1MV/California.USA/15.09]MVV/Tigmia.USA/15.09]fusion proteinfusion protein [Messles virus genotype D8]ALE27200.1fusion proteinfusion protein [Messles virus genotype D8]ALE27248.1fusion proteinfusion protein [Messles virus genotype D8]ALE27248.1fusion proteinfusion protein [Messles virus]AAM56592.1fusion proteinfusion protein [Messles virus]AAD9930.1fusion proteinfusion protein [Messles virus]ALE27241.1fusion proteinfusion protein [Messles virus]ALE27241.1fusion proteinfusion protein [Messles virus]ALE27241.1fusion proteinfusion protein [Messles virus]BA40959.1fusion proteinfusion protein [Messles virus]B			
MV/Texas.US/4.07]fusion proteinfusion protein<			
fusion proteinMession protein [Messles virus]AAF02695.1fusion proteinfusion proteinMessles virus]AAF02696.1fusion proteinfusion proteinMessles virus]AAF02697.1fusion proteinfusion proteinMessles virus]AAF02697.1fusion proteinfusion proteinMessles virus genotype D4]AFF12704.1fusion proteinfusion proteinMessles virus genotype D8]AH07989.1fusion proteinfusion proteinMessles virus genotype D8]AH07989.1fusion proteinfusion proteinMessles virus genotype D8]AH07989.1fusion proteinfusion proteinMessles virus]AAA66421.1fusion proteinfusion proteinMessles virus genotype D8]ALE27200.1fusion proteinfusion proteinMessles virus genotype D8]ALE27220.1fusion proteinfusion proteinMessles virus genotype D8]ALE27224.1fusion proteinfusion proteinMessles virus genotype D8]ALE27224.1fusion proteinfusion proteinMessles virus genotype D8]ALE2724.1fusion proteinfusion proteinMessles virus]BAH06952.1fusion proteinfusion proteinMessles virus]BA409495.1fusion proteinfusion proteinMessles virus]BA409495.1fusion proteinfusion proteinMessles virus]BA40945.1fusion proteinfusion proteinMessles virus]BA40955.1fusion proteinfusion proteinMessles virus]BA40945.1 <tr< td=""><td>reston protoni</td><td></td><td></td></tr<>	reston protoni		
fusion proteinfusion proteinMeasles virus]AAT02690.1fusion proteinfusion proteinMeasles virus]AAT09301.1fusion proteinfusion proteinMeasles virus]AAT09301.1fusion proteinfusion proteinMeasles virus]BAK08874.1fusion proteinfusion proteinMeasles virus genotype D4]AFY12704.1fusion proteinfusion proteinMeasles virus strainAEP40467.1MVVCalifornia.USA/16.03]MVVCalifornia.USA/16.031AAA56638.1fusion proteinfusion proteinMeasles virus genotype D8]AHN07989.1fusion proteinfusion proteinMeasles virus genotype D8]AAA56638.1fusion proteinfusion proteinMeasles virus genotype D8]ALE27200.1fusion proteinfusion proteinMeasles virus genotype D8]ALE27248.1fusion proteinfusion proteinMeasles virus genotype D8]ALE27248.1fusion proteinfusion proteinMeasles virus genotype D8]ALE27248.1fusion proteinfusion proteinMeasles virus]BAH96592.1fusion proteinfusion proteinMeasles virus]BAH96592.1fusion proteinfusion proteinMeasles virus]BAH96491.1fusion proteinfusion proteinMeasles virus]BAA0931.1fusion proteinfusion proteinMeasles virus]BAH96592.1fusion proteinfusion proteinMeasles virus]BAH96592.1fusion proteinfusion proteinMeasles virus]BAA03371.1fusi	fusion protein		AAF02695.1
fusion protein fusion protein Measles virus] ABB71661.1 fusion protein fusion protein Measles virus] AAF022697.1 fusion protein fusion protein Measles virus genotype D4] AFV12704.1 fusion protein fusion protein Measles virus strain AEP40467.1 MVV/California.USA/16.03] MVV/California.USA/16.03 AHM07989.1 fusion protein fusion protein Measles virus AAA46421.1 fusion protein fusion protein Measles virus AAA46421.1 fusion protein fusion protein Measles virus AAA46421.1 fusion protein fusion protein Measles virus Real-AA56638.1 fusion protein fusion protein Measles virus genotype D8] ALE27200.1 fusion protein fusion protein Measles virus genotype D8] ALE27248.1 fusion protein fusion protein Measles virus AAT99300.1 fusion protein fusion protein Measles virus AAT99300.1 fusion protein fusion protein Measles virus BA40952.1 fusion protein fusion protein Measles virus BA4095			AAF02696.1
fusion proteinfusion protein [Measles virus]BAK08874.1fusion proteinfusion proteinMasles virus]AAF02697.1fusion proteinfusion proteinMasles virus genotype D4]AFY12704.1fusion proteinfusion proteinMasles virus genotype D8]AHN07989.1fusion proteinfusion proteinMasles virus genotype D8]AAA56638.1fusion proteinfusion proteinMeasles virus]AAA56638.1fusion proteinfusion proteinMeasles virus]AAA56638.1fusion proteinfusion proteinMeasles virus strainAEP40419.1MViVrignia.USA/15.09fusion proteinfusion proteinMeasles virus genotype D8]ALE2720.1fusion proteinfusion proteinMeasles virus genotype D8]ALE27248.1fusion proteinfusion proteinMeasles virus genotype D8]ALE2724.1fusion proteinfusion proteinMeasles virus]AAT99300.1fusion proteinfusion proteinMeasles virus]AAT99300.1fusion proteinfusion proteinMeasles virus]BAB96952.1fusion proteinfusion proteinMeasles virus genotype D8]ALE27144.1fusion proteinfusion pro	fusion protein	fusion protein [Measles virus]	AAT99301.1
fusion proteinfusion protein [Measles virus genotype D4]AAF02697.1fusion proteinfusion protein [Measles virus genotype D4]AFY12704.1fusion proteinfusion proteinMeasles virus genotype D8]AHN07989.1fusion proteinfusion proteinMeasles virus genotype D8]AAA46421.1fusion proteinfusion proteinMeasles virus genotype D8]AAA46421.1fusion proteinfusion proteinMeasles virus genotype D8]ALE27200.1fusion proteinfusion proteinMeasles virus genotype D8]ALE2720.1fusion proteinfusion proteinMeasles virus genotype D8]ALE27248.1fusion proteinfusion proteinMeasles virus genotype D8]ALE27248.1fusion proteinfusion proteinMeasles virus genotype D8]ALE27224.1fusion proteinfusion proteinMeasles virus]AAF99300.1fusion proteinfusion proteinMeasles virus]BAH96592.1fusion proteinfusion proteinMeasles virus]BA40959.1fusion proteinfusion proteinMeasles virus]BA40959.1fusion proteinfusion proteinMeasles virus]BA40959.1fusion proteinfusion proteinMeasles virus]BA40951.1fusion proteinfusion proteinMeasles virus]BA40951.1fusion proteinfusion proteinMeasles virus]BA40951.1fusion proteinfusion proteinMeasles virus]BA40951.1fusion proteinfusion proteinMeasles virus]ALE2724.1<	fusion protein	fusion protein [Measles virus]	ABB71661.1
fusion proteinfusion protein [Measles virus genotype D4]AFY12704.1fusion proteinfusion protein [Measles virus strainAEP40467.1MVi/California.USA/16.03]AAA56638.1fusion proteinfusion protein [Measles virus]AAA56638.1fusion proteinfusion protein [Measles virus]AAA56638.1fusion proteinfusion protein [Measles virus]AAA56638.1fusion proteinfusion protein [Measles virus]AAA56638.1fusion proteinfusion protein [Measles virus genotype D8]ALE27200.1fusion proteinfusion protein [Measles virus genotype D8]ALE27248.1fusion proteinfusion protein [Measles virus genotype D8]ALE2724.1fusion proteinfusion protein [Measles virus]AAT99300.1fusion proteinfusion protein [Measles virus]AAT99300.1fusion proteinfusion protein [Measles virus]BAH96592.1fusion proteinfusion protein [Measles virus]BAH96592.1fusion proteinfusion protein [Measles virus]BAA9951.1fusion proteinfusion protein [Measles virus]BAA39871.1fusion proteinfusion protein [Measles virus]BAA33871.1fusion proteinfusion protein [Measles virus]AEP40427.1MVi/Vashington.USA/18.0%1]Thison protein [Measles virus]AEP40427.1fusion proteinfusion protein [Measles virus]AEP40427.1fusion proteinfusion protein [Measles virus]AE27184.1fusion proteinfusion protein [Measles virus]ACA0725.1fusion protein </td <td></td> <td></td> <td></td>			
fusion proteinfusion protein [Measles virus strainAEP40467.1fusion proteinfusion protein<			
MVi/California.USA/16.03]AHN07989.1fusion proteinfusion protein[Measles virus]AAA46421.1fusion proteinfusion protein[Measles virus]AAA46421.1fusion proteinfusion protein[Measles virus]AAA56638.1fusion proteinfusion protein[Measles virus strainAEP40419.1MVi/Virginia.USA/15.09]ALE2720.1Fusion proteinfusion proteinfusion protein[Measles virus genotype D8]ALE2724.1fusion proteinfusion protein[Measles virus]BAH96592.1fusion proteinfusion protein[Measles virus genotype D8]ALE27194.1fusion proteinfusion protein[Measles virus genotype D8]ALE2714.1fusion proteinfusion protein[Measles virus]ACA09725.1fusion proteinfusion protein[Measles virus]ACA09725.1 </td <td></td> <td></td> <td></td>			
fusion proteinfusion protein [Measles virus]AHN07989.1fusion proteinfusion protein [Measles virus]AAA46421.1fusion proteinfusion protein [Measles virus]AAA46421.1fusion proteinfusion protein [Measles virus]AAA5638.1fusion proteinfusion protein [Measles virus strainAEP40419.1MVI/Virginia.USA/15.09]fusion proteinFusion proteinfusion proteinfusion proteinMeasles virus genotype D8]ALE27248.1fusion proteinfusion protein [Measles virus]AAT99300.1fusion proteinfusion protein [Measles virus]BAH96592.1fusion proteinfusion protein [Measles virus]BAH96592.1fusion proteinfusion protein [Measles virus]BAH96592.1fusion proteinfusion protein [Measles virus]BAA09951.1fusion proteinfusion protein [Measles virus genotype D8]ALE27194.1fusion proteinfusion protein [Measles virus]BAA03871.1fusion proteinfusion protein [Measles virus]BAA3871.1fusion proteinfusion protein [Measles virus]AEP40427.1MVi/Washington.USA/18.08/1]fusion proteinMeasles virus genotype D8]ALE27284.1fusion proteinfusion protein [Measles virus genotype D8]ALE27284.1fusion proteinfusion protein [Measles virus genotype D8]ALE2724.1fusion proteinfusion protein [Measles virus genotype D8]ALE27284.1fusion proteinfusion protein [Measles virus]ACA09725.1fusion proteinfusion protein [Me	fusion protein		AEP40467.1
fusion proteinfusion protein [Measles virus]AAA46421.1fusion proteinfusion protein [Measles virus]AAA56638.1fusion proteinfusion protein fusion proteinAAA56638.1fusion proteinfusion proteinAEP40419.1MVi/Virginia.USA/15.09]ALE27200.1fusion proteinfusion proteinMeasles virus genotype D8]ALE27248.1fusion proteinfusion protein [Measles virus]AAT9300.1fusion proteinfusion protein [Measles virus]BAH96592.1fusion proteinfusion protein [Measles virus]BAH96592.1fusion proteinfusion protein [Measles virus]BAH96592.1fusion proteinfusion protein [Measles virus]BAA0951.1fusion proteinfusion protein [Measles virus]BAA0951.1fusion proteinfusion protein [Measles virus]BAA3871.1fusion proteinfusion protein [Measles virus]BAA3871.1fusion proteinfusion protein [Measles virus]BAA3871.1fusion proteinfusion protein [Measles virus]ACA09725.1fusion proteinfusion protein [Measles virus genotype D8]ALE27384.1fusion proteinfusion protein [Measles virus genotype D8]ALE27384.1fusion proteinfusion protein [Measles virus]ACA09725.1fusion proteinfusion protein [Measles virus genotype D8]ALE27384.1fusion proteinfusion protein [Measles virus genotype D8]ALE27384.1fusion proteinfusion protein [Measles virus genotype D8]ALE27384.1fusion proteinf	e ·		4 110 10 20 20 1
fusion proteinfusion proteinMeasles virusAAA56638.1fusion proteinfusion proteinMeasles virus strainAEP40419.1MVi/Virginia.USA/15.09]fusion proteinfusion proteinAE27200.1fusion proteinfusion proteinMeasles virus genotype D8]AFY12695.1fusion proteinfusion proteinMeasles virus genotype D8]ALE2724.1fusion proteinfusion proteinMeasles virusAAT99300.1fusion proteinfusion proteinMeasles virus]AAT99300.1fusion proteinfusion proteinMeasles virus]BAH96592.1fusion proteinfusion proteinMeasles virusBAH96592.1fusion proteinfusion proteinMeasles virusBAA09591.1fusion proteinfusion proteinMeasles virusBAA33871.1fusion proteinfusion proteinMeasles virusBAA33871.1fusion proteinfusion proteinMeasles virusBAA33871.1fusion proteinfusion proteinMeasles virusAE27244.1fusion proteinfusion proteinMeasles virusBAA33871.1fusion proteinfusion proteinMeasles virusBAA33871.1fusion proteinfusion proteinMeasles virusAE27244.1fusion proteinfusion proteinMeasles virusAE2714.1fusion proteinfusion proteinMeasles virusAE2714.1fusion proteinfusion proteinMeasles virusACA09725.1fusion proteinfusion proteinMeasles virusACA09			
fusion proteinfusion protein [Measles virus strain MV/Virginia.USA/15.09]AEP40419.1fusion proteinfusion protein [Measles virus genotype D8]ALE2720.1fusion proteinfusion protein [Measles virus genotype D8]ALE27248.1fusion proteinfusion protein [Measles virus genotype D8]ALE27248.1fusion proteinfusion protein [Measles virus]AAT99300.1fusion proteinfusion protein [Measles virus]AAT99300.1fusion proteinfusion protein [Measles virus]BAH96592.1fusion proteinfusion protein [Measles virus]BAH96592.1fusion proteinfusion protein [Measles virus]BAA90951.1fusion proteinfusion protein [Measles virus]BAA09951.1fusion proteinfusion protein [Measles virus]BAA3871.1fusion proteinfusion protein [Measles virus]BAA33871.1fusion proteinfusion protein [Measles virus]AEP40427.1MV/Washington.USA/18.08/1]MV/Washington.USA/18.08/1]MV/Washington.USA/18.08/1]fusion proteinfusion protein [Measles virus]ABY21182.1fusion proteinfusion protein [Measles virus]ALE27284.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype G3]AFY12712.1fusion proteinfusion protein [Measles virus]ACA09725.1fusion proteinfusion protein [Measles virus]ACA3871.1fusion proteinfusion protein [Measles virus]ALE27368.1fusion proteinfus			
MVI/Virginia.USA/15.09]fusion proteinfusion protein [Measles virus genotype D8]ALE2720.1fusion proteinfusion protein [Measles virus genotype D8]ALE2724.1fusion proteinfusion protein [Measles virus genotype D8]ALE2724.1fusion proteinfusion protein [Measles virus]AAT99300.1fusion proteinfusion protein [Measles virus]BAH96592.1fusion proteinfusion protein [Measles virus]BAH96592.1fusion proteinfusion protein [Measles virus]BAA09951.1fusion proteinfusion protein [Measles virus]BAA09951.1fusion proteinfusion protein [Measles virus]BAA09951.1fusion proteinfusion protein [Measles virus]BAA33871.1fusion proteinfusion protein [Measles virus]BAA33871.1fusion proteinfusion protein [Measles virus genotype D8]ALE27284.1fusion proteinfusion protein [Measles virus genotype D8]ALE2734.1fusion proteinfusion protein [Measles virus genotype D8]ALE2734.1fusion proteinfusion protein [Measles virus genotype D8]ALE27348.1fusion proteinfusion protein [Measles virus genotype D8]ALE27348.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles vir			
fusion proteinfusion protein[Measles virus genotype D8]ALE27200.1fusion proteinfusion protein[Measles virus genotype D8]AFY12695.1fusion proteinfusion protein[Measles virus genotype D8]ALE27224.1fusion proteinfusion protein[Measles virus genotype D8]ALE27224.1fusion proteinfusion protein[Measles virus genotype D8]AAT99300.1fusion proteinfusion protein[Measles virus genotype D8]AAT99300.1fusion proteinfusion protein[Measles virus genotype D8]AIG94081.1fusion proteinfusion protein[Measles virus]BAA09951.1fusion proteinfusion protein[Measles virus]BAA33871.1fusion proteinfusion protein[Measles virus]BAA33871.1fusion proteinfusion protein[Measles virus]AEP40427.1MV/Washington.USA18.08/1]fusion proteinfusion proteinMeasles virus genotype D8]ALE27284.1fusion proteinfusion protein[Measles virus genotype D8]ALE27314.1fusion proteinfusion protein[Measles virus genotype D8]ALE2734.1fusion proteinfusion protein[Measles virus genotype	rusion protein		MLA 40415.1
fusion proteinfusion protein[Measles virus genotype D8]AFY12695.1fusion proteinfusion protein[Measles virus genotype D8]ALE27248.1fusion proteinfusion protein[Measles virus]AAT99300.1fusion proteinfusion protein[Measles virus]AAT99300.1fusion proteinfusion protein[Measles virus]AAT99300.1fusion proteinfusion protein[Measles virus]BAH96592.1fusion proteinfusion protein[Measles virus]BAH96592.1fusion proteinfusion protein[Measles virus]BAA09951.1fusion proteinfusion protein[Measles virus genotype D8]ALE27194.1fusion proteinfusion protein[Measles virus]BAA33871.1fusion proteinfusion protein[Measles virus]BAA33871.1fusion proteinfusion protein[Measles virus]AEP40427.1MVi/Washington.USA/18.08/1]MVi/Washington.USA/18.08/1]ALE27284.1fusion proteinfusion protein[Measles virus]ACA09725.1fusion proteinfusion protein[Measles virus]ALE27314.1fusion proteinfusion protein[Measles virus]ALE27314.1fusion proteinfusion protein[Measles virus]CAA34588.1fusion proteinfusion protein[Measles virus]CAA34588.1fusion proteinfusion protein[Measles virus]CAA34588.1fusion proteinfusion protein[Measles virus]CAA34588.1fusion proteinfusion pr	fusion protein		ALE27200.1
fusion proteinfusion protein [Measles virus genotype D8]ALE27248.1fusion proteinfusion protein [Measles virus genotype D8]ALE27224.1fusion proteinfusion protein [Measles virus]AAT99300.1fusion proteinfusion protein [Measles virus]BAH96592.1fusion proteinfusion protein [Measles virus]BAH96592.1fusion proteinfusion protein [Measles virus genotype D8]AIC940459.1MVi/California.USA/8.04]MVi/California.USA/8.04]fusion proteinfusion protein [Measles virus genotype D8]ALE27194.1fusion proteinfusion protein [Measles virus genotype D8]ALE27124.1fusion proteinfusion protein [Measles virus genotype D8]ALE27284.1fusion proteinfusion protein [Measles virus genotype D8]ALE27314.1fusion proteinfusion protein [Measles virus genotype D8]ALE27314.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype B3.1]AlC53713.1fusion proteinfusion protein [Measles vir			
fusion proteinfusion protein [Measles virus]AAT99300.1fusion proteinfusion protein [Measles virus]BAH96592.1fusion proteinfusion protein [Measles virus]AEP40459.1MVi/California.USA/8.04]MVi/California.USA/8.04]AIG94081.1fusion proteinfusion protein [Measles virus genotype D8]AIG94081.1fusion proteinfusion protein [Measles virus genotype D8]ALE27194.1fusion proteinfusion protein [Measles virus genotype D8]ALE27194.1fusion proteinfusion protein [Measles virus genotype D8]ALE27194.1fusion proteinfusion protein [Measles virus genotype D8]ALE27184.1fusion proteinfusion protein [Measles virus genotype D8]ALE27284.1fusion proteinfusion protein [Measles virus genotype D8]ALE27184.1fusion proteinfusion protein [Measles virus genotype D8]ALE27344.1fusion proteinfusion protein [Measles virus genotype D8]ALE27344.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype B3]AlE653713.1fusion proteinfusion protein [Measles virus genotype B3.1]AlY55563.1fusion proteinfusion protein [Measles virus genotype B3.1]AlY55563.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusio	fusion protein		ALE27248.1
fusion proteinfusion protein [Measles virus]BAH96592.1fusion proteinfusion protein [Measles virus strainAEP40459.1fusion proteinfusion protein [Measles virus genotype D8]AIG94081.1fusion proteinfusion protein [Measles virus genotype D8]AIG94081.1fusion proteinfusion protein [Measles virus genotype D8]ALE27194.1fusion proteinfusion protein [Measles virus]BAA33871.1fusion proteinfusion protein [Measles virus]BAA33871.1fusion proteinfusion protein [Measles virus]BAA33871.1fusion proteinfusion protein [Measles virus]BAA32871.1fusion proteinfusion protein [Measles virus]AEP40427.1MVi/Washington.USA/18.08/1]fusion proteinfusion protein [Measles virus]fusion proteinfusion protein [Measles virus]ALE27284.1fusion proteinfusion protein [Measles virus genotype D8]ALE27314.1fusion proteinfusion protein [Measles virus genotype D8]ALE27314.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype H1]AIG53713.1unnamed protein product [Measles virus]CAA34588.1fusion proteinfusion protein [Measles virus genotype B3.1]AIY55563.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1<	fusion protein	fusion protein [Measles virus genotype D8]	ALE27224.1
fusion proteinfusion protein [Measles virus strain MVi/California.USA/8.04]AEP40459.1 MVi/California.USA/8.04]fusion proteinfusion protein [Measles virus genotype D8]AIG94081.1fusion proteinfusion protein [Measles virus genotype D8]ALE27194.1fusion proteinfusion protein [Measles virus]BAA33871.1fusion proteinfusion protein [Measles virus]ABY21182.1fusion proteinfusion protein [Measles virus]ALE27284.1fusion proteinfusion protein [Measles virus genotype D8]ALE27314.1fusion proteinfusion protein [Measles virus genotype G3]AFY12712.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype H1]AIG53713.1fusion proteinfusion protein [Measles virus genotype H1]AIG53713.1unnamed protein product [Measles virus genotype H3]ALE7388.1fusion proteinfusion protein [Measles virus genotype H3]AIC53713.1unnamed protein product [Measles virus genotype H1]AIG53703.1fusion proteinfusion protein [Measles virus genotype H3]AG434588.1fusion proteinfusion protein [Measles virus genotype H3]AG437208.1fus	fusion protein	fusion protein [Measles virus]	AAT99300.1
MVi/California.USA/8.04]fusion proteinfusion protein [Measles virus genotype D8]AIG94081.1fusion proteinfusion protein [Measles virus]BAA09951.1fusion proteinfusion protein [Measles virus genotype D8]ALE27194.1fusion proteinfusion protein [Measles virus genotype D8]BAA33871.1fusion proteinfusion protein [Measles virus genotype D8]ALE27194.1fusion proteinfusion protein [Measles virus strainAEP40427.1MVi/Washington.USA/18.08/1]MVi/Washington.USA/18.08/1]ABY21182.1fusion proteinfusion protein [Measles virus genotype D8]ALE27284.1fusion proteinfusion protein [Measles virus genotype D8]ALE27314.1fusion proteinfusion protein [Measles virus genotype D8]ALE27314.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype D1]AIG53713.1unnamed protein product [Measles virus genotype H1]AIG53713.1unnamed protein product [Measles virus genotype H1]AIG53703.1fusion proteinfusion protein [Measles virus genotype B3.1]AIY55563.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1 <t< td=""><td>fusion protein</td><td></td><td>BAH96592.1</td></t<>	fusion protein		BAH96592.1
fusion proteinfusion protein [Measles virus genotype D8]AIG94081.1fusion proteinfusion protein [Measles virus]BAA09951.1fusion proteinfusion protein [Measles virus]BAA33871.1fusion proteinfusion protein [Measles virus]BAA33871.1fusion proteinfusion protein [Measles virus]BAA33871.1fusion proteinfusion protein [Measles virus]AEP40427.1MV/Washington.USA/18.08/1]MV/Washington.USA/18.08/1]fusion proteinfusion protein [Measles virus]ABY21182.1fusion proteinfusion protein [Measles virus genotype D8]ALE27284.1fusion proteinfusion protein [Measles virus genotype D8]ALE27314.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype H1]AIG53713.1unnamed protein full = Fusion glycoprotein F2; Contains: RecName: Full = Fusion glycoprotein F2; Contains: RecName: Full = Fusion glycoprotein F1; Flags: PrecursorAIG53713.1fusion proteinfusion protein [Measles virus genotype B3.1]AIG53713.1unnamed protein full esses virus genotype B3.1]AIC53703.1fusion proteinfusion protein [Measles virus genotype B3.1]AIC53703.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1<	fusion protein		AEP40459.1
fusion proteinfusion protein [Measles virus]BAA09951.1fusion proteinfusion protein [Measles virus genotype D8]ALE27194.1fusion proteinfusion protein [Measles virus genotype D8]BAA33871.1fusion proteinfusion protein [Measles virus strainAEP40427.1MV/Washington.USA/18.08/1]MV/Washington.USA/18.08/1]ABY21182.1fusion proteinfusion protein [Measles virus genotype D8]ALE27284.1fusion proteinfusion protein [Measles virus genotype D8]ALE27344.1fusion proteinfusion protein [Measles virus genotype D8]ALE27314.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype H1]AIG53713.1unnamed protein product [Measles virus]CAA34588.1fusion proteinfusion protein [Measles virus genotype B3.1]AIY55563.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protei			
fusion proteinfusion protein [Measles virus genotype D8]ALE27194.1fusion proteinfusion protein [Measles virus]BAA33871.1fusion proteinfusion protein [Measles virus]BAA33871.1fusion proteinfusion protein [Measles virus]AEP40427.1MVV/Washington.USA/18.08/1]fusion proteinfusion protein [Measles virus]ABY21182.1fusion proteinfusion protein [Measles virus]ACA09725.1fusion proteinfusion protein [Measles virus genotype D8]ALE27314.1fusion proteinfusion protein [Measles virus genotype G3]AFY12712.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype H1]AIG53713.1unnamed protein product [Measles virus]CAA34588.1fusion proteinfusion protein [Measles virus genotype B3.1]AIY5556.3.1fusion proteinfusion protein [Measles virus genotype B3.1]AIY5556.3.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion prot			
fusion proteinfusion protein [Measles virus]BAA33871.1fusion proteinfusion protein [Measles virus]AEP40427.1MVi/Washington.USA/18.08/1]MVi/Washington.USA/18.08/1]fusion proteinfusion protein [Measles virus]ABY21182.1fusion proteinfusion protein [Measles virus]ALE27284.1fusion proteinfusion protein [Measles virus]ACA09725.1fusion proteinfusion protein [Measles virus genotype D8]ALE27314.1fusion proteinfusion protein [Measles virus genotype G3]AFY12712.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype H1]AIG53713.1unnamed protein product [Measles virus genotype B3.1]AIY55563.1fusion proteinfusion protein [Measles virus]CAA76888.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus]ALE263703.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusi	-		
fusion protein fusion protein [Measles virus strain AEP40427.1 MV/Washington.USA/18.08/1] MV/Washington.USA/18.08/1] fusion protein fusion protein [Measles virus] ABY21182.1 fusion protein fusion protein [Measles virus] ALE27284.1 fusion protein fusion protein [Measles virus genotype D8] ALE27314.1 fusion protein fusion protein [Measles virus genotype D8] ALE27314.1 fusion protein fusion protein [Measles virus genotype D8] ALE27368.1 fusion protein fusion protein [Measles virus genotype D8] ALE27368.1 fusion protein fusion protein [Measles virus genotype D8] ALE27368.1 fusion protein fusion protein [Measles virus genotype D8] ALE27368.1 fusion protein fusion protein [Measles virus genotype D8] ALE27368.1 fusion protein fusion protein [Measles virus genotype H1] AIG53713.1 unnamed protein product [Measles virus genotype B3.1] AIY55563.1 fusion protein fusion protein [Measles virus genotype B3] AGA17208.1 fusion protein fusion protein [Measles virus genotype B3] AGA17208.1 fusion protein fusion protein [Measles virus genotype B3] AGA17208.1<			
MVi/Washington.USA/18.08/1]fusion proteinfusion protein [Measles virus]ABY21182.1fusion proteinfusion protein [Measles virus]ALE27284.1fusion proteinfusion protein [Measles virus genotype D8]ALE27184.1fusion proteinfusion protein [Measles virus genotype D8]ALE2734.1fusion proteinfusion protein [Measles virus genotype D8]ALE27314.1fusion proteinfusion protein [Measles virus genotype G3]AFY12712.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype H1]AIG53713.1unnamed protein product [Measles virus]CAA34588.1fusion proteinfusion protein [Measles virus genotype B3.1]AIY55563.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AAL29688.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AAL29688.1fusion proteinfusion protein [Measles virus genotype B3]AAL29688.1 <t< td=""><td></td><td></td><td></td></t<>			
fusion proteinfusion protein [Measles virus]ABY21182.1fusion proteinfusion protein [Measles virus genotype D8]ALE27284.1fusion proteinfusion protein [Measles virus genotype D8]ALE27314.1fusion proteinfusion protein [Measles virus genotype G3]AFY12712.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype H1]AIG53713.1unnamed protein product [Measles virus]CAA34588.1fusion proteinfusion protein [Measles virus genotype B3.1]AIY55563.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype H1]AIG53703.1fusion proteinfusion protein [Measles virus genotype B3]AAL29688.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfus	fusion protein		ALI 70727.1
fusion proteinfusion protein [Measles virus genotype D8]ALE27284.1fusion proteinfusion protein [Measles virus]ACA09725.1fusion proteinfusion protein [Measles virus genotype D8]ALE27314.1fusion proteinfusion protein [Measles virus genotype G3]AFY12712.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein glycoprotein F0; Contains: RecName: Full = Fusion glycoprotein F1; Flags: PrecursorAIG53713.1fusion proteinfusion protein [Measles virus genotype H1]AIG53713.1unnamed protein product [Measles virus genotype B3.1]AIY55563.1fusion proteinfusion protein [Measles virus genotype B3.1]AIY55563.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfusion protein [Measles virus genotype H1]AIG53701.1fusion proteinfusion protein [Measles virus g	fusion protein		ABY21182.1
fusion proteinfusion protein [Measles virus]ACA09725.1fusion proteinfusion protein [Measles virus genotype D8]ALE27314.1fusion proteinfusion protein [Measles virus genotype G3]AFY12712.1fusion proteinfusion protein [Measles virus genotype D8]ALE27368.1fusion proteinfusion protein [Measles virus genotype H1]AIG53713.1unnamed protein product [Measles virus genotype H1]AIG53713.1unnamed protein product [Measles virus]CAA34588.1fusion proteinfusion protein [Measles virus]AAIC53703.1fusion proteinfusion protein [Measles virus genotype H3]AIC53703.1fusion proteinfusion protein [Measles virus genotype H3]AGA17208.1fusion proteinfusion protein [Measles virus genotype H3]AGA3703.1fusion proteinfusion protein [Measles virus genotype H3]AGA3706.1fusion proteinfusion protein [Measles virus genotyp			
fusion proteinfusion protein [Measles virus genotype D8]ALE27314.1fusion proteinfusion protein [Measles virus genotype G3]AFY12712.1fusion proteinfusion protein [Measles virus genotype G3]ALE27368.1fusion proteinRecName: Full = Fusion glycoprotein F0; Contains: RecName: Full = Fusion glycoprotein F1; Flags: PrecursorBAG53713.1fusion proteinfusion protein [Measles virus genotype H1]AIG53713.1fusion proteinfusion protein [Measles virus genotype H1]AIG53713.1fusion proteinfusion protein [Measles virus]CAA34588.1fusion proteinfusion protein [Measles virus]CAA7688.1fusion proteinfusion protein [Measles virus genotype B3.1]AIY55563.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA25706.1fusion proteinfusion protein [Measles virus genotype H1]AIG53701.1fusion proteinfusion protein [Measles virus genotype B3]ALE27092.1			
fusion protein fusion protein fusion protein [Measles virus genotype D8] ALE27368.1 fusion protein RecName: Full = Fusion glycoprotein F0; Contains: RecName: Full = Fusion glycoprotein F1; Flags: Precursor P35973.1 fusion protein fusion protein [Measles virus genotype H1] AIG53713.1 unnamed protein product [Measles virus] CAA34588.1 fusion protein fusion protein [Measles virus] CAA34588.1 fusion protein fusion protein [Measles virus] CAA76888.1 fusion protein fusion protein [Measles virus] ADO17330.1 fusion protein fusion protein [Measles virus genotype B3] AGA17208.1 fusion protein fusion protein [Measles virus genotype H1] AIG53703.1 fusion protein fusion protein [Measles virus genotype B3] AGA17208.1 fusion protein fusion protein [Measles virus genotype H1] AIG53706.1 fusion protein fusion protein [Measles virus genotype H1] AIG53706.1 fusion protein fusion protein [Measles virus genotype H1] AIG53706.1 fusion protein fusion protein [Measles virus genotype H1] AIG53706.1 fusion protein fusion protein [Measles virus genotype H3] AIG53706.1 fusion prote	fusion protein	fusion protein [Measles virus genotype D8]	ALE27314.1
fusion protein RecName: Full = Fusion glycoprotein F0; Contains: P35973.1 RecName: Full = Fusion glycoprotein F2; Contains: RecName: Full = Fusion glycoprotein F2; Contains: RecName: Full = Fusion glycoprotein F1; Flags: Precursor fusion protein fusion protein [Measles virus genotype H1] AIG53713.1 nunnamed protein product [Measles virus] CAA34588.1 fusion protein fusion protein [Measles virus] CAA76888.1 fusion protein fusion protein [Measles virus genotype B3.1] AIY55563.1 fusion protein fusion protein [Measles virus genotype H1] AIG53703.1 fusion protein fusion protein [Measles virus genotype B3] AGA17208.1 fusion protein fusion protein [Measles virus genotype H1] AIG53706.1 fusion protein fusion protein [Measles virus genotype H1] AIG53706.1 fusion protein fusion protein [Measles virus genotype H1] AIG53706.1 fusion protein fusion protein [Measles virus genotype H1] AIG53706.1 fusion protein fusion protein [Measles virus genotype H3] AIG53706.1 fusion protein fusion protein [Measles virus genotype H3] AIG53706.1 fusion protein fusion protein [Measles virus genotype H3] AIG53706.1 <td>fusion protein</td> <td>fusion protein [Measles virus genotype G3]</td> <td>AFY12712.1</td>	fusion protein	fusion protein [Measles virus genotype G3]	AFY12712.1
RecName: Full = Fusion glycoprotein F2; Contains: RecName: Full = Fusion glycoprotein F1; Flags: Precursorfusion proteinfusion protein [Measles virus genotype H1]AIG53713.1 CAA34588.1fusion proteinfusion protein [Measles virus]CAA3688.1fusion proteinfusion protein [Measles virus]CAA76888.1fusion proteinfusion protein [Measles virus genotype B3.1]AIY55563.1fusion proteinfusion protein [Measles virus genotype H3]AG017330.1fusion proteinfusion protein [Measles virus genotype H3]AGA17208.1fusion proteinfusion protein [Measles virus genotype H3]AGA17208.1fusion proteinfusion protein [Measles virus genotype H3]AG253706.1fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfusion protein [Measles virus genotype H3]AIG53701.1fusion proteinfusion protein [Measles virus genotype H3]ALE27092.1	fusion protein		ALE27368.1
RecName: Full = Fusion glycoprotein F1; Flags: Precursorfusion proteinfusion protein [Measles virus genotype H1]AIG53713.1unnamed protein product [Measles virus]CAA34588.1fusion proteinfusion protein [Measles virus]CAA3688.1fusion proteinfusion protein [Measles virus]AIY55563.1fusion proteinfusion protein [Measles virus]AD017330.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA29688.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfusion protein [Measles virus genotype B3]ALE27092.1	fusion protein		P35973.1
fusion proteinfusion protein [Measles virus genotype H1]AIG53713.1unnamed protein product [Measles virus]CAA34588.1fusion proteinfusion protein [Measles virus]CAA7688.1fusion proteinfusion protein [Measles virus]CAA7688.1fusion proteinfusion protein [Measles virus]AD017330.1fusion proteinfusion protein [Measles virus]AD017330.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfusion protein [Measles virus genotype H3]AIG53701.1fusion proteinfusion protein [Measles virus genotype H3]AIE27092.1			
unnamed protein product [Measles virus]CAA34588.1fusion proteinfusion protein [Measles virus]CAA76888.1fusion proteinfusion protein [Measles virus]CAA76888.1fusion proteinfusion protein [Measles virus]AD017330.1fusion proteinfusion protein [Measles virus]AD017330.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfusion protein [Measles virus genotype H1]AIG53701.1fusion proteinfusion protein [Measles virus genotype B3]ALE27092.1	fusion protein		AIG53713.1
fusion proteinfusion protein [Measles virus]CAA76888.1fusion proteinfusion protein [Measles virus genotype B3.1]AIY55563.1fusion proteinfusion protein [Measles virus]ADO17330.1fusion proteinfusion protein [Measles virus genotype H1]AIG53703.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype H1]AIC53706.1fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfusion protein [Measles virus genotype H1]AIG53701.1fusion proteinfusion protein [Measles virus genotype H3]ALE27092.1	• -		
fusion proteinfusion protein [Measles virus]ADO17330.1fusion proteinfusion protein [Measles virus genotype H1]AIG53703.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfusion protein [Measles virus genotype H1]AIG53701.1fusion proteinfusion protein [Measles virus genotype H2]AIG53701.1fusion proteinfusion protein [Measles virus genotype B3]ALE27092.1		fusion protein [Measles virus]	CAA76888.1
fusion proteinfusion protein [Measles virus genotype H1]AIG53703.1fusion proteinfusion protein [Measles virus genotype B3]AGA17208.1fusion proteinfusion protein [Measles virus]AAL29688.1fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfusion protein [Measles virus genotype H1]AIG53701.1fusion proteinfusion protein [Measles virus genotype B3]ALE27092.1			AIY55563.1
fusion protein fusion protein [Measles virus genotype B3] AGA17208.1 fusion protein fusion protein [Measles virus] AAL29688.1 fusion protein fusion protein [Measles virus genotype H1] AIG53706.1 fusion protein fusion protein [Measles virus genotype H1] AIG53706.1 fusion protein fusion protein [Measles virus genotype H1] AIG53701.1 fusion protein fusion protein [Measles virus genotype B3] ALE27092.1	fusion protein	fusion protein [Measles virus]	
fusion proteinfusion protein [Measles virus]AAL29688.1fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfusion protein [Measles virus genotype H1]AIG53701.1fusion proteinfusion protein [Measles virus genotype B3]ALE27092.1			
fusion proteinfusion protein [Measles virus genotype H1]AIG53706.1fusion proteinfusion protein [Measles virus genotype H1]AIG53701.1fusion proteinfusion protein [Measles virus genotype B3]ALE27092.1			
fusion proteinfusion protein [Measles virus genotype H1]AIG53701.1fusion proteinfusion protein [Measles virus genotype B3]ALE27092.1			
fusion protein [Measles virus genotype B3] ALE27092.1	iusion protein		
Tuston protein Tuston protein [Measles virus genotype H1] AIG53/14.1			
	iusion protein	iusion protein [measies virus genotype H1]	AIU00714.1

TABLE 15-continued

Туре	Virus Name	GenBank Accessio
fusion protein	fusion protein [Measles virus genotype H1]	AIG53694.1
fusion protein	fusion protein [Measles virus genotype 111]	AIG53668.1
fusion protein	fusion protein [Measles virus]	ACC86094.1
iusion protein	fusion protein [Measles virus]	AIG53670.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53070.1
fusion protein	fusion protein [Measles virus genotype B3]	AGA17216.1
fusion protein	fusion protein [Measles virus genotype B3]	AIG53671.1
fusion protein	fusion protein [Measles virus strain	AEP40451.1
usion protein	MVi/New Jersey.USA/45.05]	AEI 40451.1
usion protein	fusion protein [Measles virus genotype H1]	AIG53684.1
usion protein	fusion protein [Measles virus genotype H1]	AIG53688.1
usion protein	fusion protein [Measles virus genotype B3]	AGA17214.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53683.1
usion protein	fusion protein [Measles virus genotype H1]	AIG53667.1
usion protein	fusion protein [Measles virus genotype H1]	AIG53686.1
lusion protein	fusion protein [Measles virus genotype H1]	AIG53685.1
lusion protein	fusion protein [Measles virus genotype H1]	AIG53681.1
•	unnamed protein product [Measles virus]	CAA34589.1
lusion protein	fusion protein [Measles virus genotype H1]	AIG53678.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53710.1
iusion protein	fusion protein [Measles virus genotype H1]	AIG53669.1
iusion protein	fusion protein [Measles virus genotype H1]	AIG53664.1
fusion protein	fusion protein [Measles virus]	AAA50547.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53679.1
fusion protein	fusion protein [Measles virus genotype 111]	AIG53709.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53672.1
usion protein	fusion protein [Measles virus genotype H1]	AIG53697.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53689.1
•	fusion protein [Measles virus genotype H1]	AIG53676.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53675.1
fusion protein		
fusion protein	fusion protein [Measles virus genotype H1]	AIG53663.1
usion protein	fusion protein [Measles virus]	BAA19841.1
fusion protein	fusion protein [Measles virus]	AAF02701.1
usion protein	fusion protein [Measles virus genotype H1]	AIG53680.1
fusion protein	fusion protein [Measles virus genotype H1]	AIG53674.1
c protein	C protein [Measles virus strain Moraten]	AAF85670.1
C protein	RecName: Full = Protein C	P03424.1
C protein	C protein [Measles virus]	ACN54404.1
C protein	C protein [Measles virus]	ACN54412.1
C protein	RecName: Full = Protein C	P35977.1
C protein	C protein [Measles virus]	AAF85678.1
C protein	C protein [Measles virus]	ABD33998.1
C protein	unnamed protein product [Measles virus]	CAA34586.1
C protein	C protein [Measles virus]	BAJ51786.1
C protein	C protein [Measles virus]	BAA33869.1
C protein	virulence factor [Measles virus]	ABO69700.1
C protein	C protein [Measles virus]	NP_056920.1
C protein	C protein [Measles virus]	ADO17333.1
C protein	C protein [Measles virus]	ACC86082.1
C protein	C protein [Measles virus]	BAA33875.1
C protein	C protein [Measles virus]	ABY21189.1
C protein	C protein [Measles virus]	BAE98296.1
C protein	C protein [Measles virus]	ADU17782.1
C protein	C protein [Measles virus strain	AEP40417.1
-	MVi/Virginia.USA/15.09]	
C protein	C protein [Measles virus]	ADU17814.1
C protein	C protein [Measles virus]	ADU17798.1
C protein	C protein [Measles virus genotype D4]	AFY12700.1
C protein	C protein [Measles virus]	ADU17784.1
C protein	C protein [Measles virus strain	AEP40465.1
	MVi/California.USA/16.03]	
C protein	C protein [Measles virus]	ABB71643.1
C protein	C protein [Measles virus]	AEI91027.1
C protein	C protein [Measles virus]	ADU17874.1
C protein	C protein [Measles virus]	ADU17903.1
C protein	C protein [Measles virus]	CAA34579.1
C protein	C protein [Measles virus]	ADU17790.1
	C protein [Measles virus]	ADU17790.1 ADU17800.1
C protein	C protein [Measles virus]	
C protein	C protein [Measles virus]	ABB71667.1
C protein	unnamed protein product [Measles virus]	CAA34572.1
] protein	C protein [Measles virus strain	AEP40433.1
-	MVi/Arizona.USA/11.08/2]	
protein [C protein [Measles virus]	ADU17830.1
C protein	C protein [Measles virus]	ADU17947.1
C protein	C protein [Measles virus]	ADU17818.1
c protein	1 L J	

TABLE 15-continued

Туре	Virus Name	GenBank Accessio
туре	vitus ivalle	Gendank Accessio
a . :	MVi/New Jersey,USA/45.05]	
C protein	C protein [Measles virus strain MV//Terres LISA/4.07]	AEP40441.1
C protein	MVi/Texas.USA/4.07] C protein [Measles virus]	ADU17864.1
C protein	C protein [Measles virus]	ADU17838.1
C protein	C protein [Measles virus]	ADU17881.1
C protein	C protein [Measles virus strain	AEP40425.1
	MVi/Washington.USA/18.08/1]	
C protein	C protein [Measles virus]	ADU17927.1
C protein	C protein [Measles virus]	ADU17953.1
C protein	C protein [Measles virus]	ADU17889.1
C protein	C protein [Measles virus]	ADU17963.1
C protein	C protein [Measles virus]	ADU17893.1
C protein	C protein [Measles virus]	ADU17820.1
C protein	C protein [Measles virus]	ABB71651.1
C protein	C protein [Measles virus]	ADU17786.1
C protein	C protein [Measles virus] C protein [Measles virus]	ADU17862.1 ADU17923.1
C protein C protein	C protein [Measles virus] C protein [Measles virus]	ADU17923.1 ADU17959.1
C protein	C protein [Measles virus]	ADU17959.1 ADU17951.1
C protein	C protein [Measles virus]	ADU179916.1
C protein	C protein [Measles virus]	ADU17957.1
C protein	C protein [Measles virus]	ADU17925.1
C protein	C protein [Measles virus]	ADU17901.1
C protein	C protein [Measles virus]	ADU17887.1
C protein	C protein [Measles virus]	ADU17832.1
C protein	C protein [Measles virus]	ADU17891.1
C protein	C protein [Measles virus]	ADU17961.1
C protein	C protein [Measles virus]	ADU17872.1
C protein	C protein [Measles virus]	ADU17929.1
C protein	C protein [Measles virus]	ADU17908.1
C protein	C protein [Measles virus]	ADU17910.1
C protein	C protein [Measles virus]	ADU17921.1
C protein	C protein [Measles virus]	ADU17824.1
C protein	C protein [Measles virus strain MVi/Pennsylvania.USA/20.09]	AEP40473.1
C protein	C protein [Measles virus]	ADU17828.1
C protein	C protein [Measles virus]	ADU17812.1
C protein	C protein [Measles virus genotype D8]	AFY12692.1
C protein	nonstructural C protein [Measles virus]	ABA59559.1
C protein	RecName: Full = Protein C	Q00794.1
C protein	nonstructural C protein [Measles virus]	ADO17934.1
C protein	nonstructural C protein [Measles virus]	ACJ66773.1
C protein	C protein [Measles virus genotype G3]	AFY12708.1
C protein	RecName: Full = Protein C	P26035.1
C protein	C protein [Measles virus]	BAA84128.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName:	Q77M43.1
	Full = Nucleocapsid protein;	
	Short = NP; Short = Protein N	
nucleoprotein	nucleocapsid protein [Measles virus strain Rubeovax]	AAF85683.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName:	Q89933.1
	Full = Nucleocapsid protein; Short = NP; Short = Protein N	
nucleoprotein	short = NP; Short = Protein N mucleocapsid protein [Measles virus strain AIK-C]	AAF85659.1
nucleoprotein	nucleoprotein [Measles virus]	ABI54102.1
nucleoprotein	nucleoprotein [Measles virus]	AAA56643.1
nucleoprotein	nucleoprotein [Measles virus]	AAC03050.1
nucleoprotein	nucleoprotein [Measles virus]	AAA18990.1
nucleoprotein	nucleoprotein [Measles virus]	AAA56640.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName:	P35972.1
	Full = Nucleocapsid protein;	
	Short = NP; Short = Protein N	
nucleoprotein	RecName: Full=Nucleoprotein; AltName:	P10050.1
	Full = Nucleocapsid protein;	
	Short = NP; Short = Protein N	
nucleoprotein	N protein [Measles virus]	BAB60956.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName:	BIAAA7.1
	Full = Nucleocapsid protein;	
	Short = NP; Short = Protein N	
nucleoprotein	nucleoprotein [Measles virus]	AAA18991.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46894.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46871.1
	pucieoprotein (Menciec surgia)	CAB46872.1
nucleoprotein	nucleoprotein [Measles virus]	
nucleoprotein nucleoprotein	nucleoprotein [Measles virus]	ABU49606.1
nucleoprotein nucleoprotein nucleoprotein nucleoprotein		

MeV NCBI Accession Numbers (Amino Acid Sequences)		
Туре	Virus Name	GenBank Accession
nucleoprotein	nucleoprotein [Measles virus]	CAB46892.1
nucleoprotein	unnamed protein product [Measles virus]	CAA34584.1
nucleoprotein	nucleoprotein [Measles virus]	AAA18997.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46863.1
nucleoprotein	nucleoprotein [Measles virus]	AEF30352.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleocapsid protein [Measles virus]	ABI54103.1 AAA46433.1
nucleoprotein	mucleoprotein [Measles virus]	CAB46902.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46873.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46906.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74547.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74537.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46862.1
nucleoprotein	nucleocapsid protein [Measles virus]	BAA09961.1
nucleoprotein	nucleoprotein [Measles virus]	AAO15875.1
nucleoprotein	nucleoprotein [Measles virus]	AAO15871.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46882.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60124.1
nucleoprotein	nucleoprotein [Measles virus]	ABI54104.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46869.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46880.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74541.1
nucleoprotein	nucleocapsid protein [Measles virus strain	AEP40446.1
	MVi/New Jersey.USA/45.05]	ADIE 4110.1
nucleoprotein	nucleoprotein [Measles virus] nucleoprotein [Measles virus]	ABI54110.1 CAB46903.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus]	CAB46899.1
nucleoprotein	mucleoprotein [Measles virus]	CAB46901.1
nucleoprotein	mucleocapsid protein [Measles virus]	ABB71640.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60113.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60114.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60116.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46895.1
nucleoprotein	nucleoprotein Measles virus	CAB60121.1
nucleoprotein	nucleoprotein [Measles virus]	ABI54111.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46889.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46898.1
nucleoprotein	nucleoprotein [Measles virus genotype B3]	ALE27083.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60118.1
nucleoprotein	nucleocapsid protein [Measles virus]	CAA34570.1
nucleoprotein	nucleoprotein [Measles virus]	AAC29443.1
nucleoprotein	nucleocapsid protein [Measles virus strain MVi/Washington.USA/18.08/1]	AEP40422.1
nucleoprotein	nucleoprotein [Measles virus]	AAO15872.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46874.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74550.1
nucleoprotein	nucleocapsid protein [Measles virus]	ABB71648.1
nucleoprotein nucleoprotein	nucleoprotein [Measles virus] nucleoprotein [Measles virus]	CAB46900.1 BAH22440.1
nucleoprotein	nucleocapsid protein [Measles virus]	AAA46432.1
nucleoprotein	nucleocapsid protein [Measles virus]	BAA33867.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74539.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60115.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60123.1
nucleoprotein	nucleocapsid protein [Measles virus]	ABB71664.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60125.1
nucleoprotein	nucleoprotein Measles virus	AAA74546.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46886.1
nucleoprotein	nucleoprotein [Measles virus]	BAH22350.1
nucleoprotein	nucleoprotein [Measles virus]	CAB46867.1
nucleoprotein	nucleocapsid protein [Measles virus]	BAA09954.1
nucleoprotein	nucleoprotein [Measles virus]	AAO15873.1
nucleoprotein	nucleocapsid protein [Measles virus]	AEP95735.1
nucleoprotein	nucleoprotein [Measles virus]	AAL37726.1
nucleoprotein	nucleoprotein [Measles virus]	AAA74549.1
nucleoprotein	RecName: Full = Nucleoprotein; AltName: Full = Nucleocapsid protein;	P26030.1
	Short = NP; Short = Protein N	
nucleoprotein	nucleoprotein [Measles virus ETH55/99]	AAK07777.1
nucleoprotein	nucleoprotein [Measles virus genotype B3]	AGA17238.1
nucleoprotein	nucleoprotein [Measles virus]	AEF30351.1
nucleoprotein	nucleoprotein [Measles virus genotype B3]	AGA17242.1
	nucleoprotein [Measles virus ETH54/98]	AAK07776.1
nucleoprotein		
nucleoprotein	nucleoprotein [Measles virus]	AAA74548.1
nucleoprotein nucleoprotein nucleoprotein nucleoprotein		

TABLE 15-continued

Туре	Virus Name	GenBank Accession
nucleoprotein	nucleoprotein [Measles virus]	AAA19223.1
nucleoprotein	nucleoprotein [Measles virus genotype B3]	AGA17241.1
nucleoprotein	nucleoprotein [Measles virus]	CAB60122.1
nucleoprotein	nucleoprotein [Measles virus]	CAC34599.1
nucleoprotein	nucleoprotein [Measles virus]	AAC03042.1
nucleoprotein	mucleoprotein [Measles virus]	CAC34604.1
nucleoprotein	mucleoprotein [Measles virus]	AAA74544.1
nucleoprotein	mucleocapsid protein [Measles virus]	NP 056918.1
V Protein	RecName: Full = Non-structural protein V	Q9IC37.1
V Protein	RecName: Full = Non-structural protein V	Q9EMA9.1
V Protein	V protein [Measles virus]	ACN54411.1
V Protein	V protein [Measles virus]	ACN54403.1
V Protein	V protein [Measles virus]	AEP95742.1
V Protein	V protein [Measles virus strain	AEP40416.1
v 110tem	MVi/Virginia.USA/15.09]	ALA 40410.1
V Protein	V protein [Measles virus]	ADU17801.1
V Protein	V protein [Measles virus]	ADU17801.1 ADU17849.1
V Protein V Protein	V protein [Measles virus]	ABB71642.1
V Protein		
V Protein	V protein [Measles virus genotype D8]	AFY12693.1
V Protein	V protein [Measles virus]	YP_003873249.2 AEP40432.1
v Protein	V protein [Measles virus strain	AEP40432.1
IZ Durata las	MVi/Arizona.USA/11.08/2]	D2 (0)(1)
V Protein	RecName: Full = Non-structural protein V	P26036.1
V Protein	V protein [Measles virus strain	AEP40464.1
VD 4 1	MVi/California.USA/16.03]	
V Protein	V protein [Measles virus strain	AEP40456.1
	MVi/California.USA/8.04]	
V Protein	V protein [Measles virus]	ABY21188.1
V Protein	V protein [Measles virus strain	AEP40424.1
	MVi/Washington.USA/18.08/1]	
V Protein	V protein [Measles virus]	BAH96581.1
V Protein	V protein [Measles virus]	ABB71666.1
V Protein	RecName: Full = Non-structural protein V	P60168.1
V Protein	V protein [Measles virus]	BAH96589.1
V Protein	V protein [Measles virus]	ADU17954.1
V Protein	V protein [Measles virus strain	AEP40400.1
	MVi/New York.USA/26.09/3]	
V Protein	V protein [Measles virus]	ABY21196.1
V Protein	virulence factor [Measles virus]	ABO69701.1
V Protein	V protein [Measles virus]	ABB71650.1
V Protein	V protein [Measles virus]	ACC86086.1
V Protein	V protein [Measles virus genotype D4]	AFY12702.1
V Protein	V protein [Measles virus strain	AEP40448.1
	MVi/New Jersey.USA/45.05]	
V Protein	V protein [Measles virus]	BAE98295.1
V Protein	V protein [Measles virus]	ACC86083.1
V Protein	V protein [Measles virus]	ACU5139.1
V Protein	V protein [Measles virus]	ADO17334.1
V Protein	V protein [Measles virus]	ADU17930.1
V Protein	V protein [Measles virus genotype G3]	AFY12710.1
V Protein	V protein [Measles virus genotype 05]	AEP40472.1
, Hotelli		ALI 40472.1
17 D 4 1	MVi/Pennsylvania.USA/20.09]	A DI 11 2000 1
V Protein	phosphoprotein [Measles virus]	ADU17839.1
V Protein	V protein [Measles virus]	ADU17894.1
V Protein	V protein [Measles virus]	ACN50010.1
V Protein	V protein [Measles virus]	ADU17892.1
	unnamed protein product [Measles virus]	CAA34585.1
V Protein	V protein [Measles virus]	ABD33997.1

TABLE 16

Name	Sequence	SEQ ID NO:
	Flagellin Nucleic Acid Sequences	
NT (5' UTR, ORF, 3' UTR)	TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTAT AGGGAAATAAGAGAGAAAAGAAGAGAGTAAGAAGAAATATAAG AGCCACCATGGCACAAGTCATTAATACAAACAGCCTGTCGCTG TTGACCCAGAATAACCTGAACAAATCCCAGTCCGCACTGGGGCA CTGCTATCGAGGCGTTGGCTCTCCGGTATCCAACAGCGG AAAGACGATGCGGCAGGCCAGGC	51

341

TABLE 16-continued

Name	Sequence	SEQ ID NO:
	Sequence	
ORF Sequence, NT	CTTCTTGCCCCTGGGCCTCCCCCCAGCCCCTCCTCCCCCCTCCTG CACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGGGGGC ATGGCACAAGTCATTAATACAAACAGCCTGTCGCTGTTGACCC AGAATAACCTGAACAAATCCCAGTCCGCACTGGGCACTGCTAT CGACGGTTGTCTTCCGGTCTGCGTATCAACGGCGACTGCTAT CGACGGCAGGACAGCAGGCGTTGCAACCGTTTACCGCGAACA TCAAAGGTCTGACTCAGGCTTCCCGTAACGCATTACCGCGAACA ACGACCTGCAGCCGTGGCGTGAACGAACACAC AACAACCTGCAGGCCGTGAACGACTCCAGCCTGAACGACAT CTCAATGCCAGCCTGTGCCTGAACCGCGTCAGCTGCGGA ATGGTACTAACTCCAGTCTGACCTCGACTCCAGGCTGAA ATCACCCAGCGCCTGAACGAAATCCAACCTGGCAGGA CTCAGTTCAACGGCGGTGAAAGTCCTGGCGCGGAGACAACACCCT GACCATCCAGGTGGTGCAACGACGGTGAAACTACCGGCAGA CTCAGTTCAACGGCGTGAAAGTCCTGGCGCGGGAGAACACCCCT GACCATCCAGGTGGTGCCAACGACGGGAGAACACCCCT GACCATCCAGGTGGTGCCAACGACGGGAGAACACCCCT GACCATCCAGGTGGTGCCAACGCCGGAAAGAACTGCTGTAAC CGTTGATAAAGAATCAGCTCTAAAACACTGGGACTGGTAAAC CGTTGATAAAGAATCACCTATAAAAATGGTACAGATCGCTGTAAC GCCCAGAGCATACTGGGCTGATATCAAATTGATACA GCCCAGAGCATACTGGGGCTGATACCAAGGACGTGGTGTCA ATACTTATTAGATGTATAAACTACCAAGAGAGTTAATATTGATAC GACTGATAAAACTCCGTTGGCAACTGCGGAAGCTACAGCTAT CGGGGAACGGCCCATATAACCACACGTGCGGAAGCTACAGCTAT CGGGGAACGGCCCATATAACCCACAACTACGACAACTACGCTTAT CGGGGAACGGCCCATATAACCCACAACTACGGCTGAACTAC CAAAGAGGGGTGTTACTGGCGCCGATAAGGCTAATTGCGGCTACA CAAAGAGGGGCTTACTGGCGCCGATAAGGACAATACTAGCCTT GTAAAACTATCGTTGGAGGATAAAACGGTAAGGTAA	52
mRNA Sequence (assumes T100 tail)	TACTGCGT G*GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAUAUAA GAGCCACCAUGGCACAAGUCAUUAAUACAAACAGCCUGUCGC UGUUGACCCAGAAUAACCUGAACAAAUCCCAGUCCGCACUGG GCACUGCUAUCGAGCGUUUGUCUUCCGGUCUGCGUAUCAACA	53

GCGCGAAAGACGAUGCGGCAGGACAGGCGAUUGCUAACCGUU UUACCGCGAACAUCAAAGGUCUGACUCAGGCUUCCCGUAACG

343

TABLE 16-continued

SEQ ID NO:
81

Name	Sequence	SEQ ID NO:
	CGCAAAACGUCCUCUCUUUACUGCGUUGAUAAUAGGCUGGAG CCUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCCAGC CCCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAA UAAAGUCUGAGUGGGCGGC	
ORF Sequence, NT	AUGGCACAAGUCAUUAAUACAAACAGCCUGUCGCUGUUGACC CAGAAUAACCUGAACAAAUCCCAGUCCGCACUGGCACUGCU AUCGAGCGUUUGUCUUCCGGUCUGCGUAUCAACAGCGCGAAA GACGAUGCGCCAGGACAGGCGUUCCCGUAACGCUAACGAC GGUAUCUCCAUUGCGCAGACCACUGAAGGCCGCCUGAACGAC GGUAUCUCCAUUGCGCAGACCACUGAAGGCCGCCUGAACGAA AUCAAAAGACACACCACUGAAGCUCCCGUGAACGCUAACGAC GGUAUCUCCAUUGCGCAGACCCAUGAAGCCGCUCAACGAC CAGGCUGAAUGCACACCCAGGCGUGAACUGGCGGUUCAG UCUGCGAAUGGUACUAACGCCUGAACUCGACCUCCACUCCAUC CAGGCUGAAUCACCCAGGCCUGAACGAAAUCGACCGUGAA AUCACACACCCUGACCAUCCAGGUUGAGCUCAACGCCGUGAA ACUAUCGAUAUGACUAACGGCCUGAAAGUCCUGGCGCAG GACAACACCCUGACCAUCCAGGUUGAUGACGCUCUAAAAACCU CGGACUUGAUAAGCUUAAUGUCCAAGAUGCCUACACCCCGGA AGAACUGCUGUAACGCUUGAUAAAAUCAGCUCUUAAAAAGG GUACAGAUCCUUUUACAGCCCAGGGGUUACUGGGCUGAU AUCAAAUUUAAAGAUGUCCAAGAUGCUAUAUAAAAGG CUGCAAUUGGCGGUGGUGCAACGGGGUUACUGGGGCUGAU AUCAAAUUUAAAGAUGGUCAUAUUUUGAUGAGAUGUUAAAAGG CGGGCCUUCUGCUGGUGUUAUUAUAUCGACUGUUAUAAAGG CUGCAACUGCGGAAGCUACAGCUAUUUUGAUGAAACUCCG UUGGCAACUGCGGAAGCUACAGCUAUUUUGAUGAAACUCCG UUGGCAACUGCGGAAGCUACAGCUAUUUGAGGAACGGCCACU AUAACAAUGGGGUUACUAGGCCUAUUUGAGGAACGGCCACU AUAACCACCACAACUAGCUAUUUGAUGAGAACGGCUAU GGUGCUUCUGCUGGGUACAACUACUUGUGCACAGGGGU UUGGCAACUGCGGAAGCUACAGCUUUGUGAGCAGGGGU UUGGCAACUGCGGUAACAGCUAUUGCUGAGCAGGGGU UUGGCAACUGCGGAAUUACUGAACUACUACUACUAACUACU GUUUGAGGAUAAAACCGGUAAGGUUAUUGAGGUGGCUAUG CAGGAAAAGGGCGAAUUACUGCAACUACUUAUAAA GAUGGUCUCCGCUUAAAACCGUUAUGAGAACUACUUAUACA GAAAACAGGGGGACGAAUUACUGCAACUACUUAUACA GAACAGCGGUGAAAUUACUGCAACUGCUAAACCACUAUUACA GAACAGGGGGUAAAAUCUGAAACUGGAACCACUUAAACA GAACAGGGGUGAAAUUCUGAAGCUUUGUAACACUACUUAUACA GAACACGCGUUAAAAGCGUUAAAGACUUGCUACGAUAACAUUACA GAACAGCGGUGAACUUAAAGGGUUAAUACAGAUAACAUAACUUCA GAACACCACUUCCAACUGGGCACUUAGCACAGAUAACCUGAAACUUCA GAACAGCGGUGAACUUAAAGGUUAAUACGGUUAAAACCUG UCUUCUGCCCGUAGCCGUAUCGAACCGGUUCGAAACCGUUUCA AACUCCACCAUUCGACCGGCAAUACCGUAAAUACCGGAAUCCGGAAACCUGCACAGCUUC GAAGCCUCCAUCAGACGUAUCGGCGAAUACCGUAAAUACCUG GAACCUCCACAUUCUGGCGCGCAGAUUCCGCACAGGUUCGCAAACCUGGCC GAAGUCUCCACACAUUCUGCGCGCACAGCUUCGCACAGGUUCGCAAACCUGCACAGCUUCGACCGAGAUUCCGCCGAAAACCUACGUAAACCUGAAACCUGAAACCUGAACCUGCCCUUACGACAACCUGAAAC	82
mRNA Sequence (assumes T100 tail)	G*GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAA GAGCCACCAUGGCACAGUCAUUAAUACAAACAGCCUGUCGC UGUUGACCCAGGAUAACCUGAACAAAUCCCAGUCCGCACUGG GCACUGCUAUCGAGCGUUUGCUCCGUUCGCGUAUCGAACA GCGCGAAAGAUCAAAGGUCUGACUCAGGCUUCCCGUAUCAACA GCGCGAACAUCAAAGGUCUGACUCAGGCUUCCCGUAUCAACG CUAACGACGUUAUCUCCAUUGGCAGACACUGAAGGGCGC UGAACGAAUCAACAACACCUGCAGCGUGUGCGUGACUGG CUCAUCCAGUCUGCAUUGCAACUCAGGCUGACUCAG ACUCCAUCCAGGCUGAAUCAACUCCCAGGUUGCGUGAACUGG ACCGUUCAGUCUGCGAAUGGUACUAACUCCCAGGUUGACUGA ACCGUGUAUCCGGCCAGACUCAGUUCAACGGCCGUGAAAGUCC UGGCGCAGGACUUCGAUUCAACGGCCUGAAAGUCC UGGCGCAGGACUACGUUCAACGGCGUGAACGACC ACGGUGAAACUAUCGAUUGAUUUAAUGUCAACGGCGUGAAAGUCC UGCCGUCAGUCUGCGUAUGAUUGAUUUAAUGUCAACGGCCUAC AACACUGGGACUUCGUUGAUCAACGGCCAAGAAUACUGU AAAACUGGACUUGGGUUGAUCAACGGCGGGUUACUGG GCCGGUGUAUCCGAUUCGGUGGUGCAACGGGGGUUACUGG GGCGGAUAUCCAAUUUGACUUAAUGACAACUACUUAU AUAAAGCUGCAAUUGGCGGUGGUCCAACGGGGGUUACUGG GGCCGAUAUCCAAUUUGGCGUGGUCAACGGGGGUUACUGG GGCCGAUAUCAAAUUUAAAGAGGUCAAUACUAUUUAAAGAG UUAAAGCCGGUGCUUCUGCGGGGGUCAACGCGGUGAAA AACUCCGUUGGCAACUGCGGAAGCUACAGCUAUAU AACCAACUGCCAACGCGGGCCAAGACCUUGUAA AACUCCGUUGGCAACUGCGGAAGCUACAGCUUGUAA AACUCCGUUGGCACCGCGAACACGCUGUGAAA AACUCCGUUGGCACCGCCCAAAUACUUGGGGAAC GGCCACUAUAACCCACAACUGCGGGCCCAAGACUGCUGGUA AACUUCGGUGCGCCCAAACGGUCAACUUGCUGGAGA AACUUCGUUGGAAAAACGGUAAACUAGCUUGUAA AACUUCGGUGACGGUUCAAACGGUUAAUUCGGGCGCUACA UAUAAGGGUGAUAAAACGGUAAACUAGCUUGUGA AACUUCAGAAACAGGGCGAUAACGGACCAUUGCUGGAA AACUUCAGAAACAGGGGUUAAAACGGUUAAUUGAGAGUUGAU AACUUCAGAACAGGGGUUCAAACUGAGCUUGGA AACUUCAGAACAGGGGUUAAAACGGUAACUAGCUUGUGA AACUUCAGAACAGGCGUUGAAAAUUGAUGCUGCUGACAACACU AACUUCAGAACAGGCGUUGAAAAUUGAUGCUGCUGGC ACAGGUUGAUAACCCCUGGCAGAAAAUUGAUGCUGCCU ACCGUUGAAAACCCACUGCGUUAAAACGGUUAAUACAGA UAAGACUGAAAACCGGCUGAAAAUUGAUGCUGCCUGGC ACAGGUUAACCCACUGGCCUGGC	83

Name	Sequence	SEQ ID NO:
	UAACCUGUCUUCUGCCCGUAGCCGUAUCGAAGAUUCCGACUA	
	CGCAACCGAAGUCUCCAACAUGUCUCGCGCGCAGAUUCUGCA	
	GCAGGCCGGUACCUCCGUUCUGGCGCAGGCGAACCAGGUUCC	
	GCAAAACGUCCUCUUUUACUGCGUUGAUAAUAGGCUGGAGC	
	CUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCCAGCC	
	CCUCCUCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAU	
	AAAGUCUGAGUGGGCGGCAAAAAAAAAAAAAAAAAAAAA	
	ААААААААААААААААААААААААААААААААААААААА	
	ААААААААААААААААААААААААААААААААААААААА	

TABLE 17

	Flagellin Amino Acid Sequences	
Name	Sequence	SEQ ID NO:
ORF	MAQVINTNSLSLLTQNNLNKSQSALGTAIERLSSGLRINSAKDDAA	54
Sequence,	GQAIANRFTANIKGLTQASRNANDGISIAQTTEGALNEINNNLQRV	
AA	${\tt RELAVQSANGTNSQSDLDSIQAEITQRLNEIDRVSGQTQFNGVKVL}$	
	AQDNTLTIQVGANDGETIDIDLKEISSKTLGLDKLNVQDAYTPKET	
	AVTVDKTTYKNGTDPITAQSNTDIQTAIGGGATGVTGADIKFKDG	
	QYYLDVKGGASAGVYKATYDETTKKVNIDTTDKTPLATAEATAI RGTATITHNQIAEVTKEGVDTTTVAAQLAAAGVTGADKDNTSLV	
	KLSFEDKNGKVIDGGYAVKMGDDFYAATYDEKTGAITAKTTTYT	
	DGTGVAQTGAVKFGGANGKSEVVTATDGKTYLASDLDKHNFRT	
	GGELKEVNTDKTENPLOKIDAALAOVDTLRSDLGAVONRFNSAIT	
	NLGNTVNNLSSARSRIEDSDYATEVSNMSRAQILQQAGTSVLAQA	
	NQVPQNVLSLLR	
Flagellin-	MAQVINTNSLSLLTQNNLNKSQSALGTAIERLSSGLRINSAKDDAA	55
GS linker-	GQAIANRFTANI KGLTQASRNANDGISIAQTTEGALNEINNNLQRV	
circumsporozoite	RELAVQSANSTNSQSDLDSIQAEITQRLNEIDRVSGQTQFNGVKVL	
protein	AQDNTLTIQVGANDGETIDIDLKQINSQTLGLDTLNVQQKYKVSD	
(CSP)	${\tt TAATVTGYADTTIALDNSTFKASATGLGGTDQKIDGDLKFDDTTG$	
	KYYAKVTVTGGTGKDGYYEVSVDKTNGEVTLAGGATSPLTGGLP	
	ATATEDVKNVQVANADLTEAKAALTAAGVTGTASVVKMSYTDN	
	${\tt NGKTIDGGLAVKVGDDYYSATQNKDGSISINTTKYTADDGTSKTA}$	
	LNKLGGADGKTEVVSIGGKTYAASKAEGHNFKAQPDLAEAAATT	
	TENPLQKIDAALAQVDTLRSDLGAVQNRFNSAITNLGNTVNNLTS	
	ARSRIEDSDYATEVSNMSRAQILQQAGTSVLAQANQVPQNVLSLL	
	RGGGGSGGGGSMMAPDPNANPNANPNANPNANPNANPNANPNA	
	NPNANPNANPNANPNANPNANPNANPNANPNANPNANPN	
	ANPNANPNKNNQGNGQGHNMPNDPNRNVDENANANNAVKNNN	
	NEEPSDKHIEQYLKKIKNSISTEWSPCSVTCGNGIQVRIKPGSANKP KDELDYENDIEKKICKMEKCSSVFNVVNS	
		56
Flagellin- RPVT	MMAP DP NANPNANP NANPNANPNANPNANP NANPNANPNANP	20
linker-	QCNGQGHNMPNDPNRNVDENANANANANANANANANANANANANANANANANANANA	
	QUAGQUARIANI ND FININY DEMANANINY KAMINI EFSDART EQT LKKIKNSISTEWSPCSVTCGNGIQVRIKPGSANKPKDELDYENDIEK	
protein	KICKMEKCSSVFNVVNSRPVT <u>MAQVINTNSLSLLTQNNLNKSQSA</u>	
(CSP)	LGTAIERLSSGLRINSAKDDAAGQAIANRFTANIKGLTQASRNAND	
(002)	GISIAQTTEGALNEINNNLQRVRELAVQSANSTNSQSDLDSIQAEIT	
	QRLNEIDRVSGQTQFNGVKVLAQDNTLTIQVGANDGETIDIDLKQI	
	NSQTLGLDTLNVQQKYKVSDTAATVTGYADTTIALDNSTFKASAT	
	GLGGTDQKIDGDLKFDDTTGKYYAKVTVTGGTGKDGYYEVSVD	
	KTNGEVTLAGGATSPLTGGLPATATEDVKNVQVANADLTEAKAA	
	LTAAGVTGTASVVKMSYTDNNGKTIDGGLAVKVGDDYYSATQN	
	KDGSISINTTKYTADDGTSKTALNKLGGADGKTEVVSIGGKTYAA	
	SKAEGHNFKAQPDLAEAAATTTENPLQKIDAALAQVDTLRSDLG	
	$\underline{AVQNRFNSAITNLGNTVNNLTSARSRIEDSDYATEVSNMSRAQILQ}$	
	QAGTSVLAQANQVPQNVLSLLR	

349

350

TABLE 18

Human Metaphe	umovirus Mutant Amino Acid Sequences	
Strain	Sequence	SEQ ID NO:
HMPV_SC_DSCAV1_4MMV	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGFSLIKTELDLTKSALRELKTVSADQLAREEQIEDPGSGSFVLG AIALGVAAAAAVTAGVAICKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LAFAVRELKDFVSKNLTRALNKNKCDIDDLKMAVSFSOFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGIL CGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWY CQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYFC KVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQ DADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFNVALDQVFE NIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKK PTGAPPELSGVTNNGFIPHN	85
HMPV_SC_DSTRIC_4MMV	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAICKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRKKGFGIL CGVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWY CQNAGSTVYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPC KVSTGRHPISNVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQ DADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPE <u>HQMH</u> VALDQVFE NIENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKK	86
HMPV_SC_DM_Krarup_T74LD185P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIPDLKMAVSFSQFNRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	87
HMPV_SC_TM_Krarup_T74LD185PD454N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVRQFS DNAGITPAISLDMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNVACLLREDQGMVC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHFISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPENQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIKKTKKP TGAPPELSGVTNNGFIPHN	88
HMPV_SC_4M_Krarup_T74LS170LD185P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIEN <u>PGSGS</u> FVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTINEAVSTLGNGVRV LATAVRELKDFVLKNLTRAINKNKCDIPDLKMAVSFSQFNRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDFIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIKKTKKP TGAPPELSGVTNNGFIPHN	89
HMPV_SC_5M_Krarup_T74LS170LD185PD454N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVLKNLTRAINKNKCDIPDLKMAVSFSOFNRRFLNVVROFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDFIKFPENOFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	90
HMPV_SC_DM_Krarup_E51PT74L	MSWKVVIIFSLLITPOHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTL <u>P</u> VG DVENLTCSDGPSLIKTELDL <u>L</u> KSALRELKTVSADQLAREEQIENP <u>GSGS</u> FVLG	91

351

TABLE 18-continued

Human Metapneum	ovirus Mutant Amino Acid Sequences	
Strain	Sequence	SEQ ID NO:
	AI AGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVPCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	
HMPV_SC_TM_Krarup_E51PT74LD454N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLPVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENP <u>GSGS</u> FVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDIKFPENJGPQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	92
HMPV_SC_StabilizeAlpha_T74L	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENP <u>GSGS</u> FVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSPSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	93
HMPV_SC_StabilizeAlpha_V55L	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DLENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLMVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNEVGIIKQLNKGCSVITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVITLIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	94
HMPV_SC_StabilizeAlpha_S170L	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVLKNLTRAINKNKCDIDDLKMAVSFSQFNRFFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVVQLSKVEGEQHVIKGRPVSSSFDFIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	95
HMPV_SC_StabilizeAlpha_T174W	MSWKVVIIFSLLITPOHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLWRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	96
HMPV_SC_4M_StabilizeAlpha_V55LT74LS170LT174	MSWKVVIIFSLLITPOHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DLENLTCSDGPSLIKTELDLLKSALRELKTVSADQLAREEQIENP <u>GSGS</u> FVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVLKNLWRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS	97

353

TABLE 18-continued

Human M	Metapneumovirus Mutant Amino Acid Sequences	
Strain	Sequence	SEQ ID NO:
	DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	
HMPV_ProlineStab_E51P	MSWKVVIIPSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLPVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP	98
HMPV_ProlineStab_D185P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDI <u>P</u> DLKMAVSFSQFNRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSPDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP	99
HMPV_ProlineStab_D183P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENP <u>GSGS</u> FVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKC <u>P</u> IDDLKMAVSFSQFNRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	100
HMPV_ProlineStab_E131P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEQQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	101
HMPV_ProlineStab_D447P	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPG <u>SGS</u> FVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFPPIKF <u>P</u> EDQPQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	102
HMPV_TrimerRepulsionD454N	MSWKVVIIFSLLITPOHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENP <u>GSGS</u> FVLG AIALGVAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC	103

355

356

TABLE 18-continued

Human M	Metapneumovirus Mutant Amino Acid Sequences	
Strain	Sequence	SEQ ID NO:
	QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMYALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPE <u>NO</u> FQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP TGAPPELSGVTNNGFIPHN	
HMPV_TrimerRepulsionE453N	MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENP <u>GSGS</u> FVLG AIALGVAAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRFLNVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSKVEGEQHVIKGRPVSSSPDPIKFPQDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP	104
HMPV_StabilizeAlphaF196W	MSWKVVIIPSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVG DVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPGSGSFVLG AIALGVAAAAVTAGVAIAKTIRLESEVTAINNALKKTNEAVSTLGNGVRV LATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQMRRFLMVVRQFS DNAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILI GVYGSSVIYMVQLPIFGVIDTPCWIVKAAPSCSEKKGNYACLLREDQGWYC QNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQSKECNINISTTNYPCK VSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQD ADTVTIDNTVYQLSXVEGEQHVIKGRPVSSSFDPIKPPEDQFQVALDQVFENI ENSQALVDQSNRILSSAEKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKP	105

TABLE 19

Strain	Nucleic Acid Sequence	SEQ II NO:
	Human Metapneumovirus Mutant Nucleic Acid Sequences	
HMPV SC DSCAV1 4MMV	ATGAGCTGGAAGGTGGTCATCATCTTCAG	GCCTGCTGATCA 106
	CACCTCAGCACGGCCTGAAAGAGAGCTAC	CCTGGAAGAGT
	CCTGCAGCACCATCACAGAGGGCTACCTC	STCTGTGCTGAG
	AACCGGCTGGTACACCAACGTGTTCACAC	CTGGAAGTGGGC
	GACGTCGAGAATCTGACATGCTCTGATGC	GCCCTAGCCTGA
	TCAAGACCGAGCTGGATCTGACCAAGAG	CGCCCTGAGAG
	AACTCAAGACCGTGTCTGCCGATCAGCTC	GGCCAGAGAGGA
	ACAGATCGAGAATCCTGGCAGCGGCAGC	ITTGTGCTGGGA
	GCCATTGCTCTTGGAGTGGCTGCTGCTGC	CAGCTGTTACAG
	CAGGCGTGGCCATCTGCAAGACCATCAGA	ACTGGAAAGCG
	AAGTGACCGCCATCAACAACGCCCTGAAC	GAAGACAAACG
	AGGCCGTCAGCACTCGGCAATGGCGT	TAGAGTGCTGGC
	CTTTGCCGTGCGCGAGCTGAAGGACTTCC	GTGTCCAAGAAC
	CTGACACGGGCCCTGAACAAGAACAAGTC	GCGACATCGAC
	GACCTGAAGATGGCCGTGTCCTTTAGCC	AGTTCAACCGGC
	GGTTTCTGAACGTCGTGCGGCAGTTTAGC	CGACAACGCCGG
	AATCACACCAGCCATCAGCCTGGACCTGA	ATGACAGATGCT
	GAGCTGGCTAGAGCCGTGCCTAACATGCC	CTACATCTGCCG
	GCCAGATCAAGCTGATGCTCGAGAATAGA	AGCCATGGTCCG
	ACGGAAAGGCTTCGGCATTCTGTGTGGCC	GTGTACGGCAGC
	AGCGTGATCTATATGGTGCAGCTGCCTAT	TCTTCGGCGTGA
	TCGACACCCCTGCTGGATTGTGAAGGCC	CGCTCCTAGCTG
	TAGCGAGAAGAAGGGCAATTACGCCTGCC	CTGCTGAGAGA
	GGACCAAGGCTGGTATTGTCAGAACGCCC	GCAGCACCGTG
	TACTACCCTAACGAGAAGGACTGCGAGAG	CAAGAGGCGAC
	CACGTGTTCTGTGATACCGCCGCTGGAA	TCAATGTGGCCG
	AGCAGAGCAAAGAGTGCAACATCAACATC	CAGCACCACCA
	ACTATCCCTGCAAGGTGTCCACCGGCAG	GCACCCTATTTC
	TATGGTGGCTCTGTCTCCTCTGGGAGCCC	CTGGTGGCTTGTT
	ATAAGGGCGTGTCCTGTAGCATCGGCAG	CAACAGAGTGG
	GCATCATCAAGCAGCTGAACAAGGGCTG	CAGCTACATCAC
	CAACCAGGACGCCGATACCGTGACCATCC	GACAACACCGTG
	TATCAGCTGAGCAAGGTGGAAGGCGAACA	AGCACGTGATC
	AAGGGCAGACCTGTGTCCAGCAGCTTCGA	ACCCTATCAAGT

357

TABLE 19-continued

train	Nucleic Acid Sequence	SEQ ID NO:
	TCCCTGAGGATCAGTTCAACGTGGCCCTGGACCAGGTGTT	
	CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC	
	AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC	
	TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC	
	CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC	
	AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG	
	ACCAACAATGGCTTCATCCCTCACAAC	
MPV_SC_DSTRIC_4MMV	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	107
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG	
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG	
	CAGGCGTGGCCATCTGCAAGACCATCAGACTGGAAAGCG	
	AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG	
	AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC	
	CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC	
	GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC	
	GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG	
	AATCACCAGCCATCAGCCTGGACCTGATGACAGATGCT	
	GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG	
	GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG	
	ACGGAAAGGCTTCGGCATTCTGTGTGGCGTGTACGGCAGC	
	AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA	
	TCGACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA	
	GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG	
	TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC	
	CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG	
	AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA	
	ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC	
	TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT	
	ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC	
	CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG	
	TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC	
	AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT	
	TCCCTGAGCACCAGTGGCATGTGGCCCTGGACCAGGTGTT	
	CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC	
	AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC	
	TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC	
	CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG	
	ACCAACAATGGCTTCATCCCTCACAAC	
MPV_SC_DM_Krarup_T74LD185P	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	108
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	GACGTCGAGAATCTGACATGCTCTGATGGCUCTAGUCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGAGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGAG CAGATCGAGAATCCTGGCAGCGGCGGCGGCTGTGTGCTGGGAG CCATTGCTCTTGGAGTGGCGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGGG CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG CCATTGCTCTGGGATGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCAACGGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCATGGCCGTTAGAGTGCTGGCC ACAGCCGTGCGCGGAGCTGAAGGACTTCGTGTCCAAGAAACC	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGAGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGAGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGAGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTGTGCTGGAGAG CCATTGCTCTTGGAGTGGCTGCTGCAGCGCGTGTACAGC AGCGTGGCCATCGCTAAGACCATCAGACTGGAAGACGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCATGGCGTTAGAGTGCTGGC ACAGCCGTCGGCGAGCTGAAGAGACTTCGTGTCCAAGAACC TGACACGGCCCATTAACAAGAACAAGTGCGACACCCCTGA CCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG TTTCTGAAGATGGCCGTGTCCTTTAGCCAGCTCAACCGGCG TTTCTGAAGATGGCCGTGCCTTAAGCAGCACCGCGGA TTCCTGAACGTCGTGCCGGCCTGATGGCGCAGAGATGCTGA GCTGGCTAGAGCCGTGCCTGATGCCTACGCGCGGC CAGATCAAGCCGTGCCTGACATCGCCTGACCCAGGCCGGC	
	TCAAGACCGAGCTGGATCTGCTCAAGAGGCGCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGAGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGAGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGGCGCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGAGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGAGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGGGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTGTGCGGAGAG CCATTGCTCTTGGAGTGGCTGCTGCGCAGCTGTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAACGA GGCCGTCAGCACACTCGGCATGGCGTTAGAGTGGCGC ACAGCCGTCGGCGAGCTGAAGAGACTTCGTGTCCAAGAACC TGACACGGCCATTAACAACGACGCCGTTAAGAGCGCAGC CCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG TTTCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG TTTCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG CCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG CCTGAAGATGGCCGTGCCTTAACAAGGCCGCAGA TTCCGACCAGCATCAGCCTGGACCTGATGCCAAGATGCTGA GCTGGCTAAGCCGTGCCTGACAGCCTGACGCCGGC CAGATCAAGCTGATGCTGAGAATAGAGCCATGGTCCGAC GGAAAGGCTCGGCATCTGCAGTGACGGCGGCGCGCG ACCACCCTGCTGGATTGTGAAGGCCGTCTCAGGCGGCAGCA CGTGATCTATATGGTGCAGCTGCCTGCTGCTGAGAGAGGGCA	

359

TABLE 19-continued

	TABLE 19-continued	
Strain	Nucleic Acid Sequence	SEQ ID NO:
	ATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAAGAGGGGCAT CATCAAGCAGCTGTAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGATCA AGCTGAGCAAGGTGGAAGCGAACACACCGTGATCAAGG GCAGACCTGTGTCCAGGCGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGTGGCCCTGGACCAGGTCTCGAC GAATCCTGTCTAGCCCGGCTCGGGCACCAGGCTTCAAC GAATCCTGTCAGCCGACCAGGGAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCGCGCGCCCTGG ATCCTGGTGCCATCTTCATCATGAGAAGACACCCGAC	
	AGCCCACCGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC	
HMPV_SC_TM_Krarup_T74LD185PD454N	ATGAGCTGGAAGGTGGTCATCATCTTCAGCTGCTGCTATCA CACCTCAGCACGGCCGAAAGAGAGGCACCTGGTGTGGAAGAGT CCTGCAGGACACATCACAGAGGGCTACCTGGTGTGGAGAGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTGGAGGC GACGTCGAGAATCTGGCATGCTCTGATGGCCCTGGAGAGAGA	109
HMPV_SC_4M_Krarup_T74LS170LD185P	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGAGACTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGGTGGTGGGG AACCGGCTGGACATCTGACACGGCTCTGGAAGAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCAGG TCAAGACCGAGCTGGCATCTGCTCAAGAGCGCCCTGAGAGAGA	110

361

TABLE 19-continued

Strain	Nucleic Acid Sequence	SEQ ID NO:
	CGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATCG	
	ACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTAG	
	CGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGGA	
	CCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTAC	
	TACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCAC	
	GTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAGC	
	AGAGCAAAGAGTGCAACATCAACATCAGCACCACCAACT	
	ATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT	
	GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA	
	AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT	
	CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC	
	CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG	
	GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC	
	TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG	
	AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA	
	GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT	
	CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG	
	ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA	
	AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA	
	CAATGGCTTCATCCCTCACAAC	
HMPV_SC_5M_Krarup_T74LS170LD185PD454N	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	111
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA	
	ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA	
	CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG	
	CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC	
	AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA	
	AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA	
	GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC	
	ACAGCCGTGCGCGAGCTGAAGGACTTCGTGCTTAAGAACC	
	TGACACGGGCCATTAACAAGAACAAGTGCGACATCCCTGA	
	CCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCGG	
	TTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGAA	
	TCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTGA	
	GCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGGC	
	CAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGAC	
	GGAAAGGCTTCCGCATTCTGATTGGCGTGTACGGCAGCAG	
	CGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATCG	
	ACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTAG	
	CGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGGA	
	CCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTAC	
	TACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCAC	
	GTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAGC	
	AGAGCAAAGAGTGCAACATCAACATCAGCACCACCAACT	
	ATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT	

HMPV_SC_DM_Krarup_E51PT74L

ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGCCTGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG ${\tt CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC}$ AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA ${\tt GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC}$ ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC

CAATGGCTTCATCCCTCACAAC

GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGAACCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA

112

363

Strain

TABLE 19-continued

SEO ID Nucleic Acid Sequence NO: TGACACGGGCCATTAACAAGAACAAGTGCGACATCGACG ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC GACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA GCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGG ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC HMPV_SC_TM_Krarup_E51PT74LD454N ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA 113 CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGCCTGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA ${\tt CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG}$ CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC TGACACGGGCCATTAACAAGAACAAGTGCGACATCGACG ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC GACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA GCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGG ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGAACCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA 114

HMPV_SC_StabilizeAlpha_T74L

CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGCTCAAGAGCGCCCTGAGAGA

Nucleic Acid Sequence

365

Strain

TABLE 19-continued

ACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGAA CAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGAG CCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAGC AGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCGA AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC TGACACGGGCCATTAACAAGAACAAGTGCGACATCGACG ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC GACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA GCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGG ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA AGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC HMPV_SC_StabilizeAlpha_V55L ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA 115 CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACCTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACCCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC

366

SEO ID

NO:

367

TABLE 19-continued

	TABLE 19-continued	
Strain	Nucleic Acid Sequence	SEQ I NO:
HMPV_SC_StabilizeAlpha_S170L	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGGTGGCTGAG AACCGGCTGTACACCAACAGGTCTCACACTGGAAGTGGC GACGTCGAGAATCTGACAAGGCCCCTGAGCCAGCCGGG CACGTCGAGACTGGACTG	116
	CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC	
HMPV_SC_StabilizeAlpha_T174W	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGGTGGGAGGG GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCGG GACGTCGAGAATCTGGCCAGCGGCAGCTGGGAGGGA AACTCAAGACCGTGTCTGGCGAGCGGCGCGCGAGAGGA ACTCAAGACCGTGTCTGGCGAGCGGCGCGCGGAGGGA GCCATTGCTCTGGAGTGGCGCGCGCGCGCGGCGGCTGTACAG GCCATGGCCCTCGGCAAGGAGCATTGGGCTGGCG AAGTGACCGCCATCACAACGACCCTGAAGAAGCAAACG AAGTGACCGCCATCACAACGACCCTGAAGAAGCAAACG CACGCCGTGGCCATCGGCAACGACGTGAAGACCAACG CACGCCGTGGCCGCGCGCGCGCTGTGCGCACGCGC CACAGCCGTGGCGCGGCGGCGGCTGTAGAGGCGTCCGGC GGTTTCTGAACGTCGTGCGCGCGCGGCAGTTAGCGGCACATCGGC GACCTGAAGATGGCCGTGCCTGAACAACGCCGGG GGTTCTGAACGTCGTGCGCGCGGCAGTTAGCGCACACGGC GACCTGGACGGCCATCAGCCTGGAACGACACGCGG GGTTCCGAACGTCGTGGCGCGGCCGTTAGCCGACACGCGG CCCAGATCAAGCTGGGCGCGCTGCTAACATGCCTGCACGCGG GCCAGATCAAGCTGGGCGCGCTGCTAACATGCCTGCGCGCG ACCGGAAAGGCTTCGGCAGCTGGACCATGGTCCG ACGGGAACGCCTGGCAGCTGGACCTGGTCCGGCAGCTGGCACGCGG CCCAGATCAGCCTGGCAGCTGCTACATCGCCGG CGCGGAACGGCTGGCGACTTGGCGTGCCTACCTGCCG ACGGGAACGCCTGGCAGCTGCCTATCTTCGGCGGCG CCCCAGCCCGCGCGGCGCCCTCCTGGCGGCGCGCCCCTACCTGCCG ACGGAAAGGCTTGGGCAGCTGCCTACCTTCGGCGGCGCCC ACGGAAAGGCTGGGAATTGCGCAGCCGCGCCCCCAGCTG TACGACACCCCGCGCGGCGCG	117

369

TABLE 19-continued

Strain	Nucleic Acid Sequence	SEQ II NO:
	TCCCTGAGGATCAGTTCCAGGTGGCCTGGACCAGGTGT CGAGAACATCGAGAATCCCAGGCCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGGTCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATGAAGAAGAC AAGAACCCCACCGGCGCTCCTCCAGAACTGACGGAGTG ACCAACAATGGCTTCATCCTCACAAC	
HMPV_SC_4M_StabilizeAlpha_V55LT74LS170LT174W	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGGCTGAG AACCGGCTGGTACACCACGGGCTGCACAGGGGG CACCTCCGAGAATCTGACAGCGGCCCTGAGAGA ACTCAAGACCGTGTCTGCCGCAAGAGGGGGG CATGCTCTTGGAGTGGCTGCTGCGCGCAGAGAGAGA CAGATCCTGGCAGGGGCGCGGGCGGGGGGGGGG	118
HMPV_ProlineStab_E51P	CAATGGCTTCATCCTCACAAC ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGTGGTGAG AACCGGCTGGTACACCAGAGGGCTACCTGTCTGGGCTGAG GACGTCGAGAATCTGACAGAGGGCTACCTGTCTGGGCG GACGTCGAGATCTGACAGACGTCTGATGGCCCTGAGAG AACTCAAGACCGAGCTGGTCTGACCAAGAGCGCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCGCAGCGCTGGGCCAGAGAGGA ACAGATCGAGAATCCTGGCGCAGCGCTGGAGCGTTAGACTGGCA GCCATTGCTCTGGAGTGCTGCTGCTGCCGGCAGTACAG CAGGCGTCGCCATCACACAGCGCTCGAGACGTACAG CAGGCGTCGCCATCACACAGCGCTTGGTGCCAGCG AGTGACCGCCATCACACAGCGCTGAGAGAGCAAACG AGGCCGTCGGCCAGCTGAAGGACTTCGTGCTGGC CACAGCCGTCGCCAGCTGAAGGACTTCGTGCCAGAAC CTGACAGCGGCCAGCTGAAGGACTTCGTGCCAGAAC GACCTGAAGATGGCCGTGTCCTTTAGCAGGTCAACGGC GACTTGGACACCTCGGCGACGTTGACGCCGCAGACGGC GACTGGCTAGGCCGTGCCCTACACTGGCCGGC CCAGACCGCGCCGCGCGCCCCTACACGCCG GGCTACGACCAGCCGTGCCCTACACTGGCCG CCCGGAACGCGTCGGCAGTTCAGGCCGCCGC AGGGGGAACATCAGCCGGCAGTTGGAAGGCCGCG AGCGGAAAGACTGCGGCATTGTGAAGGCCACCTACGCCG AGGCGGAACATCAGCCGGCAGTTGGAAGGCCGCCTAGCTGGC AGGCGGAACACTGGCAGTTGGCAGCCCCTACCTGCGGGAAC AGGCCAAGGCGGCAGTTGGAAGGCCGCCCTACCTGGCGGC AGCCTGAAGACTGGGCATTGGCAGCCGCCTACCTCGGCGGC AGCCGGAAAGACGCGGCAGTTGGAAGGCCGCCTCACGCG AGCCAGACAAGAAGGCAATTGCCCGCCGCGCAGACCGGC AGCCAGACCAAGGCGGCATTGCGAGACAAAGGCGACC CACGGCAAAGAAGAGGCATTCGCGGCGCAGACACAAGGCGAC CACGGCAACGCTGGGAATTGCCCGCGCGCAGACCGGC CACGGCAACGCGGCGAGATTGCGAGACCAAAGGCGCACCGTG TACCACCCTGGGAATGGCAGCTGCCGCGCAGACCGGC CACGGCAACGACGGCATTGCCGCGCGCGCAGACCGGC CACGGCAAGGCAATACACCGCGCGCAGCACCGGC CACGGCAACGAGCGCAATCAACCACAAGGCGCACCGCG CACGGCAAAGAGCCGCCGCGCGCGCAGACCGGC CACGGCAACAAGAGCCGCCGCGCGCGCAGACCGGC CACGGCAACAAGAGCCGCCGCGCGCGCAGACCGGC CACGGCAACAAGAGCCGCCGCGCGCGCGCACCGCG CACGGCAACAAGAGCCGCCGCGCGCGCGCACCGCG CACGGCAACAAGAGCCGCCGCGCGCGCGCCGCCGCCGCCG	119

372

371

TABLE 19-continued

	 19-continued	
Strain	Nucleic Acid Sequence	SEQ I NO:
	ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC	
	TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT	
	ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG	
	GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC	
	TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT	
	TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT	
	CGAGAACATCGAGAATTCCCCAGGCTCTGGTGGACCAGTCC	
	AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC	
	TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC	
	CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC	
	AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG	
	ACCAACAATGGCTTCATCCCTCACAAC	
IMPV ProlineStab D185P	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	120
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG	
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG	
	CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG	
	AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG	
	AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC	
	CTGACACGGGCCATTAACAAGAACAAGTGCGACATCCCTG	
	ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG	
	GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA	
	ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG	
	AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG	
	CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA	
	CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA	
	GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC	
	GACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA	
	GCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGG	
	ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA	
	CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA	
	CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG	
	CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC	
	TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT	
	GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA	
	AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT	
	CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC	
	AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG	
	GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC	
	TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG	
	AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA	
	GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT	
	CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG	
	ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA	
	AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA	
	CAATGGCTTCATCCCTCACAAC	
HMPV_ProlineStab_D183P	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	121
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG	
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG	
	CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG	
	AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG	
	CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC	
	CTGACACGGGCCATTAACAAGAACAAGTGCCCTATCGACG	
	ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG	
	CTTTCTC3 ACCTCCTCCCCC3 CTTTTACCC3 C3 ACCCCCC3	
	GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA	
	ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG	

373

	TABLE 19-continued	CDO 11
Strain	Nucleic Acid Sequence	SEQ II NO:
	GACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA GCGAGAAGAAGGGCCAATTACGCCTGCCTGCTGAGAGAGG	
	ACCAAGGCIGGTATIGTCAGAACGCCGGCAGCACCGIGTA CTACCCTAACGAGAGGACIGCGAGACAAGAGGCGACCA	
	CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG	
	CAGAGCAAAGAGTGCAACATCAACATCAGCACCACCAAC	
	TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA	
	AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT	
	CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC	
	CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG	
	GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCC	
	TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA	
	GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT	
	CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG	
	ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA	
	CAATGGCTTCATCCCTCACAAC	
HMPV_ProlineStab_E131P		122
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCAGCTGTTACAG	
	AGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACGA GGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGCC	
	ACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAACC	
	TGACACGGGCCATTAACAAGAACAAGTGCGACATCGACG	
	ACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGCG GTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGGA	
	ATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCTG	
	AGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCGG	
	CCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCGA CGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGCA	
	GCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGATC	
	GACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTGTA	
	GCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGG	
	ACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTGTA CTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGACCA	
	CGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCGAG	
	CAGAGCAAAGAGTGCAACATCAACATCAGCACCAACA	
	TATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTCTAT GGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTTATA	
	AGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCAT	
	CATCAAGCAGCTGAACAAGGGCTGCAGCTACATCACCAAC	
	CAGGACGCCGATACCGTGACCATCGACAACACCGTGTATC AGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGG	
	GCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGTTCCCC	
	TGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTTCGAG	
	AACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCCAACA GAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT	
	CATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTCCATG	
	ATCCTGGTGTCCATCTTCATCATTATCAAGAAGACCAAGA	
	AGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTGACCAA CAATGGCTTCATCCCTCACAAC	
HMPV_ProlineStab_D447P	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	123
-		
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG	
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGA	
	ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG	
	CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG	
	AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG	

AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC

375

TABLE 19-continued

376

	TABLE 19-continued	
Strain	Nucleic Acid Sequence	SEQ ID NO:
	CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC	
	GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC	
	GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG	
	AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT	
	GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG	
	ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACCGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA	
	TCGACACCCCTGCTGGATTGTGAAGGCCGCCTCCTAGCTG	
	TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCGAGAGA	
	GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG	
	TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC	
	CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG	
	AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA	
	ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC	
	TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT	
	ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG	
	CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG	
	TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCCCCACCTATCAAGT	
	TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT	
	CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC	
	AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC	
	TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC	
	CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC	
	AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG	
	ACCAACAATGGCTTCATCCCTCACAAC	
MPV_TrimerRepulsionD454N	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA	124
	CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG	
	AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC	
	GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA	
	AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA	
	GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCGCAGCTGTTACAG	
	CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG	
	AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG	
	AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC	
	CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC	
	CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC	
	GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC	
	GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG	
	AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT	
	GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG	
	GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG	
	ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC	
	AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG	
	TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA	
	GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG	
	TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGGCGAC	
	CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG	
	AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA	
	ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC	
	TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT	
	ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG	
	GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC	
	CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG	
	TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC	
	AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT	
	TCCCTGAGAACCAGTTCCAGGTGGCCCTGGACCAGGTGTT CCACAACCAGTGCACAGTTCCCAGGTGGCCCTGGACCAGGTGTT	
	CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC	
	AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC	
	CATGATCCTGGTGTCCATCTTCATCATCATCAGAAGAAGACC	
	AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG	
	ACCAACAATGGCTTCATCCCTCACAAC	
MDV TrimerPepulcionE452N	RTCR COTCCR R COTCCT CR TCR TCTTCR COCTCCTCR TCR	195
MPV_TrimerRepulsionE453N	ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT	125
	CCTGCAGCACCATCACAGAGGGCTACCTGTCTGGCAGAGG	

CCTGCAGCACCATCACAGAGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG

Nucleic Acid Sequence

378

SEO ID

NO:

377

Strain

TABLE 19-continued

AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC GACCTGAAGATGGCCGTGTCCTTTAGCCAGTTCAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACACCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGGCAATTACGCCTGCCTGCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT TCCCTCAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT CGAGAACATCGAGAATTCCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC HMPV_StabilizeAlphaF196W ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCA 126 CACCTCAGCACGGCCTGAAAGAGAGCTACCTGGAAGAGT CCTGCAGCACCATCACAGAGGGGCTACCTGTCTGTGCTGAG AACCGGCTGGTACACCAACGTGTTCACACTGGAAGTGGGC GACGTCGAGAATCTGACATGCTCTGATGGCCCTAGCCTGA TCAAGACCGAGCTGGATCTGACCAAGAGCGCCCTGAGAG AACTCAAGACCGTGTCTGCCGATCAGCTGGCCAGAGAGGA ACAGATCGAGAATCCTGGCAGCGGCAGCTTTGTGCTGGGA GCCATTGCTCTTGGAGTGGCTGCTGCTGCAGCTGTTACAG CAGGCGTGGCCATCGCTAAGACCATCAGACTGGAAAGCG AAGTGACCGCCATCAACAACGCCCTGAAGAAGACAAACG AGGCCGTCAGCACACTCGGCAATGGCGTTAGAGTGCTGGC CACAGCCGTGCGCGAGCTGAAGGACTTCGTGTCCAAGAAC CTGACACGGGCCATTAACAAGAACAAGTGCGACATCGAC GACCTGAAGATGGCCGTGTCCTTTAGCCAGTGGAACCGGC GGTTTCTGAACGTCGTGCGGCAGTTTAGCGACAACGCCGG AATCACACCAGCCATCAGCCTGGACCTGATGACAGATGCT GAGCTGGCTAGAGCCGTGCCTAACATGCCTACATCTGCCG GCCAGATCAAGCTGATGCTCGAGAATAGAGCCATGGTCCG ACGGAAAGGCTTCGGCATTCTGATTGGCGTGTACGGCAGC AGCGTGATCTATATGGTGCAGCTGCCTATCTTCGGCGTGA TCGACACCCCTGCTGGATTGTGAAGGCCGCTCCTAGCTG TAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGA GGACCAAGGCTGGTATTGTCAGAACGCCGGCAGCACCGTG TACTACCCTAACGAGAAGGACTGCGAGACAAGAGGCGAC CACGTGTTCTGTGATACCGCCGCTGGAATCAATGTGGCCG AGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACCA ACTATCCCTGCAAGGTGTCCACCGGCAGGCACCCTATTTC TATGGTGGCTCTGTCTCCTCTGGGAGCCCTGGTGGCTTGTT ATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGG GCATCATCAAGCAGCTGAACAAGGGCTGCAGCTACATCAC CAACCAGGACGCCGATACCGTGACCATCGACAACACCGTG TATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATC AAGGGCAGACCTGTGTCCAGCAGCTTCGACCCTATCAAGT TCCCTGAGGATCAGTTCCAGGTGGCCCTGGACCAGGTGTT CGAGAACATCGAGAATTCCCAGGCTCTGGTGGACCAGTCC AACAGAATCCTGTCTAGCGCCGAGAAGGGAAACACCGGC TTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCTC CATGATCCTGGTGTCCATCTTCATCATTATCAAGAAGACC AAGAAGCCCACCGGCGCTCCTCCAGAACTGAGCGGAGTG ACCAACAATGGCTTCATCCCTCACAAC

380

TABLE 19-continued

11101	LE 19-continued	
Strain	Nucleic Acid Sequence	SEQ II NO:
Human Metap	neumovirus mRNA Sequences	
Muman Metap	neumovirus mRNA Sequences AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAAGAGGUCUCUGGUGCU GAGAACCGGCUGGUACACCAAGAGGUUCACACUGGAAGA GUCCUGCAGCACCAUCACAAGGUUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGUCUGGUGCUGCUG GAGAACCGGCUGGAUCUGACACUGGAUCAGCUGCCAG GAGAGAUCAAGACCGUGUCUGCCGAUCAGCUGCCAG AGAGGAACUCAAGACCGUGUCUGCCGAUCAGCUGCUGCA GCUGUUACAAGACCGUGUCUUGGAAGACCAUUCAGA GCUGUUACAGCAGGCGUGGCCUUCUGCAAGACCAUUCAGA GUGUGGAAGUGAAGU	127
IMPV_SC_DSURIC_4MMV	CCAUGAUCCUGGUGUCCAUCUUCAUCAUCAUGAUGAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCUCACAAC AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAUA GUCCUCCAGCACGACGCUGAAAGAGGCUACCUGUGGAGA GUCCUGCAGCACCAUCACAAGAGGGCUACCUGUGUGGUG GAGAACCGGCUGGUACACAAGAGGGCUCUGAUGGCCUG GAGAACCGGCUGGUACACCACGUGUUCACACUGGAAGA GUCCUGAGACACAUCACAAGAGGGCUACUGAUGACCACUGGAGAA GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCAG GAGAACAGAUCAAGACCGUGUCUGCCAGUCGCUGCUGCUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUCUGCUGCUGCUG UGCUGGGAGCCAUUGCUCUUGGAAGACCAUCAGA GCUGUUACAGCAGGCGUGGCCAUCUGCAAGACCAUCAGA GCUGUUACAGCAGGCGUGGCCAUCUGCAAGACCAUCAGA GCUGUUACAGCAGGCGUCAGCACCAUCGGCAAGCCUUG UGCUGGAGCAAUGCCGUCAGCAGCGCCAUUG AGAGUACUGGCCACAGCCGUCGCGCAUCUGCUAAC GUGUCCAAGAACCUGACAGCCGUCAGCAAGACCAUCAGA AUGCCAACAACGGCGUCAGCACACUCGGCAAUGAGCUU GUGUCCAAGAACCUGACACGCGGCAGCUUAACAAGAACAAG UGCGACAACGGCCGUUCAGAACGUGUGGGGCAUUUC GUGUCCAAGAACCUGACCAGCCGUGCCGU	128

Strain	Nucleic Acid Sequence	SEQ ID NO:
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGCACCAGUGGCAUGUGGCCCUGGACCAGGUGUUCGA GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA CAGAAUCCUGUCUACCCGAGAAAGGGAAACACCGGCUU CAUCAUCGUGAUCAUCCUGAUCAUCAUCAUCAUCAUCAGAGAA CAGAACCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU GACCAACAAUGGCUUCAUCCUCACAAC	
HMPV_SC_DM_Krarup_U74LD185P	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAAGA GUCCUGCAGCACCGCCUGAAAGAGAGCUACCUGGUGGAAGA GUCCUGCAGCACCAUCACAAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUCUCACACUGGAAGU GGGCGACGUCGAGAAUCUGCUCAACGUGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAACAUCGCCCAG GAGAGAACAGAUCGAGAUCUGCCGAUCACCUGCCAG GCUGUUACAGACGGUGGCCAUCGCUAAGACCAUCAGA CUGGUACAGAGCGUGGCCAUCGCUAAGACCAUCAGA CUGGUACAGAGCGUGGCCAUCGCUAAGACCCUGGAA GCUGUUACAGCAGCGUCAGCACCCUGGAAGACCAUCAGA CUGGAAAGCUGACCGCCAUCACACACCCCUGAAG AAGACAAACGAGGCCGUCAGCACAUCAACAACGCCUUGAA GCUGUCCAGAAACCUGACACGCGCGAGCUGAAGACCUUC GUGUCCAAGAACCUGACACGCGCGAGCUGAAGACCUC GUGUCCAAGAACCUGACACCACCAGCCGUGACCAUCAACAAG UGCGACAUCCCUGACACACCAGCCGUGACGCUGCUGUUA AGCGUACAUCCUGACCUGA	129
HMPV_SC_UM_Krarup_U74LD185PD454N	UGACCAACAAUGGCUUCAUCCCUCACAAC AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAAGAGGCUACCUGGUGGU GAGAACCGGCUGGACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUG GAGAACCGACCAUCGCUGGAUCUGCUCAGAGGCCCUG GAGAGACUCAAGACCGAGCUGGCUCAGAGCGCGGCGU GAGAGAACCAAAUCCGAGCUGGCUCAGAGCGCGGCGU UGCUGGGAGCCAUUGCUCUUGGAUCUGCUCAGGCAGCUGCCAG AGAGAACCAAAUCGAGAAUCCUGGCAGCGGCGCUGCUGCAG CUGUUACAGCAGGCGUGGCCAUCGACAACAGCCCUCGGCAGCUGCUGCUGCUGCUGCGGGAGCCUCGCCAGGCAGCUGGCAUCAACAACAACCACCUCGGCAAUCGCUAGAAAGCAUCAGA CUGGAAAGCGAAGUGACCGCCCUCGCUAAGACACCCUCGGA AGACAAACGAGGCGUCGCCAUCAACAACGACCUCGUG UGCUGGCGCCCGCCGCAGCUGGCAAUGGCGUU AGAGCAAACCGAGCCUCAGCACACUCGGCAAUGGCGUU GUGUCCAAGAACCUGACAGGGCCAUUAACAACAACGACCUUC GUGUCCAAGAACCUGACCGGCCAUUAACAAGAACAAG CUGGACAUCCCUGACCUGA	130

384

383

TABLE 19-continued

TABLI	E 19-continued	
Strain	Nucleic Acid Sequence	SEQ NO:
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGACCAAGGUGGAAGGCGAACAGCACGUGUUCAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGAACCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA	
	GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA	
	CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU	
	CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC	
	CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC	
	CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU GACCAACAAUGGCUUCAUCCCUCACAAC	
	GALLAACAOGEOULAULEULALAAL	
MPV_SC_4M_Krarup_U74LS170LD185P	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	131
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGCUUAAGAACCUGACACGGGCCAUUAACAAGAACAA	
	GUGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAG	
	CCAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUU UAGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGA	
	CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA	
	CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA	
	GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC	
	UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG	
	CAGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGG	
	AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG	
	CAAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGCAGCACCGUGUACUACCCUAACGA	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGGGGGGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
MPV_SC_5M_Krarup_U74LS170LD185PD454N		13
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	

AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG ${\tt AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU}$ AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGCUUAAGAACCUGACACGGGCCAUUAACAAGAACAA

386

385

TABLE 19-continued

Strain	Nucleic Acid Sequence	SEQ I NO:
	GUGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAG	
	CCAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUU	
	UAGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGA	
	CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA	
	CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA	
	GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC	
	UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG	
	CAGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGG	
	AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG	
	CAAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGAACCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA	
	GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA	
	CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU	
	CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC	
	CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC	
	CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU	
	GACCAACAAUGGCUUCAUCCCUCACAAC	
		100
MPV_SC_DM_Krarup_E51PU74L	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	133
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGCCUGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AUGCCUACAUCUGCCGGCCAGAUCUAGCUGGCGUCCGAG	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCCCCAGGCUCUGGUGGACCAGUCCA	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
MPV SC UM Krarup E51PU74LD454N	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	134

HMPV_SC_UM_Krarup_E51PU74LD454N

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGCCUGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG

387

TABLE 19-continued

SEO ID Strain Nucleic Acid Sequence NO: CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGAACCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU GACCAACAAUGGCUUCAUCCCUCACAAC HMPV_SC_SUabilizeAlpha_U74L AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU 135 CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGCUCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU

Strain	Nucleic Acid Sequence	SEQ I NO:
	±	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
HMPV_SC_SUabilizeAlpha_V55L	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	136
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACCUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCA	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
IMPV_SC_SUabilizeAlpha_S170L	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	137
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGCUUAAGAACCUGACACGGGCCAUUAACAAGAACAA GUGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAG	
	CCAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUU	
	UAGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGA	
	CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA	
	CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA	
	GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC	
	UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG	
	AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG CAAUUACGCCUGCCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGAGAGCACCAAGGCUGGUA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	

TABLE	19-continued

	.9-continued	
Strain	Nucleic Acid Sequence	SEQ ID NO:
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCG UGAGGAUCAGUUCCAGGUGGACCUGGUCGACCAGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAUCCUGUCUAGCCGAGAAGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCUGGGCAGCU UCAUCAUCGUGAUCAUCCUGAUCAUCAUCAUCAAGAAGA CCAAGAAUCCCGCGCCUCUCAUCAUUAUCAAGAAGA CCAAGAACCCCGCCGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCUCACAAC	
HMPV_SC_SUabilizeAlpha_U174W	AUGAGCUGGAAGGUGGUCAUCAUCAUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGUGUGU GAGAACCGGCUGGIACACCACGUGUUCACACUGGUGU GGGCACCGUCGAGAUCUGACAUGUCUGAUGGCCUAG CCUGAUCAAGACCGAGCUGACUGACCUGAUCUGAU	138
HMPV_SC_4M_SUabilizeAlpha_V55LU74LS170LU174W		139

Nucleic Acid Sequence

CAGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGG AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG CAAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA

394

SEO ID

NO:

393

Strain

HMPV ProlineSUab E51P

TABLE 19-continued

UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU 140 CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGCCUGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU

HMPV_ProlineSUab_D185P

CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU

396

TABLE	19-continued
-------	--------------

395

Strain	Nucleic Acid Sequence	SEQ II NO:
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCCCUGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC	
MDV BrolinsClab D192D	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	142
MPV_ProlineSUab_D183P	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGCAGAAGA	142
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCCCUAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	AGAACAUCGAGAAUUCCCCAGGCUCUGGUGGACCAGUCCA	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	
MPV_ProlineSUab_E131P	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	143

AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU CACACCUCAGCACGGCCUGAAAGAAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU

397

TABLE 19-continued

TZ	ABLE 19-continued	
Strain	Nucleic Acid Sequence	SEQ I NO:
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGCCUAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGCGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC	
MPV_ProlineSUab_D447P	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	144
MPV_PIOTINESGAD_D447P	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	144
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGGGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU	
	AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC	
	CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC	
	AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG	
	AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC	
	GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA	
	UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGGC	
	AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACAACCAA GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	

400

399

TABLE 19-continued

SEO ID Nucleic Acid Sequence Strain NO: ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG UGACCAACAAUGGCUUCAUCCCUCACAAC HMPV_UrimerRepulsionD454N AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU 145 CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC UGAGAACCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU GACCAACAAUGGCUUCAUCCCUCACAAC HMPV UrimerRepulsionE453N AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU 146 CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC CAGUUCAACCGGCGGUUUCUGAACGUCGUGCGGCAGUUU AGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGAC CUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAAC AUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGAG AAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUCU GAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUGC AGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGGA UUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGGC AAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGCAAAG AGUGCAACAUCAACAUCAGCACCAACUAUCCCUGCA

401

TABLE 19-continued

Strain	Nucleic Acid Sequence	SEQ II NO:
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	CUGAGCAAGGUGGAAGGCGAACAGCACGUGAUCAAGGG	
	CAGACCUGUGUCCAGCAGCUUCGACCCUAUCAAGUUCCC	
	UCAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCGA	
	GAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCAA	
	CAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCUU	
	CAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCUC	
	CAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGAC	
	CAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAGU	
	GACCAACAAUGGCUUCAUCCCUCACAAC	
IMPV SUabilizeAlphaF196W	AUGAGCUGGAAGGUGGUCAUCAUCUUCAGCCUGCUGAU	147
	CACACCUCAGCACGGCCUGAAAGAGAGCUACCUGGAAGA	
	GUCCUGCAGCACCAUCACAGAGGGCUACCUGUCUGUGCU	
	GAGAACCGGCUGGUACACCAACGUGUUCACACUGGAAGU	
	GGGCGACGUCGAGAAUCUGACAUGCUCUGAUGGCCCUAG	
	CCUGAUCAAGACCGAGCUGGAUCUGACCAAGAGCGCCCU	
	GAGAGAACUCAAGACCGUGUCUGCCGAUCAGCUGGCCAG	
	AGAGGAACAGAUCGAGAAUCCUGGCAGCGGCAGCUUUG	
	UGCUGGGAGCCAUUGCUCUUGGAGUGGCUGCUGCUGCA	
	GCUGUUACAGCAGGCGUGGCCAUCGCUAAGACCAUCAGA	
	CUGGAAAGCGAAGUGACCGCCAUCAACAACGCCCUGAAG	
	AAGACAAACGAGGCCGUCAGCACACUCGGCAAUGGCGUU	
	AGAGUGCUGGCCACAGCCGUGCGCGAGCUGAAGGACUUC	
	GUGUCCAAGAACCUGACACGGGCCAUUAACAAGAACAAG	
	UGCGACAUCGACGACCUGAAGAUGGCCGUGUCCUUUAGC	
	CAGUGGAACCGGCGGUUUCUGAACGUCGUGCGGCAGUU	
	UAGCGACAACGCCGGAAUCACACCAGCCAUCAGCCUGGA	
	CCUGAUGACAGAUGCUGAGCUGGCUAGAGCCGUGCCUAA	
	CAUGCCUACAUCUGCCGGCCAGAUCAAGCUGAUGCUCGA	
	GAAUAGAGCCAUGGUCCGACGGAAAGGCUUCGGCAUUC	
	UGAUUGGCGUGUACGGCAGCAGCGUGAUCUAUAUGGUG	
	CAGCUGCCUAUCUUCGGCGUGAUCGACACACCCUGCUGG	
	AUUGUGAAGGCCGCUCCUAGCUGUAGCGAGAAGAAGGG	
	CAAUUACGCCUGCCUGCUGAGAGAGGACCAAGGCUGGUA	
	UUGUCAGAACGCCGGCAGCACCGUGUACUACCCUAACGA	
	GAAGGACUGCGAGACAAGAGGCGACCACGUGUUCUGUG	
	AUACCGCCGCUGGAAUCAAUGUGGCCGAGCAGAGGAAAG	
	AGUGCAACAUCAACAUCAGCACCACCAACUAUCCCUGCA	
	AGGUGUCCACCGGCAGGCACCCUAUUUCUAUGGUGGCUC	
	UGUCUCCUCUGGGAGCCCUGGUGGCUUGUUAUAAGGGC	
	GUGUCCUCUGUGGGAGCCCUGGUGGCUUGUUAUAAGGGC GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC	
	GUGUCCUGUAGCAUCGGCAGCAACAGAGUGGGCAUCAUC AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG	
	AAGCAGCUGAACAAGGGCUGCAGCUACAUCACCAACCAG GACGCCGAUACCGUGACCAUCGACAACACCGUGUAUCAG	
	UGAGGAUCAGUUCCAGGUGGCCCUGGACCAGGUGUUCG	
	AGAACAUCGAGAAUUCCCAGGCUCUGGUGGACCAGUCCA	
	ACAGAAUCCUGUCUAGCGCCGAGAAGGGAAACACCGGCU	
	UCAUCAUCGUGAUCAUCCUGAUCGCCGUGCUGGGCAGCU	
	CCAUGAUCCUGGUGUCCAUCUUCAUCAUUAUCAAGAAGA	
	CCAAGAAGCCCACCGGCGCUCCUCCAGAACUGAGCGGAG	
	UGACCAACAAUGGCUUCAUCCCUCACAAC	

EQUIVALENTS

Those skilled in the art will recognize, or be able to ⁵⁵ ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the disclosure

described herein. Such equivalents are intended to be encompassed by the following claims.

All references, including patent documents, disclosed herein are incorporated by reference in their entirety.

<160> NUMBER OF SEQ ID NOS: 147

<210> SEQ ID NO 1 <211> LENGTH: 1620 <212> TYPE: DNA <213> ORGANISM: Human metapneumovirus

SEQUENCE LISTING

403

<400> SEQUENCE: 1 atgagetgga aggtggtgat tatetteage etgetgatta caceteaaca eggeetgaag 60 gagagetace tggaagagag etgeteeace ateacegagg getacetgag egtgetgegg 120 accggctggt acaccaacgt gttcaccctg gaggtgggcg acgtggagaa cctgacctgc 180 agegaeggee ctageetgat caagaeegag etggaeetga ceaagagege tetgagagag 240 etgaagadeg tgteegeega ceagetggee agagaggaae agategagaa eesteggeag 300 agcagatteg tgetgggege categetetg ggagtegeeg etgeegetge agtgaeaget 360 ggagtggcca ttgctaagac catcagactg gaaagcgagg tgacagccat caacaatgcc 420 etgaagaaga eeaacgagge egtgageace etgggeaatg gagtgagagt getggeeaca 480 540 gccgtgcggg agetgaagga ettegtgage aagaacetga eeagageeat caacaagaae 600 aaqtqcqaca tcqatqacct qaaqatqqcc qtqaqcttct cccaqttcaa caqacqqttc ctgaacgtgg tgagacagtt ctccgacaac getggaatca cacetgeeat tageetggac 660 720 ctgatgaceg acgeegaget ggetagagee gtgeecaaca tgeecaacag egetggeeag atcaaqctqa tqctqqaqaa caqaqccatq qtqcqqaqaa aqqqcttcqq catcctqatt 780 ggggtgtatag gaageteegt gatetacatg gtgeagetge ceatettegg egtgategae 840 acaccetget ggategtgaa ggeegeteet agetgeteeg agaagaaagg aaactatgee 900 960 tgtetgetga gagaggacca gggetggtac tgecagaacg ceggaageac agtgtactat cccaacgaga aggactgcga gaccagaggc gaccacgtgt tetgcgacac cgctgccgga 1020 1080 atcaacgtgg cegageagag caaggagtge aacatcaaca teageacaac caactaecee tgcaaggtga gcaccggacg gcaccccatc agcatggtgg ctctgagccc tctgggcgct 1140 ctggtggcct gctataaggg cgtgtcctgt agcatcggca gcaatcgggt gggcatcatc 1200 aagcagetga acaagggatg etectacate aceaaceagg acgeegaeae egtgaceate 1260 gacaacaccg tgtaccagct gagcaaggtg gagggcgagc agcacgtgat caagggcaga 1320 cccgtgaget ccagettega ccccateaag tteeetgagg accagtteaa egtggeeetg 1380 gaccaggtgt ttgagaacat cgagaacagc caggccctgg tggaccagag caacagaatc 1440 ctgtccageg ctgagaaggg caacacegge tteateattg tgateattet gategeegtg 1500 etgggeaget ceatgateet ggtgageate tteateatta teaagaagae caagaaaeee 1560 accggageee eteetgaget gageggegtg accaacaatg getteattee ecacaactga 1620 <210> SEQ ID NO 2 <211> LENGTH: 1620 <212> TYPE: DNA <213> ORGANISM: Human metapneumovirus <400> SEQUENCE: 2 atgtettgga aagtgatgat cateatteg ttaeteataa caeceeagea egggetaaag 60 gagagttatt tggaagaatc atgtagtact ataactgagg gatacctcag tgttttaaga 120 acaggetggt acaetaatgt etteacatta gaagttggtg atgttgaaaa tettacatgt 180 actgatggac ctagettaat caaaacagaa ettgatetaa caaaaagtge tttaagggaa 240 ctcaaaacag tetetgetga teagttggeg agagaggage aaattgaaaa teecagacaa 300 tcaagatttg tettaggtge gatagetete ggagttgeta cageageage agteacagea 360 ggcattgcaa tagccaaaac cataaggctt gagagtgagg tgaatgcaat taaaggtgct 420

-continued

405

406

ctcaaacaaa	ctaatgaagc	agtatccaca	ttagggaatg	gtgtgcgggt	cetagecaet	480
gcagtgagag	agctaaaaga	atttgtgagc	aaaaacctga	ctagtgcaat	caacaggaac	540
aaatgtgaca	ttgetgatet	gaagatggct	gtcagcttca	gtcaattcaa	cagaagattt	600
ctaaatgttg	tgeggeagtt	ttcagacaat	gcagggataa	caccagcaat	atcattggac	660
ctgatgactg	atgetgagtt	ggccagagct	gtatcataca	tgccaacatc	tgcagggcag	720
ataaaactga	tgttggagaa	ccgcgcaatg	gtaaggagaa	aaggatttgg	aatcctgata	780
ggggtetaeg	gaagetetgt	gatttacatg	gttcaattgc	cgatctttgg	tgtcatagat	840
acaccttgtt	ggatcatcaa	ggcageteee	tettgeteag	aaaaaacgg	gaattatget	900
tgeeteetaa	gagaggatca	agggtggtat	tgtaaaaatg	caggatetae	tgtttactac	960
ccaaatgaaa	aagactgcga	aacaagaggt	gatcatgttt	tttgtgacac	agcagcaggg	1020
atcaatgttg	ctgagcaatc	aagagaatgc	aacatcaaca	tatctactac	caactaccca	1080
tgcaaagtca	gcacaggaag	acaccctata	agcatggttg	cactatcacc	teteggtget	1140
						1

ggggtetacg gaagetetgt gatttacatg 840 acacettgtt ggateateaa ggeageteee 900 tgeeteetaa gagaggatea agggtggtat 960 ccaaatgaaa aagactgega aacaagaggt 020 atcaatgttg ctgagcaatc aagagaatge 080 140 tgcaaagtca gcacaggaag acaccctata ttggtggett getataaagg ggtaagetge tegattggea geaattgggt tggaateate 1200 1260 aaacaattac ccaaaggetg ctcatacata accaaccagg atgcagacac tgtaacaatt 1320 gacaataccg tgtatcaact aagcaaagtt gaaggtgaac agcatgtaat aaaagggaga ccagtttcaa gcagttttga tccaatcaag tttcctgagg atcagttcaa tgttgcgctt 1380 gatcaagtet tegaaageat tgagaacagt caggeactag tggaccagte aaacaaaatt 1440 ctaaacagtg cagaaaaagg aaacactggt ttcattatcg tagtaatttt ggttgctgtt 1500 cttggtetaa ceatgattte agtgageate ateateataa teaagaaaaa aaggaageee 1560 acaggageae etecagaget gaatggtgte accaaeggeg gttteataee acatagttag 1620

<210> SEQ ID NO 3 <211> LENGTH: 1620 <212> TYPE: DNA <213> ORGANISM: Human metapneumovirus

<400> SEQUENCE: 3

atgtettgga aagtgatgat tateattteg ttaeteataa caeeteagea tggactaaaa 60 gaaagttatt tagaagaatc atgtagtact ataactgaag gatateteag tgttttaaga 120 acaggttggt acaccaatgt ctttacatta gaagttggtg atgttgaaaa tcttacatgt 180 actgatggac ctagettaat caaaacagaa ettgaeetaa eeaaaagtge tttaagagaa 240 etcaaaacag tttetgetga teagttageg agagaagaac aaattgaaaa teecagacaa 300 tcaaggtttg teetaggtge aatagetett ggagttgeea cageageage agteacagea 360 ggcattgcaa tagccaaaac tataaggctt gagagtgaag tgaatgcaat caaaggtgct 420 ctcaaaacaa ccaatgaggc agtatcaaca ctaggaaatg gagtgcgggt cctagccact 480 qcaqtaaqaq aqctqaaaqa atttqtqaqc aaaaacctqa ctaqtqcqat caacaaqaac 540 aagtgtgaca ttgctgattt gaagatgget gtcagettca gtcagttcaa cagaagatte 600 ctaaatgttg tgeggeagtt tteagacaat geagggataa caecageaat ateattggae 660 ctgatgaatg atgetgaget ggeeagaget gtateataea tgeeaacate tgeaggaeag 720 ataaaactaa tgttagagaa ccgtgcaatg gtgaggagaa aaggatttgg aatcttgata 780 ggggtetaeg gaagetetgt gatttaeatg gteeagetge egatetttgg tgteataaat 840 acaccttgtt ggataatcaa ggcagctccc tcttgttcag aaaaagatgg aaattatgct 900 tgeeteetaa gagaggatea agggtggtat tgtaaaaatg caggateeae tgtttaetae 960

407

408

-continued

ccaaatgaaa	aagactgcga	aacaagaggt	gatcatgttt	tttgtgacac	agcagcaggg	1020
atcaatgttg	ctgagcaatc	aagagaatgc	aacatcaaca	tatctaccac	caactaccca	1080
tgcaaagtca	gcacaggaag	acaccctatc	agcatggttg	cactatcacc	teteggtget	1140
ttggtagett	gctacaaagg	ggttagetge	tcgactggca	gtaatcaggt	tggaataatc	1200
aaacaactac	ctaaaggctg	ctcatacata	actaaccagg	acgcagacac	tgtaacaatt	1260
gacaacactg	tgtatcaact	aagcaaagtt	gagggtgaac	agcatgtaat	aaaagggaga	1320
ccagtttcaa	gcagttttga	tccaatcagg	tttcctgagg	atcagttcaa	tgttgegett	1380
gatcaagtet	ttgaaagcat	tgaaaacagt	caagcactag	tggaccagtc	aaacaaaatt	1440
ctgaacagtg	cagaaaaagg	aaacactggt	ttcattattg	taataattt	gattgctgtt	1500
cttgggttaa	ccatgatttc	agtgagcatc	atcatcataa	tcaaaaaaac	aaggaagccc	1560
acagggggcac	ctccggaget	gaatggtgtt	accaacggcg	gtttcatacc	gcatagttag	1620

<210> SEQ ID NO 4 <211> LENGTH: 1725 <212> TYPE: DNA <213> ORGANISM: Human respiratory syncytial virus

<400> SEQUENCE: 4

atggagttge caateeteaa aacaaatgea attaceacaa teettgetge agteacaete 60 tgtttegett ceagteaaaa eateaetgaa gaattttate aateaaeatg eagtgeagtt 120 agcaaagget atettagtge tetaagaaet ggttggtata etagtgttat aaetatagaa 180 ttaagtaata tcaaggaaaa taagtgtaat ggaacagatg ctaaggtaaa attgataaaa 240 caagaattag ataaatataa aaatgotgta acagaattgo agttgotcat gcaaagcaca 300 ccagcagcca acaatcgagc cagaagagaa ctaccaaggt ttatgaatta tacactcaat 360 aataccaaaa ataccaatgt aacattaagc aagaaaagga aaagaagatt tettggettt 420 ttgttaggtg ttggatetge aategeeagt ggeattgetg tatetaaggt eetgeaceta 480 gaaggggaag tgaacaaaat caaaagtgot ctactateea caaacaagge tgtagteage 540 ttatcaaatg gagttagtgt cttaaccagc aaagtgttag acctcaaaaa ctatatagat 600 aaacagttgt tacctattgt gaacaagcaa agctgcagca tatcaaacat tgaaactgtg 660 atagagttee aacaaaagaa caacagaeta etagagatta eeagggaatt tagtgttaat 720 gcaggtgtaa ctacacctgt aagcacttat atgttaacta atagtgaatt attatcatta 780 atcaatgata tgootataac aaatgatcag aaaaagttaa tgtocaacaa tgttoaaata 840 gttagacage aaagttacte tateatgtee ataataaagg aggaagtett ageatatgta 900 gtacaattac cactatatgg tgtaatagat acaccetgtt ggaaactgea cacateeeet 960 ctatgtacaa ccaacacaaa ggaagggtee aacatetget taacaagaac cgacagagga 1020 tggtattgtg acaatgcagg atcagtatet ttetteecae aagetgaaae atgtaaagtt 1080 caatcgaatc gggtattttg tgacacaatg aacagtttaa cattaccaag tgaagtaaat 1140 ctctgcaaca ttgacatatt caaccccaaa tatgattgca aaattatgac ttcaaaaaca 1200 gatgtaagca geteegttat cacateteta ggagecattg tgtcatgeta tggcaaaact 1260 aaatgtacag catecaataa aaategtggg ateataaaga cattttetaa egggtgtgat 1320 tatgtatcaa ataagggggt ggatactgtg tetgtaggta atacattata ttatgtaaat 1380 aagcaagaag gcaaaagtct ctatgtaaaa ggtgaaccaa taataaattt ctatgaccca 1440

	-continued	
ttagtgttee eetetgatga atttgatgea teaa	tatete aagteaatga gaagattaac	1500
cagageetag cattatteg taaateegat gaat	tattac ataatgtaaa tgctggtaaa	1560
tccaccacaa atatcatgat aactactata atta	tagtga ttatagtaat attgttatca	1620
ttaattgcag ttggactget eetataetge aagg	ccagaa gcacaccagt cacactaagt	1690
aaggatcaac tgagtggtat aaataatatt gcat	ttagta actga	1725
<210> SEQ ID NO 5 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Human metapneumovirus	isolate	
<400> SEQUENCE: 5		
Met Ser Trp Lys Val Val Ile Ile Phe S 1 5 1		
His Gly Leu Lys Glu Ser Tyr Leu Glu G 20 25	lu Ser Cys Ser Thr Ile Thr 30	
Glu Gly Tyr Leu Ser Val Leu Arg Thr G 35 40	ly Trp Tyr Thr Asn Val Phe 45	
Thr Leu Glu Val Gly Asp Val Glu Asn L 50 55	eu Thr Cys Ser Asp Gly Pro 60	
Ser Leu Ile Lys Thr Glu Leu Asp Leu T 65 70	hr Lys Ser Ala Leu Arg Glu 75 80	
Leu Lys Thr Val Ser Ala Asp Gln Leu A 85 9	-	
Asn Pro Arg Gln Ser Arg Phe Val Leu G 100 105	ly Ala Ile Ala Leu Gly Val 110	
Ala Ala Ala Ala Val Thr Ala Gly V. 115 120	al Ala Ile Ala Lys Thr Ile 125	
Arg Leu Glu Ser Glu Val Thr Ala Ile A 130 135	sn Asn Ala Leu Lys Lys Thr 140	
Asn Glu Ala Val Ser Thr Leu Gly Asn G 145 150	ly Val Arg Val Leu Ala Thr 155 160	
Ala Val Arg Glu Leu Lys Asp Phe Val S 165 1	er Lys Asn Leu Thr Arg Ala 70 175	
Ile Asn Lys Asn Lys Cys Asp Ile Asp A 180 185	sp Leu Lys Met Ala Val Ser 190	
Phe Ser Gln Phe Asn Arg Arg Phe Leu A 195 200	sn Val Val Arg Gln Phe Ser 205	
Asp Asn Ala Gly Ile Thr Pro Ala Ile S 210 215	er Leu Asp Leu Met Thr Asp 220	
Ala Glu Leu Ala Arg Ala Val Pro Asn M 225 230	et Pro Thr Ser Ala Gly Gln 235 240	
Ile Lys Leu Met Leu Glu Asn Arg Ala M 245 2	et Val Arg Arg Lys Gly Phe 50 255	
Gly Ile Leu Ile Gly Val Tyr Gly Ser S 260 265	er Val Ile Tyr Met Val Gln 270	
Leu Pro Ile Phe Gly Val Ile Asp Thr P 275 280	ro Cys Trp Ile Val Lys Ala 285	
Ala Pro Ser Cys Ser Glu Lys Lys Gly A 290 295	sn Tyr Ala Cys Leu Leu Arg 300	
Glu Asp Gln Gly Trp Tyr Cys Gln Asn A 305 310	la Gly Ser Thr Val Tyr Tyr 315 320	
Pro Asn Glu Lys Asp Cys Glu Thr Arg G	ly Asp His Val Phe Cys Asp	

												con	tin	ued	
				325					330					335	
Thr	Ala	Ala	Gly 340		Asn	Val	Ala	Glu 345	Gln	Ser	ГЛа	Glu	Cys 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Суз	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Сүз
Tyr 385	Lys	Gly	Val	Ser	Cys 390	Ser	Ile	Gly	Ser	Asn 395		Val	Gly	Ile	Ile 400
ГЛа	Gln	Leu	Asn	Lys 405	Gly	Суз	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Asn	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	ГАЗ	Thr	Lys	Гла	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
		EQ II													
<212	2> T	ENGTI YPE : RGAN	PRT		an m	etapi	neum	ovir	us						
<40()> SI	EQUEI	ICE :	6											
Met 1	Ser	Trp	ГЛа	Val 5	Met	Ile	Ile	Ile	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Cys	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	60 СЛа	Thr	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Arg	Gln 100	Ser	Arg	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Thr	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Ile	Ala	Ile	Ala 125		Thr	Ile
Arg	Leu 130		Ser	Glu	Val	Asn 135		Ile	Lys	Gly	Ala 140			Gln	Thr
		Ala	Val	Ser	Thr		Gly	Asn	Gly		Arg	Val	Leu	Ala	
145					150					155					160

413

Ala V	/al	Arg	Glu	Leu 165	Lys	Glu	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Ser 175	Ala
Ile A	\sn	Arg	Asn 180	Lys	Cys	Asp	Ile	Ala 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe S	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp I 2	\sn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala (225	3lu	Leu	Ala	Arg	Ala 230	Val	Ser	Tyr	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile I	ya	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly I	lle	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu I	?ro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Суя	Trp	Ile 285	Ile	Lys	Ala
Ala H	2ro 290	Ser	СЛа	Ser	Glu	Lys 295	Asn	Gly	Asn	Tyr	Ala 300	Суз	Leu	Leu	Arg
Glu <i>X</i> 305	/sp	Gln	Gly	Trp	Tyr 310	Cys	Lys	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro A	\sn	Glu	Lys	Asp 325	Сув	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr A	\la	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Arg	Glu	Cys 350	Asn	Ile
Asn 1	lle	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Суз	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro 1	[le 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Суз
Tyr I 385	уз	Gly	Val	Ser	Сув 390	Ser	Ile	Gly	Ser	Asn 395	Trp	Val	Gly	Ile	Ile 400
Lүз (Jln	Leu	Pro	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Аар
Thr V	/al	Thr	11e 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lya	Val 430	Glu	Gly
Glu (Jln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile I 4	јув 150	Phe	Pro	Glu	Asp	Gln 455	Phe	Asn	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 8 465	Ser	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	ГЛа	Ile 480
Leu A	\sn	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Val 495	Ile
Leu V	/al	Ala	Val 500	Leu	Gly	Leu	Thr	Met 505	Ile	Ser	Val	Ser	Ile 510	Ile	Ile
Ile I	lle	Lys 515	ГЛЗ	Thr	Arg	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Asn
Gly V	7al 530	Thr	Asn	Gly	Gly	Phe 535	Ile	Pro	His	Ser					
2010-		ю т т		7											
<210×															
<212; <213;				Huma	an me	etapr	neum	oviru	ıs						
<400>						-									

Met 1	Ser	Trp	Lys	Val 5	Met	Ile	Ile	Ile	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Сув	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Сүз 60	Thr	Asp	Gly	Pro
Ser 65	Leu	Ile	гуа	Thr	Glu 70	Leu	Aab	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Arg	Gln 100	Ser	Arg	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Thr	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Ile	Ala	Ile	Ala 125	Гуз	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Asn 135	Ala	Ile	Lys	Gly	Ala 140	Leu	Lys	Thr	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Гла	Glu	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Ser 175	Ala
Ile	Asn	Гуз	Asn 180	ГЛа	Cys	Aab	Ile	Ala 185	Asp	Leu	ГАз	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Asn	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Ser	Tyr	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	G1y 255	Phe
Gly	Ile	Leu	11e 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asn 280	Thr	Pro	Суя	Trp	Ile 285	Ile	Lys	Ala
Ala	Pro 290	Ser	Сүз	Ser	Glu	Lys 295	Asp	Gly	Asn	Tyr	Ala 300	Сув	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Сув	гла	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Суз	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Arg	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Сув	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Суз
Tyr 385	Lys	Gly	Val	Ser	Суз 390	Ser	Thr	Gly	Ser	Asn 395	Gln	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Pro	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp

417

Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Arg 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Asn	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Ser	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Lys	Ile 480
Leu	Asn	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Leu	Thr	Met 505	Ile	Ser	Val	Ser	Ile 510	Ile	Ile
Ile	Ile	Lys 515	Гла	Thr	Arg	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Asn
Gly	Val 530	Thr	Asn	Gly	Gly	Phe 535	Ile	Pro	His	Ser					
<210 <211															
<212 <213	> T)	PE:	PRT		an r	espi	rato:	ry s	yncyl	tial	vir	ıs			
<400	> SE	CQUEN	ICE :	8											
Met 1	Glu	Leu	Pro	Ile 5	Leu	Гүз	Thr	Asn	Ala 10	Ile	Thr	Thr	Ile	Leu 15	Ala
Ala	Val	Thr	Leu 20	Сүз	Phe	Ala	Ser	Ser 25	Gln	Asn	Ile	Thr	Glu 30	Glu	Phe
Tyr	Gln	Ser 35	Thr	Суз	Ser	Ala	Val 40	Ser	Lys	Gly	Tyr	Leu 45	Ser	Ala	Leu
Arg	Thr 50	Gly	Trp	Tyr	Thr	Ser 55	Val	Ile	Thr	Ile	Glu 60	Leu	Ser	Asn	Ile
Lys 65	Glu	Asn	ГЛа	Сүз	Asn 70	Gly	Thr	Asp	Ala	Lys 75	Val	Гуа	Leu	Ile	Lys 80
Gln	Glu	Leu	Aab	Lys 85	Tyr	Гла	Asn	Ala	Val 90	Thr	Glu	Leu	Gln	Leu 95	Leu
Met	Gln	Ser	Thr 100	Pro	Ala	Ala	Asn	Asn 105	Arg	Ala	Arg	Arg	Glu 110	Leu	Pro
Arg	Phe	Met 115	Asn	Tyr	Thr	Leu	Asn 120	Asn	Thr	Lys	Asn	Thr 125	Asn	Val	Thr
Leu	Ser 130	Гуз	Гүз	Arg	Гуз	Arg 135	Arg	Phe	Leu	Gly	Phe 140	Leu	Leu	Gly	Val
Gly 145	Ser	Ala	Ile	Ala	Ser 150	Gly	Ile	Ala	Val	Ser 155	ГЛа	Val	Leu	His	Leu 160
Glu	Gly	Glu	Val	Asn 165	-	Ile	Lys	Ser	Ala 170	Leu	Leu	Ser	Thr	Asn 175	Lys
Ala	Val	Val	Ser 180	Leu	Ser	Asn	Gly	Val 185	Ser	Val	Leu	Thr	Ser 190	Lys	Val
Leu	Asp	Leu 195	Гүз	Asn	Tyr	Ile	Asp 200	Гуа	Gln	Leu	Leu	Pro 205	Ile	Val	Asn
ГЛа	Gln 210	Ser	СЛа	Ser	Ile	Ser 215	Asn	Ile	Glu	Thr	Val 220	Ile	Glu	Phe	Gln
Gln 225	Lys	Asn	Asn	Arg	Leu 230	Leu	Glu	Ile	Thr	Arg 235	Glu	Phe	Ser	Val	Asn 240
Ala	Gly	Val	Thr	Thr 245	Pro	Val	Ser	Thr	Tyr 250	Met	Leu	Thr	Asn	Ser 255	Glu

419

Leu Leu Ser Leu Ile Asn Asp Met Pro Ile Thr Asn Asp Gln Lys Lys 260 265 270

-continued

Leu Met Ser Asn Asn Val Gln Ile Val Arg Gln Gln Ser Tyr Ser Ile 275 280 295
Met Ser Ile Ile Lys Glu Glu Val Leu Ala Tyr Val Val Gln Leu Pro 290 295 300
Leu Tyr Gly Val Ile Asp Thr Pro Cys Trp Lys Leu His Thr Ser Pro 305 310 315 320
Leu Cys Thr Thr Asn Thr Lys Glu Gly Ser Asn Ile Cys Leu Thr Arg 325 330 335
Thr Asp Arg Gly Trp Tyr Cys Asp Asn Ala Gly Ser Val Ser Phe Phe 340 345 350
Pro Gln Ala Glu Thr Cys Lys Val Gln Ser Asn Arg Val Phe Cys Asp 355 360 365
Thr Met Asn Ser Leu Thr Leu Pro Ser Glu Val Asn Leu Cys Asn Ile 370 375 380
Asp Ile Phe Asn Pro Lys Tyr Asp Cys Lys Ile Met Thr Ser Lys Thr 385 390 395 400
Asp Val Ser Ser Val Ile Thr Ser Leu Gly Ala Ile Val Ser Cys 405 410 415
Tyr Gly Lys Thr Lys Cys Thr Ala Ser Asn Lys Asn Arg Gly Ile Ile 420 425 430
Lys Thr Phe Ser Asn Gly Cys Asp Tyr Val Ser Asn Lys Gly Val Asp 435 440 445
Thr Val Ser Val Gly Asn Thr Leu Tyr Tyr Val Asn Lys Gln Glu Gly 450 455 460
Lys Ser Leu Tyr Val Lys Gly Glu Pro Ile Ile Asn Phe Tyr Asp Pro 465 470 475 480
Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn 485 490 495
Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu 500 505 510
Leu His Asn Val Asn Ala Gly Lys Ser Thr Thr Asn Ile Met Ile Thr 515 520 525
Thr Ile Ile Val Ile Ile Val Ile Leu Leu Ser Leu Ile Ala Val 530 535 540
Gly Leu Leu Tyr Cys Lys Ala Arg Ser Thr Pro Val Thr Leu Ser 545 550 555 560
Lys Asp Gln Leu Ser Gly Ile Asn Asn Ile Ala Phe Ser Asn 565 570
<210> SEQ ID NO 9
<211> LENGTH: 1617 <212> TYPE: DNA
<213> ORGANISM: Human parainfluenza virus 3
<400> SEQUENCE: 9
atgocaattt caatactgtt aattattaca accatgatca tggcatcaca ctgccaaata 60 gacatcacaa aactacagca tgtaggtgta ttggtcaaca gtcccaaagg gatgaagata 120
tcacaaaact tcgaaacaag atatctaatc ctgagtctca taccaaaaat agaagattct 180
aactettgtg gtgaccaaca gatcaagcaa tacaagaggt tattggatag actgatcatt 240
cotttatatg atggactaag attacagaag gatgtgatag tgactaatca agaatccaat 300

421

-continued

-continued	
gaaaacactg atcccagaac agaacgattc tttggagggg taattggaac tattgctcta	360
ggagtagcaa ceteageaca aattacagea geagttgete tggttgaage caageaggea	420
agatcagaca ttgaaaaact caaggaagca atcagggaca caaataaagc agtgcagtca	480
gttcagaget etgtaggaaa tttgatagta geaattaaat eagteeagga ttatgteaae	540
aaagaaateg tgecategat tgegagaeta ggttgtgaag cageaggaet teagttaggg	600
attgcattaa cacagcatta ctcagaatta acaaatatat ttggtgataa cataggatcg	660
ttacaagaaa aaggaataaa attacaaggt atagcatcat tataccgtac aaatatcaca	720
gaaatattca caacatcaac agttgacaaa tatgatattt atgatctatt atttacagaa	780
tcaataaagg tgagagttat agatgttgat ttgaatgatt actcaataac cctccaagtc	840
agacteeett tattgaceag actgetgaae acteaaatet acaaagtaga tteeatatea	900
tacaatatee aaaatagaga atggtatate eetetteeea geeatateat gaegaaaggg	960
gcatttetag gtggageaga tgteaaagaa tgeatagaag eatteageag ttatatatge	1020
cettetgate caggatttgt actaaaceat gaaatggaga getgtetate aggaaacata	1080
teecaatgte caagaaceae agteacatea gaeatagtte etaggtatge atttgteaat	1140
ggaggagtgg ttgcgaattg tataacaact acatgtacat gcaatggtat cggtaataga	1200
atcaaccaac cacctgatca aggagtcaaa attataacac ataaagaatg taatacaata	1260
ggtatcaacg gaatgetatt caacacaaac aaagaaggaa etettgeatt etacacacea	1320
gacgacataa cattaaacaa ttetgttgea ettgateega ttgacatate aategagete	1380
aacaaggcca aatcagatct tgaggaatca aaagaatgga taagaaggtc aaatcaaaag	1440
ctagatteta ttggaagttg geateaatet ageaetaeaa teatagttat tttgataatg	1500
atgattatat tgtttataat taatataaca ataattacaa ttgcaattaa gtattacaga	1560
attcaaaaga gaaatcgagt ggatcaaaat gataagccgt atgtattaac aaacaag	1617
<210> SEQ ID NO 10 <211> LENGTH: 1716 <212> TYPE: DNA <213> ORGANISM: Human parainfluenza virus 3	
<400> SEQUENCE: 10	
atggaatact ggaagcacac caaccacgga aaggatgctg gtaatgagct ggagacatcc	60
acagecaete atggeaacaa geteaceaae aagataacat atatattgtg gaegataaee	120
ctggtgttat tatcaatagt cttcatcata gtgctaacta attccatcaa aagtgaaaag	180
gcccgcgaat cattgctaca agacataaat aatgagttta tggaagttac agaaaagatc	240
caagtggcat cggataatac taatgatcta atacagtcag gagtgaatac aaggettett	300
acaatteaga gteatgteea gaattatata eeaatateat tgacacaaca aatateggat	360
cttaggaaat tcattagtga aattacaatt agaaatgata atcaagaagt gccaccacaa	420
agaataacac atgatgtggg tataaaacct ttaaatccag atgatttetg gagatgeaeg	480
tetggtette catetttgat gaaaacteea aaaataagat taatgeeggg accaggatta	540
ttagetatge caacgactgt tgatggetgt gteagaacee egteettagt gataaatgat	600
ctgatttatg cttacacctc aaatctaatt actcgaggtt gccaggatat agggaaatca	660
etgatttatg ettacaeete aaatetaatt aetegaggtt geeaggatat agggaaatea tateaagtat taeagatagg gataataaet gtaaaeteag aettggtaee tgaettaaat	
	660
tatcaagtat tacagatagg gataataact gtaaactcag acttggtacc tgacttaaat	660 720

423

-continued

gcatcatcag gcatagaaga tattgtactt gatattgtca attatgatgg ctcaatctcg 900 acaacaagat ttaagaataa taatataagt tttgatcaac catatgoggo attataccoa 960 tetgttggae cagggatata etacaaagge aaaataatat ttetegggta tggaggtett 1020 gaacateeaa taaatgagaa tgeaatetge aacacaaetg ggtgteetgg gaaaacaeag 1080 agagactgta atcaagcatc tcatagtcca tggttttcag atagaaggat ggtcaactct 1140 1200 ataattgttg ttgacaaggg cttgaactca gttccaaaat tgaaggtatg gacgatatct atgagacaaa attactgggg gtcagaagga agattacttc tactaggtaa caagatctac 1260 atatacacaa gatetacaag tiggcacage aagttacaat taggaataat igacattact 1320 gactacagtg atataaggat aaaatggaca tggcataatg tgctatcaag accaggaaac 1380 aatqaatqte catqqqqaca tteatqteeq qatqqatqta taacqqqaqt atataceqat 1440 gcatateeac teaateeeac aggaageatt gtateatetg teatattgga eteacaaaaa 1500 togagagtea acceagteat aacttactea acageaaceg aaagggtaaa egagetgget 1560 atoogaaaca aaacactoto agotgggtao acaacaacaa gotgoattao acactataac 1620 1680 aaaqqqtatt qttttcatat aqtaqaaata aatcataaaa qcttaaacac atttcaaccc

aaagggtatt gttttcatat agtagaaata aatcataaaa gcttaaacac atttcaacce 1680 atgttgttca aaacagagat tccaaaaagc tgcagt 1716

<210> SEQ ID NO 11 <211> LENGTH: 1716 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 11

atggaatact ggaagcacac caaccacggc aaggacgccg gcaacgagct ggaaaccagc 60 acagecacae aeggeaacaa getgaceaae aagateaeet acateetgtg gaceateaee 120 etggtgetge tgageategt gtteateate gtgetgaeea atageateaa gagegagaag 180 gccagagaga gcctgctgca ggacatcaac aacgagttca tggaagtgac cgagaagatc 240 caggtggcca gegacaacac caacgaeetg atecagageg gegtgaacac ceggetgetg 300 accatecaga gecaegtgea gaactaeate eccateagee tgaeceagea gateagegae 360 etgeggaagt teateagega gateaceate eggaaegaea aeeaggaagt geeeceeag 420 agaatcaccc acgacgtggg catcaageee etgaaceeeg acgatttetg geggtgtaca 480 ageggeetge ceageetgat gaagaeeeee aagateegge tgatgeetgg eeetggaetg 540 etggecatge etaceacagt ggatggetgt gtgeggaeee ecageetegt gateaacgat 600 660 ctgatctacg cctacaccag caacctgatc accogggget gecaggatat cggcaagage taccaggtgc tgcagatcgg catcatcacc gtgaactccg acctggtgcc cgacctgaac 720 780 cctoggatea gecacacett caacateaac gacaacagaa agagetgeag cetggetetg etgaacaeeg acgtgtaeea getgtgeage acceecaagg tggaegagag aagegaetae 840 gccagcagcg gcatcgagga tatcgtgctg gacatcgtga actacgacgg cagcatcagc 900 accaccoggt teaagaacaa caacateage ttegaceage cetacgeege cetgtaccet 960 tetgtgggee etggeateta etacaaggge aagateatet teetgggeta eggeggeetg 1020 gaacacccca tcaacgagaa cgccatctgc aacaccaccg getgeeetgg caagacccag 1080 agagaetgea ateaggeeag ceacageeee tggtteageg acegeagaat ggteaactet 1140

425

-continued

-continued	
atcatcgtgg tggacaaggg cctgaacagc gtgcccaagc tgaaagtgtg gacaatcagc	1200
atgegeeaga actactgggg cagegaggge agaettetge tgetgggaaa caagatetae	1260
atetacaeee ggteeaceag etggeacage aaaetgeage tgggaateat egacateaee	1320
gactacageg acateeggat caagtggaee tggeacaaeg tgetgageag aceeggeaae	1380
aatgagtgee ettggggeea cagetgeeee gatggatgta teaceggegt gtacacegae	1440
geetaceeee tgaateetae eggeteeate gtgteeageg tgateetgga cageeagaaa	1500
agcagagtga accocgtgat cacatacagc accgccaccg agagagtgaa cgaactggcc	1560
atcagaaaca agaccetgag egeeggetae accaecaeaa getgeateae acaetaeaae	1620
aagggetaet getteeaeat egtggaaate aaceaeaagt eeetgaaeae etteeageee	1680
atgetgttea agaeegagat eeccaagage tgetee	1716
<pre><210> SEQ ID NO 12 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 12</pre>	
atgeccatea geateetget gateateace acaatgatea tggecageea etgecagate	60
gacatcacca agotgcagca cgtggggcgtg ctcgtgaaca gococcaaggg catgaagatc	120
agecagaact tegagacacg ctacetgate etgageetga teeecaagat egaggacage	180
aacagetgeg gegaceagea gateaageag taeaagegge tgetggaeag aetgateate	240
cccctgtacg acggcctgcg gctgcagaaa gacgtgatcg tgaccaacca ggaaagcaac	300
gagaacaccg acccccggac cgagagatto ttoggoggog tgatoggcac aatogoootg	360
ggagtggeca caagegeeca gattacagee getgtggeee tggtggaage caageaggee	420
agaagegaca tegagaaget gaaagaggee ateegggaca eeaacaagge egtgeagage	480
gtgcagtcca gcgtgggcaa tctgatcgtg gccatcaagt ccgtgcagga ctacgtgaac	540
aaagaaateg tgeeetetat egeeeggetg ggetgtgaag etgeeggaet geagetggge	600
attgocotga cacagoacta cagogagotg accaacatot toggogacaa catoggoago	660
ctgcaggaaa agggcattaa gctgcaggga atcgccagcc tgtaccgcac caacatcacc	720
gagatettea ceaccageae egtggataag taegaeatet aegaeetget gtteaeegag	780
agcatcaaag tgegegtgat egaegtggae etgaaegaet aeageateae eetgeaagtg	840
cggctgcccc tgctgaccag actgctgaac acccagatet acaaggtgga cagcatetee	900
tacaacatoo agaacegega gtggtacato estetgecea gecacattat gaceaaggge	960
gcetttetgg geggageega egtgaaagag tgeategagg eetteageag etacatetge	1020
cccagegaee etggettegt getgaaceae gagatggaaa getgeetgag eggeaacate	1080
agecagtgee ceagaaeeae egtgaeetee gaeategtge ceagataege ettegtgaat	1140
ggeggegtgg tggecaactg catcaccacc acctgtacct gcaacggeat eggeaacegg	1200
atcaaccage etcoegatea gggegtgaag attateacee acaaagagtg taacaceate	1260
ggcatcaacg gcatgctgtt caataccaac aaagagggca cootggcott ctacaccooc	1320
gacgatatca cootgaacaa otoogtggot otggaccooa togacatoto catogagotg	1380
aacaaggeea agagegaeet ggaagagtee aaagagtgga teeggeggag caaccagaag	1440
ctggacteta teggeagetg geaceagage ageaceacea teategtgat eetgattatg	1500

1	2	7
	-	1

-continue	

atgattatcc tgttcatca	at caacattacc atcatcacta	tegecattaa gtactacegg	1560
atccagaaac ggaaccgg	gt ggaccagaat gacaagcoot	acgtgctgac aaacaag	1617
<210> SEQ ID NO 13 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Huma	an parainfluenza virus 3		
<400> SEQUENCE: 13			
Met Pro Ile Ser Ile	Leu Leu Ile Ile Thr Thr	Met Ile Met Ala Ser	
1 5	10	15	
His Cys Gln Ile Asp	Ile Thr Lys Leu Gln His	Val Gly Val Leu Val	
20	25	30	
Asn Ser Pro Lys Gly	Met Lys Ile Ser Gln Asn	Phe Glu Thr Arg Tyr	
35	40	45	
Leu Ile Leu Ser Leu	Ile Pro Lys Ile Glu Asp	Ser Asn Ser Cys Gly	
50	55	60	
Asp Gln Gln Ile Lys	Gln Tyr Lys Arg Leu Leu	Asp Arg Leu Ile Ile	
65	70	80	
Pro Leu Tyr Asp Gly	Leu Arg Leu Gln Lys Asp	Val Ile Val Thr Asn	
85	90	95	
Gln Glu Ser Asn Glu	Asn Thr Asp Pro Arg Thr	Glu Arg Phe Phe Gly	
100	105	110	
Gly Val Ile Gly Thr	Ile Ala Leu Gly Val Ala	Thr Ser Ala Gln Ile	
115	120	125	
Thr Ala Ala Val Ala	Leu Val Glu Ala Lys Gln	Ala Arg Ser Asp Ile	
130	135	140	
Glu Lys Leu Lys Glu 145	Ala Ile Arg Asp Thr Asn 150 155		
Val Gln Ser Ser Val	Gly Asn Leu Ile Val Ala	Ile Lys Ser Val Gln	
165	170	175	
Asp Tyr Val Asn Lys	Glu Ile Val Pro Ser Ile	Ala Arg Leu Gly Cys	
180	185	190	
Glu Ala Ala Gly Leu	Gln Leu Gly Ile Ala Leu	Thr Gln His Tyr Ser	
195	200	205	
Glu Leu Thr Asn Ile	Phe Gly Asp Asn Ile Gly	Ser Leu Gln Glu Lys	
210	215	220	
Gly Ile Lys Leu Gln	Gly Ile Ala Ser Leu Tyr	Arg Thr Asn Ile Thr	
225	230 235	240	
Glu Ile Phe Thr Thr	Ser Thr Val Asp Lys Tyr	Asp Ile Tyr Asp Leu	
245	250	255	
Leu Phe Thr Glu Ser	Ile Lys Val Arg Val Ile	Asp Val Asp Leu Asn	
260	265	270	
Asp Tyr Ser Ile Thr	Leu Gln Val Arg Leu Pro	Leu Leu Thr Arg Leu	
275	280	285	
Leu Asn Thr Gln Ile	Tyr Lys Val Asp Ser Ile	Ser Tyr Asn Ile Gln	
290	295	300	
Asn Arg Glu Trp Tyr	Ile Pro Leu Pro Ser His	Ile Met Thr Lys Gly	
305	310 315	320	
Ala Phe Leu Gly Gly	Ala Asp Val Lys Glu Cys	Ile Glu Ala Phe Ser	
325	330	335	
Ser Tyr Ile Cys Pro	Ser Asp Pro Gly Phe Val	Leu Asn His Glu Met	
340	345	350	

									~1	Cys	Deve					
Glu	Ser	Cys 355	Leu	Ser	Gly	Asn	Ile 360	Ser	GIn	-	PIO	Arg 365	Thr	Thr	Val	
Thr	Ser 370	Asp	Ile	Val	Pro	Arg 375		Ala	Phe	Val	Asn 380	Gly	Gly	Val	Val	
Ala 385	Asn	Cys	Ile	Thr	Thr 390	Thr	Сув	Thr	Cys	Asn 395	Gly	Ile	Gly	Asn	Arg 400	
Ile	Asn	Gln	Pro	Pro 405	Asp	Gln	Gly	Val	Lys 410	Ile	Ile	Thr	His	Lys 415	Glu	
СЛа	Asn	Thr	Ile 420	Gly	Ile	Asn	Gly	Met 425	Leu	Phe	Asn	Thr	Asn 430	ГÀа	Glu	
Gly	Thr	Leu 435	Ala	Phe	Tyr	Thr	Pro 440	Asp	Asp	Ile	Thr	Leu 445	Asn	Asn	Ser	
Val	Ala 450	Leu	Asp	Pro	Ile	Asp 455	Ile	Ser	Ile	Glu	Leu 460	Asn	Lys	Ala	Lys	
Ser 465	Asp	Leu	Glu	Glu	Ser 470	Lys	Glu	Trp	Ile	Arg 475	Arg	Ser	Asn	Gln	Lys 480	
Leu	Asp	Ser	Ile	Gly 485	Ser	Trp	His	Gln	Ser 490	Ser	Thr	Thr	Ile	Ile 495	Val	
		Ile	500					505					510			
Thr	Ile	Ala 515	Ile	Lys	Tyr	Tyr	Arg 520	Ile	Gln	Lys	Arg	Asn 525	Arg	Val	Asp	
	Asn	Asp	Lys	Pro	Tyr	Val 535	Leu	Thr	Asn	Lys						
<21(<21)	530)> SI L> LI	EQ II ENGTH	H: 51													
<210 <211 <212	530)> SI L> LI 2> TY		H: 57 PRT	72	an pa	araiı	nflue	enza	viru	15 3						
<210 <211 <212 <213 <400	530)> SH 1> LH 2> T? 3> OH 0> SH	ENGTI YPE :	H: 57 PRT ISM: NCE:	72 Huma 14							Asp	Ala	Gly	Asn	Glu	
<21(<211 <212 <213 <40(Met 1	530)> SH L> LH 2> T 3> OF 0> SH Glu	ength YPE : RGANI EQUEI	H: 57 PRT ISM: NCE: Trp	72 Huma 14 Lys 5	His	Thr	Asn	His	Gly 10	Lys	_		Asn	15		
<210 <211 <212 <213 <400 Met 1 Leu	530)> SH L> LH 2> T 3> OF 0> SH Glu Glu	ENGTH YPE: RGANI EQUEN Tyr Thr Ile	H: 57 PRT ISM: NCE: Trp Ser 20	72 Huma 14 Lys 5 Thr	His Ala	Thr Thr	Asn His Thr	His Gly 25	Gly 10 Asn	Lys Lys	Leu	Thr Ser	Asn 30	15 Lys	Ile	
<210 <211 <212 <213 <400 Met 1 Leu Thr	530)> SH L> LH 2> TY 3> OF Glu Glu Tyr Ile	ENGTH YPE : RGANI EQUEN Tyr Thr	H: 57 PRT ISM: NCE: Trp Ser 20 Leu	72 Huma 14 Lys 5 Thr Trp	His Ala Thr	Thr Thr Ile Ser	Asn His Thr 40	His Gly 25 Leu	Gly 10 Asn Val	Lys Lys Leu	Leu Leu Lys	Thr Ser 45	Asn 30 Ile	15 Lys Val	Ile Phe	
<210 <211 <212 <213 <400 Met 1 Leu Thr Ile Leu	530 530 530 54 54 50 530 530 530 530 530 530 530	ENGTH YPE: RGANI EQUEN Tyr Thr Ile 35	H: 57 PRT ISM: NCE: Trp Ser 20 Leu Leu	72 Huma 14 Lys 5 Thr Trp Thr	His Ala Thr Asn Asn	Thr Thr Ile Ser 55	Asn His Thr 40 Ile	His Gly 25 Leu Lys	Gly 10 Asn Val Ser	Lys Lys Leu Glu Glu	Leu Leu Lys 60	Thr Ser 45 Ala	Asn 30 Ile Arg	15 Lys Val Glu	Ile Phe Ser Ile	
<210 <211 <212 <213 <400 Met 1 Leu Thr Ile Leu 65	530)> SH 1> LL 2> TY 3> OF Glu Glu Glu Tyr Ile 50 Leu	ENGTH YPE: RGAN EQUEN Tyr Thr Ile 35 Val	H: 5 ⁻ PRT ISM: ISM: Trp Ser 20 Leu Leu Asp	72 Huma 14 Lys 5 Thr Thr Thr Ile Asp	His Ala Thr Asn 70	Thr Thr Ile Ser 55 Asn	Asn His Thr 40 Ile Glu	His Gly 25 Leu Lys Phe	Gly 10 Asn Val Ser Met Leu	Lys Lys Leu Glu 75	Leu Leu Lys 60 Val	Thr Ser 45 Ala Thr	Asn 30 Ile Arg Glu	15 Lys Val Glu Lys Val	Ile Phe Ser Ile 80	
<210 <211 <212 <212 <213 Leu Leu Ile Leu 65 Gln	530 SI SI SI SI SI SI SI SI SI SI SI SI SI	ENGTH YPE: CRGANI EQUEN Tyr Thr Ile 35 Val Gln	H: 57 PRT ISM: ISM: ICE: Trp Ser 20 Leu Leu Asp Ser Leu	Huma 14 Lys 5 Thr Trp Thr Ile Asp 85	His Ala Thr Asn Asn 70 Asn	Thr Thr Ile Ser 55 Asn Thr	Asn His Thr 40 Ile Glu Asn	His Gly 25 Leu Lys Phe Asp His	Gly 10 Asn Val Ser Met Leu 90	Lys Lys Glu Glu 75	Leu Leu Lys 60 Val Gln	Thr Ser 45 Ala Thr Ser	Asn 30 Ile Arg Glu Gly Ile	15 Lys Val Glu Lys Val 95	Ile Phe Ser Ile 80 Asn	
<210 <211 <212 <213 <400 Met 1 Leu Thr Ile Leu 65 Gln Thr	530 SI SI SI SI SI SI Glu Glu Glu Tyr Ile 50 Leu Val Arg	ENGTH IPE:: CQAN: SQUEN TYT Thr Ile 35 Val Gln Ala Leu Thr	H: 57 PRT ISM: NCE: Trp Ser 20 Leu Leu Asp Ser Leu 100	72 Huma 14 Lys 5 Thr Thr Ile 85 Thr	His Ala Thr Asn 70 Asn Ile	Thr Thr Ile Ser 55 Asn Thr Gln	Asn His Thr 40 Ile Glu Asn Ser Asp	His Gly 25 Leu Lys Phe Asp His 105	Gly 10 Asn Val Ser Met Leu 90 Val	Lys Lys Glu 75 Ile Gln	Leu Leu Lys 60 Val Gln Asn	Thr Ser 45 Ala Thr Ser Tyr Ile	Asn 30 Ile Arg Glu Gly Ile 110	15 Lys Val Glu Lys Val 95 Pro	Ile Phe Ser Ile 80 Asn Ile	
<210 <211 <212 <213 <400 Met 1 Leu Thr Ile Leu 65 Gln Thr Ser	530 SI SI SI SI SI SI SI Glu Glu Glu Tyr Ile So Leu Val Arg Leu Ile	ENGTH IPE: CQAN: EQUEN Tyr Thr Ile 35 Val Gln Ala Leu	H: 57 PRT ISM: NCE: Trp Ser 20 Leu Leu Asp Ser Leu 100 Gln	72 Huma 14 Lys 5 Thr Thr Thr Ile 85 Thr Gln	His Ala Thr Asn 70 Asn Ile Ile	Thr Thr Ile Ser Ssr Thr Gln Ser Gln	Asn His Thr 40 Ile Glu Asn Ser Asp 120	His Gly 25 Leu Lys Phe Asp His 105 Leu	Gly 10 Asn Val Ser Met Leu 90 Val Arg	Lys Lys Glu Glu 75 Ile Gln Lys	Leu Leu Lys 60 Val Gln Asn Phe Gln	Thr Ser 45 Ala Thr Ser Tyr Ile 125	Asn 30 Ile Arg Glu Glu Gly Ile 110 Ser	15 Lys Val Glu Lys Val 95 Pro Glu	Ile Phe Ser Ile 80 Asn Ile Ile	
<210 <211 <212 <212 <400 Met 1 Leu Thr Ile 65 Gln Thr Ser Thr Asp	530 SI SI SI SI SI SI SI Glu Glu Tyr Ile 50 Leu Val Arg Leu Ile 130	ENGTH YPE: CQNE EQUEN Tyr Thr Ille 35 Val Gln Ala Leu Thr 115	H: 57 PRT ISM: ISM: ISM: Trp Ser 20 Leu Leu Leu Ser Leu 100 Gln Asn	12 Huma 14 Lys 5 Thr Thr Thr Ile 85 Thr Gln Asp	His Ala Thr Asn Asn Asn Ile Ile Asn Pro	Thr Thr Ile Ser Thr Gln Ser Gln 135	Asn His Thr 40 Ile Glu Asn Ser Asp 120 Glu	His Gly 25 Leu Lys Phe Asp His 105 Leu Val	Gly 10 Asn Val Ser Met Leu 90 Val Arg Pro	Lys Lys Glu Glu Glu Glu Lys Pro Asp	Leu Leu Lys 60 Val Gln Asn Phe Gln 140	Thr Ser 45 Ala Thr Ser Tyr Ile 125 Arg	Asn 30 Ile Arg Glu Glu Ile 110 Ser Ile	15 Lys Val Glu Lys Val 95 Pro Glu Thr	Ile Phe Ser Ile Asn Ile His	
<210 <211 <212 <213 <400 Met 1 Leu Thr Ile 65 Gln Thr Ser Thr Thr Asp 145	530 SI SI SI SI SI SI SI SI SI SI	ENGTH IPE: CQAN: SQUEN Tyr Thr Thr Ile 35 Val Gln Ala Leu Thr 115 Arg	H: 57 PRT ISM: VCE: Trp 20 Leu Leu Asp Ser Leu 100 Gln Asn Ile	72 Huma 14 Lys 5 Thr Thr Thr Ile Asp 85 Thr Gln Asp Lys Ser	His Ala Thr Asn Asn Ile Ile Asn Pro 150	Thr Thr Ile Ser Ssr Thr Gln Ser Gln 135 Leu	Asn His Thr 40 Ile Glu Asn Ser Asp 120 Glu Asn	His Gly 25 Leu Lys Phe Asp His 105 Leu Val	Gly 10 Asn Val Ser Met Leu 90 Val Arg Pro Asp	Lys Lys Glu Glu Glu Gln Lys Pro Asp 155	Leu Leu Lys 60 Val Gln Asn Phe Gln 140 Phe	Thr Ser 45 Ala Thr Ser Tyr Ile 125 Arg Trp	Asn 30 Ile Arg Glu Glu Gly Ile 110 Ser Ile Arg	15 Lys Val Glu Lys Val 95 Pro Glu Thr Cys Met	Ile Phe Ser Ile 80 Asn Ile Ile His Thr	
<210 <211 <212 <213 <400 Met 1 Leu Thr Ile 65 Gln Thr Ser Thr Asp 145 Ser	530 SI SI SI SI SI SI SI SI SI SI	ENGTH YPE:: CQNET SQUEE Tyr Thr Ille 35 Val Gln Ala Leu Thr 115 Arg Gly	H: 57 PRT ISM: ISM: NCE: Trp Ser 20 Leu Leu Leu Ser 100 Gln Asn Ile Pro	12 Huma 14 Lys 5 Thr Thr Thr Ile 85 Thr Gln Asp Lys Ser 165	His Ala Thr Asn Asn Asn Ile Ile Asn Pro 150 Leu	Thr Thr Ile Ser Shr Gln Ser Gln 135 Leu Met	Asn His Thr 40 Glu Asn Ser Asp 120 Glu Asn Lys	His Gly 25 Leu Lys Phe Asp His 105 Leu Val Pro Thr	Gly 10 Asn Val Ser Leu 90 Val Arg Pro Asp Pro 170	Lys Lys Glu Glu Glu Clu Gln Lys Pro Asp 155 Lys	Leu Leu Lys 60 Val Gln Asn Phe Gln 140 Phe Ile	Thr Ser 45 Ala Thr Ser Tyr Ile 125 Arg Trp Arg	Asn 30 Ile Arg Glu Glu Gly Ile 110 Ser Ile Arg Leu	15 Lys Val Glu Lys Val 95 Pro Glu Thr Cys Met 175	Ile Phe Ser Ile Asn Ile His Thr 160 Pro	

-continued

Thr	Pro	Ser 195	Leu	Val	Ile	Asn	Asp 200	Leu	Ile	Tyr	Ala	Tyr 205	Thr	Ser	Asn
Leu	Ile 210	Thr	Arg	Gly	Cys	Gln 215	Asp	Ile	Gly	Lys	Ser 220	Tyr	Gln	Val	Leu
Gln 225	Ile	Gly	Ile	Ile	Thr 230	Val	Asn	Ser	Asp	Leu 235	Val	Pro	Asp	Leu	Asn 240
Pro	Arg	Ile	Ser	His 245	Thr	Phe	Asn	Ile	Asn 250	Asp	Asn	Arg	Гуз	Ser 255	Сүв
Ser	Leu	Ala	Leu 260	Leu	Asn	Thr	Aap	Val 265	Tyr	Gln	Leu	Суз	Ser 270	Thr	Pro
Lys	Val	Asp 275	Glu	Arg	Ser	Asp	Tyr 280	Ala	Ser	Ser	Gly	Ile 285	Glu	Asp	Ile
Val	Leu 290	Asp	Ile	Val	Asn	Tyr 295	Asp	Gly	Ser	Ile	Ser 300	Thr	Thr	Arg	Phe
Lys 305	Asn	Asn	Asn	Ile	Ser 310	Phe	Asp	Gln	Pro	Tyr 315	Ala	Ala	Leu	Tyr	Pro 320
Ser	Val	Gly	Pro	Gly 325	Ile	Tyr	Tyr	Lys	Gly 330	Lys	Ile	Ile	Phe	Leu 335	Gly
Tyr	Gly	Gly	Leu 340	Glu	His	Pro	Ile	Asn 345	Glu	Asn	Ala	Ile	Сув 350	Asn	Thr
Thr	Gly	Суя 355	Pro	Gly	Lys	Thr	Gln 360	Arg	Asp	Суя	Asn	Gln 365	Ala	Ser	His
Ser	Pro 370	Trp	Phe	Ser	Asp	Arg 375	Arg	Met	Val	Asn	Ser 380	Ile	Ile	Val	Val
Asp 385	Lys	Gly	Leu	Asn	Ser 390	Val	Pro	Lys	Leu	Lys 395	Val	Trp	Thr	Ile	Ser 400
Met	Arg	Gln	Asn	Tyr 405	Trp	Gly	Ser	Glu	Gly 410	Arg	Leu	Leu	Leu	Leu 415	Gly
Asn	Гла	Ile	Tyr 420	Ile	Tyr	Thr	Arg	Ser 425	Thr	Ser	Trp	His	Ser 430	Lys	Leu
Gln	Leu	Gly 435	Ile	Ile	Asp	Ile	Thr 440	Asp	Tyr	Ser	Asp	11e 445	Arg	Ile	Lys
Γrp	Thr 450	Trp	His	Asn	Val	Leu 455	Ser	Arg	Pro	Gly	Asn 460	Asn	Glu	САа	Pro
Trp 465	Gly	His	Ser	Сүз	Pro 470	Asp	Gly	Сүз	Ile	Thr 475	Gly	Val	Tyr	Thr	Asp 480
Ala	Tyr	Pro	Leu	Asn 485	Pro	Thr	Gly	Ser	Ile 490	Val	Ser	Ser	Val	Ile 495	Leu
Aap	Ser	Gln	Lya 500	Ser	Arg	Val	Asn	Pro 505	Val	Ile	Thr	Tyr	Ser 510	Thr	Ala
Thr	Glu	Arg 515	Val	Asn	Glu	Leu	Ala 520	Ile	Arg	Asn	Lys	Thr 525	Leu	Ser	Ala
Gly	Tyr 530	Thr	Thr	Thr	Ser	Cys 535	Ile	Thr	His	Tyr	Asn 540	Lys	Gly	Tyr	Суз
Phe 545	His	Ile	Val	Glu	Ile 550	Asn	His	Гла	Ser	Leu 555	Asn	Thr	Phe	Gln	Pro 560
Met	Leu	Phe	ГАа	Thr 565	Glu	Ile	Pro	Lys	Ser 570	Сув	Ser				

<210> SEQ ID NO 15 <211> LENGTH: 20 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE:

434

-continued

<223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 15 Met Glu Thr Pro Ala Gln Leu Leu Phe Leu Leu Leu Trp Leu Pro 10 15 1 Asp Thr Thr Gly 20 <210> SEQ ID NO 16 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 16 Met Asp Trp Thr Trp Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val 10 1 5 15 His Ser <210> SEQ ID NO 17 <211> LENGTH: 24 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 17 Met Leu Gly Ser As
n Ser Gly Gl
n Arg Val Val Phe Thr Ile Leu Leu 1 5 10 15 Leu Leu Val Ala Pro Ala Tyr Ser 20 <210> SEQ ID NO 18 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 18 Met Lys Cys Leu Leu Tyr Leu Ala Phe Leu Phe Ile Gly Val Asn Cys 1 5 10 15 Ala <210> SEQ ID NO 19 <211> LENGTH: 15 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 19 Met Tr
p Leu Val Ser Leu Ala Ile Val Thr Ala Cys Ala Gly Ala 1 5 10 15 <210> SEQ ID NO 20 <211> LENGTH: 4062 <212> TYPE: DNA <213> ORGANISM: Middle East respiratory syndrome coronavirus <400> SEQUENCE: 20 atgatacact cagtgtttet actgatgtte ttgttaacae etacagaaag ttacgttgat 60

435

				-contin	nuea		
gtagggeeag	attctgttaa	gtetgettgt	attgaggttg	atatacaaca	gacettettt	120	
gataaaactt	ggcctaggcc	aattgatgtt	tctaaggctg	acggtattat	ataccctcaa	180	
ggccgtacat	attetaacat	aactatcact	tatcaaggtc	ttttcccta	tcagggagac	240	
catggtgata	tgtatgttta	ctctgcagga	catgctacag	gcacaactee	acaaaagttg	300	
tttgtageta	actattetca	ggacgtcaaa	cagtttgcta	atgggtttgt	cgtccgtata	360	
ggagcagctg	ccaattccac	tggcactgtt	attattagec	catctaccag	cgctactata	420	
cgaaaaattt	accetgettt	tatgctgggt	tetteagttg	gtaatttete	agatggtaaa	480	
atgggccgct	tetteaatea	tactctagtt	ctttgeeeg	atggatgtgg	cactttactt	540	
agagetttt	attgtattet	agageetege	tctggaaatc	attgtcctgc	tggcaattee	600	
tatacttett	ttgccactta	tcacactect	gcaacagatt	gttetgatgg	caattacaat	660	
cgtaatgcca	gtetgaaete	ttttaaggag	tattttaatt	tacgtaactg	cacctttatg	720	
tacacttata	acattaccga	agatgagatt	ttagagtggt	ttggcattac	acaaactgct	780	
caaggtgttc	acctettete	ateteggtat	gttgatttgt	acggcggcaa	tatgtttcaa	840	
tttgccacct	tgeetgttta	tgatactatt	aagtattatt	ctatcattcc	tcacagtatt	900	
cgttctatcc	aaagtgatag	aaaagcttgg	gctgccttct	acgtatataa	acttcaaccg	960	
ttaactttcc	tgttggattt	ttctgttgat	ggttatatac	gcagagctat	agactgtggt	1020	
tttaatgatt	tgtcacaact	ccactgetca	tatgaateet	tcgatgttga	atctggagtt	1080	
tattcagttt	cgtctttcga	agcaaaacct	tetggeteag	ttgtggaaca	ggetgaaggt	1140	
gttgaatgtg	atttttcacc	tettetgtet	ggcacacete	ctcaggttta	taatttcaag	1200	
cgtttggttt	ttaccaattg	caattataat	cttaccaaat	tgettteact	ttttctgtg	1260	
aatgatttta	cttgtagtca	aatatctcca	gcagcaattg	ctagcaactg	ttattettea	1320	
ctgattttgg	attattttc	atacccactt	agtatgaaat	ccgatctcag	tgttagttct	1380	
gctggtccaa	tateccagtt	taattataaa	cagteettt	ctaatcccac	atgtttgatc	1440	
ttagcgactg	tteeteataa	ccttactact	attactaagc	ctcttaagta	cagctatatt	1500	
aacaagtgct	ctcgtcttct	ttctgatgat	cgtactgaag	tacctcagtt	agtgaacgct	1560	
aatcaatact	caccctgtgt	atccattgtc	ccatccactg	tgtgggaaga	cggtgattat	1620	
tataggaaac	aactatctcc	acttgaaggt	ggtggctggc	ttgttgctag	tggeteaaet	1680	
gttgccatga	ctgagcaatt	acagatgggc	tttggtatta	cagttcaata	tggtacagac	1740	
accaatagtg	tttgccccaa	gcttgaattt	gctaatgaca	caaaaattgc	ctctcaatta	1800	
ggcaattgcg	tggaatattc	cctctatggt	gtttegggee	gtggtgttt	tcagaattgc	1860	
acagetgtag	gtgttcgaca	gcagcgettt	gtttatgatg	cgtaccagaa	tttagttggc	1920	
tattattetg	atgatggcaa	ctactactgt	ctgcgtgctt	gtgttagtgt	tcctgtttct	1980	
gtcatctatg	ataaagaaac	taaaacccac	gctactctat	ttggtagtgt	tgcatgtgaa	2040	
cacatttett	ctaccatgtc	tcaatactcc	cgttctacgc	gatcaatgct	taaacggcga	2100	
gattetaeat	atggeeeet	tcagacacct	gttggttgtg	teetaggaet	tgttaattcc	2160	
tetttgtteg	tagaggactg	caagttgcct	ctcggtcaat	ctctctgtgc	tetteetgae	2220	
acacctagta	ctctcacacc	tcgcagtgtg	cgctctgtgc	caggtgaaat	gcgcttggca	2280	
tecattgett	ttaatcatcc	catteaggtt	gatcaactta	atagtagtta	ttttaaatta	2340	
agtataccca	ctaatttttc	ctttggtgtg	actcaggagt	acattcagac	aaccattcag	2400	
aaagttactg	ttgattgtaa	acagtacgtt	tgcaatggtt	tccagaagtg	tgagcaatta	2460	
-	-	-					

437

ctgcgcgagt atggccagtt ttgttccaaa ataaaccagg ctctccatgg tgccaattta	2520
cgccaggatg attetgtacg taatttgttt gegagegtga aaagetetea ateateteet	2580
atcataccag gttttggagg tgactttaat ttgacacttc tagaacctgt ttctatatct	2640
actggcagtc gtagtgcacg tagtgctatt gaggatttgc tatttgacaa agtcactata	2700
getgateetg gttatatgea aggttaegat gattgtatge ageaaggtee ageateaget	2760
cgtgatetta tttgtgetca atatgtgget ggttataaag tattacetee tettatggat	2820
gttaatatgg aageegegta taetteatet ttgettggea geatageagg tgttggetgg	2880
actgctggct tatcctcctt tgctgctatt ccatttgcac agagtatytt ttataggtta	2940
aacggtgttg gcattactca acaggttett teagagaace aaaagettat tgeeaataag	3000
tttaatcagg ctctgggagc tatgcaaaca ggcttcacta caactaatga agcttttcgg	3060
aaggttcagg atgctgtgaa caacaatgca caggctctat ccaaattagc tagcgagcta	3120
tetaataett tiggigetat tieegeetet atiggagaea teataeaaeg tetigaigit	3180
ctcgaacagg acgeccaaat agacagaett attaatggee gtttgacaae actaaatget	3240
tttgttgcac agcagettgt tegtteegaa teagetgete ttteegetea attggetaaa	3300
gataaagtca atgagtgtgt caaggcacaa tccaagcgtt ctggattttg cggtcaaggc	3360
acacatatag tgteetttgt tgtaaatgee eetaatggee tttaetttat geatgttggt	3420
tattaceeta geaaceacat tgaggttgtt tetgettatg gtetttgega tgeagetaac	3480
cctactaatt gtatageeee tgttaatgge taetttatta aaactaataa eactaggatt	3540
gttgatgagt ggtcatatac tggctcgtcc ttctatgcac ctgagcccat cacctetet	3600
aatactaagt atgttgcacc acaggtgaca taccaaaaca tttctactaa cctccctcct	3660
cctcttctcg gcaattccac cgggattgac ttccaagatg agttggatga gtttttcaaa	3720
aatgttagca ccagtatacc taattttggt tetetaacac agattaatac tacattactc	3780
gatettaeet aegagatgtt gtetetteaa caagttgtta aageeettaa tgagtettae	3840
atagacetta aagagettgg caattataet tattacaaca aatggeegtg gtacatttgg	3900
ettggtttea ttgetggget tgttgeetta getetatgeg tettetteat aetgtgetge	3960
actggttgtg gcacaaactg tatgggaaaa cttaagtgta atcgttgttg tgatagatac	4020
gaggaatacg acctcgagcc gcataaggtt catgttcact aa	4062
<210> SEQ ID NO 21 <211> LENGTH: 4062 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 21	
atgatacact cagtgtttct actgatgttc ttgttaacac ctacagaaag ttacgttgat	60
gtagggccag attetgttaa gtetgettgt attgaggttg atatacaaca gaetttettt	
	120
gataaaactt ggcctaggcc aattgatgtt tctaaggctg acggtattat ataccctcaa	120 180
gataaaactt ggeetaggee aattgatgtt tetaaggetg aeggtattat ataeceteaa ggeegtaeat attetaacat aaetateaet tateaaggte ttttteeeta teagggagae	
	190
ggeogtacat attetaacat aactateact tateaaggte ttttteeeta teagggagae	180 240
ggeegtacat attetaacat aactateaet tateaaggte tittteeeta teagggagae catggigata igiatgitta eteigeagga catgetaeag geacaaetee acaaaagiig	180 240 300

439

				-contir	nued		
cgaaaaattt	accetgettt	tatgctgggt	tetteagttg	gtaatttete	agatggtaaa	480	
atgggeeget	tcttcaatca	tactctagtt	cttttgeeeg	atggatgtgg	cactttactt	540	
agagetttt	attgtattct	ggagcetege	tctggaaatc	attgtcctgc	tggcaattee	600	
tatacttett	ttgccactta	tcacactect	gcaacagatt	gttetgatgg	caattacaat	660	
cgtaatgcca	gtetgaaete	ttttaaggag	tattttaatt	tacgtaactg	cacctttatg	720	
tacacttata	acattaccga	agatgagatt	ttagagtggt	ttggcattac	acaaactgct	780	
caaggtgttc	acctcttctc	atctcggtat	gttgatttgt	acggcggcaa	tatgtttcaa	840	
tttgccacct	tgcctgttta	tgatactatt	aagtattatt	ctatcattcc	tcacagtatt	900	
cgttctatcc	aaagtgatag	aaaagettgg	getgeettet	acgtatataa	acttcaaccg	960	
ttaactttcc	tgttggattt	ttetgttgat	ggttatatac	gcagagctat	agactgtggt	1020	
tttaatgatt	tgtcacaact	ccactgetca	tatgaatcct	tcgatgttga	atctggagtt	1080	
tattcagttt	cgtctttcga	agcaaaacct	tetggeteag	ttgtggaaca	ggetgaaggt	1140	
gttgaatgtg	atttttcacc	tettetgtet	ggcacacetc	ctcaggttta	taattteaag	1200	
cgtttggttt	ttaccaattg	caattataat	cttaccaaat	tgettteact	tttttctgtg	1260	
aatgatttta	cttgtagtca	aatatctcca	gcagcaattg	ctagcaactg	ttattcttca	1320	
ctgattttgg	attacttttc	atacccactt	agtatgaaat	ccgatctcag	tgttagttet	1380	
gctggtccaa	tateccagtt	taattataaa	cagteettt	ctaatcccac	atgtttgatt	1440	
ttagcgactg	tteeteataa	cettactact	attactaagc	ctcttaagta	cagctatatt	1500	
aacaagtgct	ctcgtcttct	ttetgatgat	cgtactgaag	tacctcagtt	agtgaacgct	1560	
aatcaatact	caccctgtgt	atccattgtc	ccatccactg	tgtgggaaga	cggtgattat	1620	
tataggaaac	aactatctcc	acttgaaggt	ggtggctggc	ttgttgctag	tggetcaact	1680	
gttgccatga	ctgagcaatt	acagatgggc	tttggtatta	cagttcaata	tggtacagac	1740	
accaatagtg	tttgccccaa	gettgaattt	gctaatgaca	caaaaattgc	ctctcaatta	1800	
ggcaattgcg	tggaatattc	cctctatggt	gtttcgggcc	gtggtgtttt	tcagaattgc	1860	
acagetgtag	gtgttcgaca	geagegettt	gtttatgatg	cgtaccagaa	tttagttggc	1920	
tattattetg	atgatggcaa	ctactactgt	ttgegtgett	gtgttagtgt	teetgtttet	1980	
gtcatctatg	ataaagaaac	taaaacccac	getactetat	ttggtagtgt	tgcatgtgaa	2040	
cacatttett	ctaccatgtc	tcaatactcc	egttetaege	gatcaatget	taaacggcga	2100	
gattetacat	atggeeeet	tcagacacct	gttggttgtg	teetaggaet	tgttaattee	2160	
tetttgtteg	tagaggactg	caagttgcct	cttggtcaat	ctctctgtgc	tetteetgae	2220	
acacctagta	ctctcacacc	tegeagtgtg	egetetgtte	caggtgaaat	gegettggea	2280	
tccattgett	ttaatcatcc	tattcaggtt	gatcaactta	atagtagtta	ttttaaatta	2340	
agtataccca	ctaatttttc	ctttggtgtg	actcaggagt	acattcagac	aaccattcag	2400	
aaagttactg	ttgattgtaa	acagtacgtt	tgcaatggtt	tccagaagtg	tgagcaatta	2460	
ctgcgcgagt	atggccagtt	ttgttccaaa	ataaaccagg	ctctccatgg	tgccaattta	2520	
cgccaggatg	attetgtacg	taatttgttt	gcgagcgtga	aaagetetea	atcatctcct	2580	
atcataccag	gttttggagg	tgactttaat	ttgacacttc	tggaacetgt	ttctatatct	2640	
actggcagtc	gtagtgcacg	tagtgetatt	gaggatttgc	tatttgacaa	agtcactata	2700	
gctgatcctg	gttatatgca	aggttacgat	gattgcatgc	agcaaggtcc	agcatcaget	2760	
cgtgatctta	tttgtgctca	atatgtgget	ggttacaaag	tattacctcc	tettatggat	2820	

441

-continued

gttaatatgg aageegegta taetteatet ttgettggea geatageagg tgttggetgg 2880 actgotggot tatcotoott tgotgotatt coatttgoac agagtatott ttataggtta 2940 aacggtgttg gcattactca acaggttett teagagaace aaaagettat tgecaataag 3000 tttaatcagg ctctgggagc tatgcaaaca ggcttcacta caactaatga agcttttcag 3060 aaggttcagg atgctgtgaa caacaatgca caggctctat ccaaattagc tagcgagcta 3120 totaataott ttggtgotat ttoogootot attggagada toatadaadg tottgatgtt 3180 ctcgaacagg acgcccaaat agacagactt attaatggcc gtttgacaac actaaatgct 3240 tttgttgcac agcagettgt tegtteegaa teagetgete ttteegetea attggetaaa 3300 gataaagtca atgagtgtgt caaggcacaa tccaagcgtt ctggattttg cggtcaaggc 3360 acacatatag tgtcctttgt tgtaaatgcc cctaatggcc tttacttcat gcatgttggt 3420 tattacceta geaaceacat tgaggttgtt tetgettatg gtetttgega tgeagetaac 3480 cctactaatt gtatagcccc tgttaatggc tactttatta aaactaataa cactaggatt 3540 gttgatgagt ggtcatatac tggctcgtcc ttctatgcac ctgagcccat tacctccctt 3600 aatactaagt atgttgcacc acaggtgaca taccaaaaca tttctactaa ceteecteet 3660 contented geaatteeae egggattgae tteeaagatg agttggatga gttttteaaa 3720 aatgttagea eeagtataee taattttggt teeetaacae agattaatae tacattaete 3780 gatettaeet acgagatgtt gtetetteaa caagttgtta aageeettaa tgagtettae 3840 atagacetta aagagettgg caattataet tattacaaca aatggeegtg gtacatttgg 3900 cttggtttca ttgctgggct tgttgcetta getetatgeg tettetteat actgtgetge 3960 actggttgtg gcacaaactg tatgggaaaa cttaagtgta atcgttgttg tgatagatac 4020 4062 gaggaatacg acctcgagec gcataaggtt catgttcact aa <210> SEQ ID NO 22 <400> SEQUENCE: 22

<211> LENGTH: 1845 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide

atgatecaet	ccgtgttcct	cctcatgttc	ctgttgaccc	ccactgagtc	agactgcaag	60
ctcccgctgg	gacagteeet	gtgtgcgctg	cctgacactc	ctagcactct	gaccccacgc	120
teegtgeggt	cggtgcctgg	cgaaatgcgg	ctggcctcca	tegeetteaa	tcacccaatc	180
caagtggatc	agctgaatag	ctcgtatttc	aagctgtcca	tecccaegaa	cttctcgttc	240
ggggtcaccc	aggagtacat	ccagaccaca	attcagaagg	tcaccgtcga	ttgcaagcaa	300
tacgtgtgca	acggetteea	gaagtgcgag	cagetgetga	gagaatacgg	gcagttttgc	360
agcaagatca	accaggeget	gcatggaget	aacttgegee	aggacgactc	cgtgcgcaac	420
ctctttgcct	ctgtgaagtc	ateccagtec	tecccaatca	teeegggatt	cggaggggac	480
ttcaacctga	ccctcctgga	gcccgtgtcg	atcagcaccg	gtagcagatc	ggegegetea	540
gccattgaag	atettetgtt	cgacaaggtc	accategeeg	ateegggeta	catgcaggga	600
tacgacgact	gtatgcagca	gggaccagcc	tccgcgaggg	acctcatctg	cgcgcaatac	660
gtggccgggt	acaaagtgct	geeteetetg	atggatgtga	acatggaggc	cgcttatact	720
tegteeetge	teggetetat	cgccggcgtg	gggtggaccg	ccggcctgtc	ctccttcgcc	780

443

444

_

-cont	inued
-0011	. mueu

				-cont li	iuea		
getateccet	ttgcacaatc	cattttctac	cggctcaacg	gcgtgggcat	tactcaacaa	840	
gteetgtegg	agaaccagaa	gttgategea	aacaagttca	atcaggeeet	gggggccatg	900	
cagactggat	tcactacgac	taacgaagcg	ttecagaagg	tccaggacgc	tgtgaacaac	960	
aacgcccagg	cgctctcaaa	getggeetee	gaactcagca	acaccttcgg	agecateage	1020	
gcatcgatcg	gtgacataat	tcagcggctg	gacgtgctgg	agcaggacgc	ccagatcgac	1080	
egecteatea	acggacgget	gaccacettg	aatgeetteg	tggcacaaca	getggteegg	1140	
agcgaatcag	eggeaettte	cgcccaactc	gccaaggaca	aagtcaacga	atgcgtgaag	1200	
gcccagtcca	agaggteegg	tttetgeggt	caaggaaccc	atattgtgtc	cttcgtcgtg	1260	
aacgegeeea	acggtetgta	ctttatgcac	gteggetaet	accegageaa	tcatatcgaa	1320	
gtggtgteeg	cctacggcct	gtgcgatgcc	getaaceeea	ctaactgtat	tgeccetgtg	1380	
aacggatatt	ttattaagac	caacaacacc	cgcattgtgg	acgaatggtc	atacaccggt	1440	
tegteettet	acgegeeega	gcccatcact	tcactgaaca	ccaaatacgt	ggeteegeaa	1500	
gtgacctacc	agaacatete	caccaatttg	cegeegeege	tgeteggaaa	cagcaccgga	1560	
attgatttcc	aagatgaact	ggacgaattc	ttcaagaacg	tgtccacttc	catteccaac	1620	
tteggaagee	tgacacagat	Caacaccacc	cttctcgacc	tgacctacga	gatgetgage	1680	
cttcaacaag	tggtcaaggc	cctgaacgag	agetacateg	acctgaagga	gctgggcaac	1740	
tatacctact	acaacaagtg	gccggacaag	attgaggaga	ttctgtcgaa	aatctaccac	1800	
attgaaaacg	agategeeag	aatcaagaag	cttatcggcg	aagee		1845	
<220> FEAT <223> OTHE	URE: R INFORMATIO	icial Sequer ON: Synthet:		ectide			
<400> SEQU	ENCE: 23						
atggaaaccc	ctgcccagct	getgtteetg	ctgctgctgt	ggetgeetga	taccaccggc	60	
agctatgtgg	acgtgggccc	cgatagegtg	aagteegeet	gtatcgaagt	ggacatecag	120	
				tgtccaaggc		180	
				cctaccaggg		240	
				gccacgccac		300	
-		-		agcagttege		360	
				tgatcatcag	-	420	
				geageteegt		480	
		-		tgetgetgee		540	
		_		gaagcggcaa	-	600	
				cegecacega		660	
				agtacttcaa		720	
tgcaccttca	tgtacaccta	caatatcacc	gaggacgaga	tcctggaatg	gtteggeate	780	
acccagaccg	cccagggcgt	gcacctgttc	agcagcagat	acgtggacet	gtacggcggc	840	
aacatgttee	agtttgccac	cctgcccgtg	tacgacacca	tcaagtacta	cagcatcatc	900	
ccccacagca							
	tccggtccat	ccagagcgac	agaaaagcct	gggccgcctt	ctacgtgtac	960	
aagctgcagc				gggccgcctt acggctacat		960 1020	

445

-continued

atcgactgcg	gcttcaacga	cctgagecag	ctgcactgct	cctacgagag	cttcgacgtg	1080
gaaageggeg	tgtacagegt	gtecagette	gaggeeaage	ctageggeag	cgtggtggaa	1140
caggctgagg	gcgtggaatg	cgacttcagc	cctctgctga	geggeaceee	teeccaggtg	1200
tacaacttca	ageggetggt	gttcaccaac	tgcaattaca	acctgaccaa	getgetgage	1260
ctgttctccg	tgaacgactt	cacctgtagc	cagatcagec	ctgccgccat	tgccagcaac	1320
tgctacagca	gcctgatcct	ggactacttc	agetacecce	tgagcatgaa	gtccgatctg	1380
agegtgteet	ccgccggacc	catcagecag	ttcaactaca	agcagagett	cagcaaccet	1440
acctgcctga	ttetggeeac	cgtgccccac	aatctgacca	ccatcaccaa	gcccctgaag	1500
tacagetaca	tcaacaagtg	cagcagactg	ctgtccgacg	accggaccga	agtgccccag	1560
ctcgtgaacg	ccaaccagta	cageccetge	gtgtccatcg	tgcccagcac	cgtgtgggag	1620
gacggcgact	actacagaaa	gcagctgagc	cccctggaag	gcggcggatg	getggtgget	1680
tctggaagca	cagtggccat	gaccgagcag	ctgcagatgg	getttggeat	caccgtgcag	1740
tacggcaccg	acaccaacag	cgtgtgcccc	aagctggaat	tcgccaatga	caccaagatc	1800
gccagccagc	tgggaaactg	cgtggaatac	tccctgtatg	gcgtgtccgg	acgggggggtg	1860
ttccagaatt	gcacagcagt	gggagtgcgg	cagcagagat	tcgtgtacga	tgeetaccag	1920
aacctcgtgg	gctactacag	cgacgacggc	aattactact	gcetgeggge	ctgtgtgtcc	1980
gtgcccgtgt	ccgtgatcta	cgacaaagag	acaaagaccc	acgecacact	gtteggetee	2040
gtggeetgeg	agcacatcag	ctccaccatg	agccagtact	cccgctccac	ccggtccatg	2100
ctgaagegga	gagatagcac	ctacggcccc	ctgcagacac	ctgtgggatg	tgtgctgggc	2160
ctcgtgaaca	geteeetgtt	tgtggaagat	tgeaagetge	ccetgggcea	gageetgtgt	2220
gccctgccag	atacccctag	caccctgacc	cctagaageg	tgegetetgt	gcccggcgaa	2280
atgeggetgg	cetetatege	cttcaatcac	cccatccagg	tggaccaget	gaacteeage	2340
tacttcaage	tgagcatece	caccaacttc	agetteggeg	tgacccagga	gtacatccag	2400
accacaatcc	agaaagtgac	cgtggactgc	aagcagtacg	tgtgcaacgg	ctttcagaag	2460
tgcgaacagc	tgetgegega	gtacggccag	ttetgeagea	agatcaacca	ggccctgcac	2520
ggcgccaacc	tgagacagga	tgacagcgtg	cggaacctgt	tegecagegt	gaaaagcagc	2580
cagtccagcc	ccatcatccc	tggettegge	ggcgacttta	acctgaccct	getggaaeet	2640
gtgtccatca	gcaccggete	cagaagegee	agateegeea	tcgaggacct	getgttegae	2700
aaagtgacca	ttgccgaccc	cggctacatg	cagggctacg	acgattgcat	gcagcagggc	2760
ccagccagcg	ccagggatct	gatetgtgee	cagtatgtgg	ccggctacaa	ggtgetgeee	2820
cccctgatgg	acgtgaacat	ggaagcegee	tacaceteea	geetgetggg	ctctattgct	2880
ggegtgggat	ggacagccgg	cctgtctagc	tttgeegeea	teeetttege	ccagagcatc	2940
ttetacegge	tgaacggcgt	gggcatcaca	caacaggtgc	tgagcgagaa	ccagaagctg	3000
atcgccaaca	agtttaacca	ggcactgggc	gccatgcaga	ccggcttcac	caccaccaac	3060
gaggeettea	gaaaggtgca	ggacgccgtg	aacaacaacg	cccaggetet	gagcaagetg	3120
geeteegage	tgagcaatac	ctteggegee	atcagegeet	ccatcggcga	catcatccag	3180
cggctggacg	tgetggaaca	ggacgcccag	ategaeegge	tgatcaacgg	cagactgacc	3240
accetgaacg	cettegtgge	acagcagete	gtgcggagcg	aatctgeege	tetgtetget	3300
cagetggeea	aggacaaagt	gaacgagtgc	gtgaaggccc	agtccaagcg	gageggettt	3360

447

-continued

		-continued	
tgtggccagg gcac	ccacat cgtgteette gtegtgaatg	cccccaacgg cctgtacttt	3420
atgeaegtgg geta	ttaccc cagcaaccac atcgaggtgg	tgtccgccta tggcctgtgc	3480
gacgccgcca atco	taccaa ctgtategee eeegtgaaeg	gctacttcat caagaccaac	3540
aacaccegga tegt	ggacga gtggtcetac acaggeagea	gettetaege eeeegageee	3600
atcaceteec tgaa	caccaa atacgtggcc ccccaagtga	cataccagaa catetecace	3660
aacetgeeec ctee	actget gggaaattee aceggeateg	acttecagga egagetggae	3720
gagttettea agaa	cgtgtc cacctccatc cccaacttcg	gcageetgae ceagateaae	3780
accactctgc tgga	cetgae ctaegagatg etgtecetge	aacaggtegt gaaageeetg	3840
aacgagagct acat	cgacct gaaagagetg gggaactaca	cctactacaa caagtggcct	3900
tggtacattt ggct	gggett tategeegge etggtggeee	tggccctgtg cgtgttcttc	3960
ateetgtget geae	cggctg cggcaccaat tgcatgggca	agetgaaatg caaceggtge	4020
tgegacagat acga	ggaata cgacctggaa cetcacaaag	tgcatgtgca c	4071
<210> SEQ ID NO <211> LENGTH: 1 <212> TYPE: PRT <213> ORGANISM:	353	drome coronavirus	
<400> SEQUENCE:	24		
Met Ile His Ser 1	Val Phe Leu Leu Met Phe Leu 5 10	Leu Thr Pro Thr Glu 15	
Ser Tyr Val Asp 20	Val Gly Pro Asp Ser Val Lys 25	Ser Ala Cys Ile Glu 30	
Val Asp Ile Gln 35	Gln Thr Phe Phe Asp Lys Thr 40	Trp Pro Arg Pro Ile 45	
Asp Val Ser Lys 50	Ala Asp Gly Ile Ile Tyr Pro 55	Gln Gly Arg Thr Tyr 60	
Ser Asn Ile Thr 65	Ile Thr Tyr Gln Gly Leu Phe 70 75	Pro Tyr Gln Gly Asp 80	
His Gly Asp Met	Tyr Val Tyr Ser Ala Gly His 85 90	Ala Thr Gly Thr Thr 95	
Pro Gln Lys Leu 100	Phe Val Ala Asn Tyr Ser Gln 105	Asp Val Lys Gln Phe 110	
Ala Asn Gly Phe 115	Val Val Arg Ile Gly Ala Ala 120	Ala Asn Ser Thr Gly 125	
Thr Val Ile Ile 130	Ser Pro Ser Thr Ser Ala Thr 135	Ile Arg Lys Ile Tyr 140	
Pro Ala Phe Met 145	Leu Gly Ser Ser Val Gly Asn 150 155	Phe Ser Asp Gly Lys 160	
	Phe Asn His Thr Leu Val Leu 165 170	Leu Pro Asp Gly Cys 175	
Gly Thr Leu Leu 180	Arg Ala Phe Tyr Cys Ile Leu 185		
	Ala Gly Asn Ser Tyr Thr Ser 200		
Thr Pro Ala Thr	Asp Cys Ser Asp Gly Asn Tyr	Asn Arg Asn Ala Ser	
	215 Lys Glu Tyr Phe Asn Leu Arg	_	
225 Tyr Thr Tyr Asn	230 235 Ile Thr Glu Asp Glu Ile Leu	240 Glu Trp Phe Gly Ile	
- 4	245 250	255	

Thr	Gln	Thr	Ala 260	Gln	Gly	Val	His	Leu 265	Phe	Ser	Ser	Arg	Tyr 270	Val	Asp
Leu	Tyr	Gly 275	Gly	Asn	Met	Phe	Gln 280	Phe	Ala	Thr	Leu	Pro 285	Val	Tyr	Asp
Thr	Ile 290	Гуз	Tyr	Tyr	Ser	Ile 295	Ile	Pro	His	Ser	Ile 300	Arg	Ser	Ile	Gln
Ser 305	Asp	Arg	Lys	Ala	Trp 310	Ala	Ala	Phe	Tyr	Val 315	Tyr	Гла	Leu	Gln	Pro 320
Leu	Thr	Phe	Leu	Leu 325	Asp	Phe	Ser	Val	Asp 330	Gly	Tyr	Ile	Arg	Arg 335	Ala
Ile	Asp	Cys	Gly 340	Phe	Asn	Asp	Leu	Ser 345	Gln	Leu	His	Cys	Ser 350	Tyr	Glu
Ser	Phe	Asp 355	Val	Glu	Ser	Gly	Val 360	Tyr	Ser	Val	Ser	Ser 365	Phe	Glu	Ala
Lys	Pro 370	Ser	Gly	Ser	Val	Val 375	Glu	Gln	Ala	Glu	Gly 380	Val	Glu	Сүз	Asp
Phe 385	Ser	Pro	Leu	Leu	Ser 390	Gly	Thr	Pro	Pro	Gln 395	Val	Tyr	Asn	Phe	Lys 400
Arg	Leu	Val	Phe	Thr 405	Asn	Cys	Asn	Tyr	Asn 410	Leu	Thr	Lys	Leu	Leu 415	Ser
Leu	Phe	Ser	Val 420	Asn	Asp	Phe	Thr	Cys 425	Ser	Gln	Ile	Ser	Pro 430	Ala	Ala
Ile	Ala	Ser 435	Asn	Сүз	Tyr	Ser	Ser 440	Leu	Ile	Leu	Asp	Tyr 445	Phe	Ser	Tyr
Pro	Leu 450	Ser	Met	Lys	Ser	Asp 455	Leu	Ser	Val	Ser	Ser 460	Ala	Gly	Pro	Ile
	Gln	Phe	Asn	Tyr	Lys	Gln	Ser	Phe	Ser	Asn	\mathbf{Pro}	Thr	Cvs	Leu	Tle
465					470					475					480
	Ala	Thr	Val	Pro 485						475	Thr		-		480
Leu				485	His	Asn	Leu	Thr	Thr 490	475 Ile		Гла	Pro	Leu 495	480 Lys
Leu Tyr	Ser	Tyr	Ile 500	485 Asn	His Lys	Asn Cys	Leu Ser	Thr Arg 505	Thr 490 Leu	475 Ile Leu	Thr	Lуз Азр	Pro Asp 510	Leu 495 Arg	480 Lys Thr
Leu Tyr Glu	Ser Val	Tyr Pro 515	Ile 500 Gln	485 Asn Leu	His Lys Val	Asn Cys Asn	Leu Ser Ala 520	Thr Arg 505 Asn	Thr 490 Leu Gln	475 Ile Leu Tyr	Thr Ser	Lys Asp Pro 525	Pro Asp 510 Cys	Leu 495 Arg Val	480 Lys Thr Ser
Leu Tyr Glu Ile	Ser Val Val 530	Tyr Pro 515 Pro	Ile 500 Gln Ser	485 Asn Leu Thr	His Lys Val Val	Asn Cys Asn Trp 535	Leu Ser Ala 520 Glu	Thr Arg 505 Asn Asp	Thr 490 Leu Gln Gly	475 Ile Leu Tyr Asp	Thr Ser Ser Tyr	Lys Asp Pro 525 Tyr	Pro Asp 510 Cys Arg	Leu 495 Arg Val Lys	480 Lys Thr Ser Gln
Leu Tyr Glu Ile Leu 545	Ser Val Val 530 Ser	Tyr Pro 515 Pro Pro	Ile 500 Gln Ser Leu	485 Asn Leu Thr Glu	His Lys Val Val Gly 550	Asn Cys Asn Trp 535 Gly	Leu Ser Ala 520 Glu Gly	Thr Arg 505 Asn Asp Trp	Thr 490 Leu Gln Gly Leu	475 Ile Leu Tyr Asp Val 555	Thr Ser Ser Tyr 540	Lys Asp Pro 525 Tyr Ser	Pro Asp 510 Cys Arg Gly	Leu 495 Arg Val Lys Ser	480 Lys Thr Ser Gln Thr 560
Leu Tyr Glu Ile Leu 545 Val	Ser Val Val 530 Ser Ala	Tyr Pro 515 Pro Pro Met	Ile 500 Gln Ser Leu Thr	485 Asn Leu Thr Glu 565	His Lys Val Gly 550 Gln	Asn Cys Asn Trp 535 Gly Leu	Leu Ser Ala 520 Glu Gly Gln	Thr Arg 505 Asn Asp Trp Met	Thr 490 Leu Gln Gly Leu Gly 570	475 Ile Leu Tyr Asp Val 555 Phe	Thr Ser Ser Tyr 540 Ala	Lys Asp Pro 525 Tyr Ser Ile	Pro Asp 510 Cys Arg Gly Thr	Leu 495 Arg Val Lys Ser Val 575	480 Lys Thr Ser Gln Thr 560 Gln
Leu Tyr Glu Ile Leu 545 Val Tyr	Ser Val Val 530 Ser Ala Gly	Tyr Pro 515 Pro Pro Met Thr	Ile 500 Gln Ser Leu Thr Asp 580	485 Asn Leu Thr Glu S65 Thr	His Lys Val Val Gly 550 Gln Asn	Asn Cys Asn Trp 535 Gly Leu Ser	Leu Ser Ala 520 Glu Gly Gly Val	Thr Arg 505 Asn Asp Trp Met Cys 585	Thr 490 Leu Gln Gly Leu Gly 570 Pro	475 Ile Leu Tyr Asp Val 555 Phe Lys	Thr Ser Ser Tyr 540 Ala Gly	Lys Asp Pro 525 Tyr Ser Ile Glu	Pro Asp 510 Cys Arg Gly Thr Phe 590	Leu 495 Arg Val Lys Ser Val 575 Ala	480 Lys Thr Ser Gln Thr 560 Gln Asn
Leu Tyr Glu Ile Leu 545 Val Tyr Asp	Ser Val S30 Ser Ala Gly Thr	Tyr Pro 515 Pro Pro Met Thr Lys 595	Ile 500 Gln Ser Leu Thr Asp 580 Ile	485 Asn Leu Thr Glu 565 Thr Ala	His Lys Val Gly 550 Gln Asn Ser	Asn Cys Asn Trp 535 Gly Leu Ser Gln	Leu Ser Ala 520 Glu Gly Gln Val Leu 600	Thr Arg 505 Asn Asp Trp Met Cys 585 Gly	Thr 490 Leu Gln Gly Leu Gly 570 Pro Asn	475 Ile Leu Tyr Asp Val 555 Phe Lys Cys	Thr Ser Ser Tyr 540 Ala Gly Leu	Lys Asp Pro 525 Tyr Ser Ile Glu 605	Pro Asp 510 Cys Arg Gly Thr Phe 590 Tyr	Leu 495 Arg Val Lys Ser Val 575 Ala Ser	480 Lys Thr Ser Gln Thr 560 Gln Asn Leu
Leu Tyr Glu Ile 545 Val Tyr Asp	Ser Val 530 Ser Ala Gly Thr Gly 610	Tyr Pro 515 Pro Pro Met Thr Lys 595 Val	Ile 500 Gln Ser Leu Thr Asp 580 Ile Ser	485 Asn Leu Thr Glu 565 Thr Ala Gly	His Lys Val Val Gly 550 Gln Asn Ser Arg	Asn Cys Asn Trp 535 Gly Leu Ser Gln Gln 615	Leu Ser Ala 520 Glu Gly Gln Val Leu 600 Val	Thr Arg 505 Asn Asp Trp Met Cys 585 Gly Phe	Thr 490 Leu Gln Gly 570 Pro Asn Gln	475 Ile Leu Tyr Asp Val 555 Phe Lys Cys Asn	Thr Ser Ser Tyr 540 Ala Gly Leu Val Cys	Lys Asp Pro 525 Tyr Ser Ile Glu 605 Thr	Pro Asp 510 Cys Arg Gly Thr Thr Phe 590 Tyr Ala	Leu 495 Arg Val Lys Ser Val Ser Ala Ser Val	480 Lys Thr Ser Gln Thr 560 Gln Asn Leu Gly
Leu Tyr Glu Ile Leu S45 Val Tyr Tyr Yal 625	Ser Val Val 530 Ser Ala Gly fly 610 Arg	Tyr Pro 515 Pro Met Thr Lys 595 Val Gln	Ile 500 Gln Ser Leu Thr Asp 580 Ile Ser Gln	485 Asn Leu Thr Glu 565 Thr Ala Gly Arg	His Lys Val Gly 550 Gln Asn Ser Arg Phe 630	Asn Cys Asn Trp 535 Gly Leu Ser Gln Gly 615 Val	Leu Ser Ala 520 Glu Gly Glu Gly Val Leu 600 Val Tyr	Thr Arg 505 Asn Asp Trp Met Cys 585 Gly Phe Asp	Thr 4900 Leu Gln Gly 570 Pro Asn Gln Ala	475 Ile Leu Tyr Asp Val 555 Phe Lys Cys Asn Tyr 635	Thr Ser Ser Tyr 540 Ala Gly Leu Val Cys 620	Lys Asp Pro 525 Tyr Ser Ile Glu 605 Thr Asn	Pro Asp 510 Cys Arg Gly Thr Thr Phe 590 Tyr Ala Leu	Leu 495 Arg Val Lys Ser Val 575 Ala Ser Val Val	480 Lys Thr Ser Gln Thr 560 Gln Asn Leu Gly Gly 640

Leu	Phe	Gly 675	Ser	Val	Ala	Cys	Glu 680	His	Ile	Ser	Ser	Thr 685	Met	Ser	Gln		
Tyr	Ser 690	Arg	Ser	Thr	Arg	Ser 695	Met	Leu	Lys	Arg	Arg 700	Asp	Ser	Thr	Tyr		
Gly 705	Pro	Leu	Gln	Thr	Pro 710	Val	Gly	Cys	Val	Leu 715	Gly	Leu	Val	Asn	Ser 720		
Ser	Leu	Phe	Val	Glu 725	Asp	Сув	Lys	Leu	Pro 730	Leu	Gly	Gln	Ser	Leu 735	-		
Ala	Leu	Pro	Asp 740	Thr	Pro	Ser	Thr	Leu 745	Thr	Pro	Arg	Ser	Val 750	Arg	Ser		
Val	Pro	Gly 755	Glu	Met	Arg	Leu	Ala 760	Ser	Ile	Ala	Phe	Asn 765	His	Pro	Ile		
Gln	Val 770	Asp	Gln	Leu	Asn	Ser 775	Ser	Tyr	Phe	Lys	Leu 780	Ser	Ile	Pro	Thr		
Asn 785	Phe	Ser	Phe	Gly	Val 790	Thr	Gln	Glu	Tyr	Ile 795	Gln	Thr	Thr	Ile	Gln 800		
Lys	Val	Thr	Val	Asp 805	Суз	Гла	Gln	Tyr	Val 810	Сув	Asn	Gly	Phe	Gln 815	÷		
Сүз	Glu	Gln	Leu 820	Leu	Arg	Glu	Tyr	Gly 825	Gln	Phe	Суз	Ser	Lys 830	Ile	Asn		
Gln	Ala	Leu 835	His	Gly	Ala	Asn	Leu 840	Arg	Gln	Asp	Asp	Ser 845	Val	Arg	Asn		
Leu	Phe 850	Ala	Ser	Val	Гуз	Ser 855	Ser	Gln	Ser	Ser	Pro 860	Ile	Ile	Pro	Gly		
Phe 865	Gly	Gly	Asp	Phe	Asn 870	Leu	Thr	Leu	Leu	Glu 875	Pro	Val	Ser	Ile	Ser 880		
Thr	Gly	Ser	Arg	Ser 885	Ala	Arg	Ser	Ala	Ile 890	Glu	Asp	Leu	Leu	Phe 895	-		
Lys	Val	Thr	Ile 900	Ala	Asp	Pro	Gly	Tyr 905	Met	Gln	Gly	Tyr	Asp 910	Aap	Сув		
Met	Gln	Gln 915	Gly	Pro	Ala	Ser	Ala 920	Arg	Asp	Leu	Ile	Cys 925	Ala	Gln	Tyr		
Val	Ala 930	Gly	Tyr	Гла	Val	Leu 935	Pro	Pro	Leu	Met	Asp 940	Val	Asn	Met	Glu		
Ala 945	Ala	Tyr	Thr	Ser	Ser 950	Leu	Leu	Gly	Ser	Ile 955	Ala	Gly	Val	Gly	Trp 960		
Thr	Ala	Gly	Leu	Ser 965	Ser	Phe	Ala	Ala	Ile 970	Pro	Phe	Ala	Gln	Ser 975	Ile		
Phe	Tyr	Arg	Leu 980	Asn	Gly	Val	Gly	Ile 985	Thr	Gln	Gln	Val	Leu 990	Ser	Glu		
Asn	Gln	Lys 995	Leu	Ile	Ala	Asn	Lys 100		e Ası	n Glı	n Al	a Le 10		ly A	la Met		
Gln	Thr 1010		Phe	e Thi	r Thi	Th: 10:		an G	lu A	la Pl		rg 020	Lys '	Val	Gln		
Asp	Ala 1025		. Asr	1 Ası	n Asr	n Ala 103		ln A	la L	eu So		ув 035	Leu J	Ala	Ser		
Glu	Leu 1040		Asr	n Thi	r Phe	e Gly 104		La I	le S	er A		er 050	Ile	Gly .	Asp		
Ile	Ile 1059		ı Arg	g Lei	ı Asp	Va. 10		eu Gi	lu G	ln A	-	la 065	Gln	Ile .	Asp		
Arg	Leu 1070		e Asr	ı Gly	/ Arç	g Lev 10'		ır Tl	nr L	eu Ai		la 080	Phe '	Val .	Ala		
Gln	Gln	Leu	. Val	. Arg	g Sei	c Glu	ı Se	er A	la A	la L	eu S	er .	Ala (Gln	Leu		

453

-continued

454

													-	con	ntir	nueo	1	
	1085						109	0					1	095				
Ala	Lys 1100		ь Га	s Va	ıl A	sn	Glu 110		s V	/al	Lys	Al		ln 110	Ser	Lys	Arg	ł
Ser	Gly 1115		е Су	s Gl	y G	ln	Gly 112		rΗ	lis	Ile	Va		er 125	Phe	Val	Val	L
Asn	Ala 1130		Asi	n Gl	y L	eu	Tyr 113!		.e №	let	His	Va		ly 140	Tyr	Tyr	Pro	>
Ser	Asn 1145		; Il	e Gl	u V	al	Val 115		r A	la	Tyr	Gl	-	eu 155	Сув	Asp	Ala	à
Ala	Asn 1160		Th:	r As	n C	уз	Ile 1169		аF	ro	Val	As		ly 170	Tyr	Phe	Ile	3
ГЛа	Thr 1175		n Asi	n Tr	ir A	rg	Ile 118		1 A	/ab	Glu	Tr		er 185	Tyr	Thr	Gly	7
Ser	Ser 1190		ту	r Al	a F	ro	Glu 119		οI	le	Thr	Se		eu 200	Asn	Thr	Гуз	3
Tyr	Val 1205		ı Pro	5 G]	.n V	al	Thr 1210	-	rθ	ln	Asn	11		er 215	Thr	Asn	Leu	1
Pro	Pro 1220) Le	u Le	eu G	ly	Asn 122!		rI	'hr	Gly	11		.sp 230	Phe	Gln	Asp	ç
Glu	Leu 1235	-	Gl	u Pr	le F	he	Lys 124		n V	7al	Ser	Th		er 245	Ile	Pro	Asn	ı
Phe	Gly 1250		Le	u Th	nr G	ln	Ile 125!		n I	hr	Thr	Le		eu 260	Asp	Leu	Thr	r
Tyr	Glu 1265		Le	u Se	er I	eu	Gln 127		n V	Val	Val	Ьу		la 275	Leu	Asn	Glu	1
Ser	Tyr 1280		e Asj	p Le	eu L	уs	Glu 128		u G	ly	Asn	ту		'hr 290	Tyr	Tyr	Asn	ı
Lys	Trp 1295		Trj	р Ту	'r I	le	Trp 130		u G	Чy	Phe	11		la 305	Gly	Leu	Val	L
Ala	Leu 1310		ı Le	u Cy	′s V	7al	Phe 131!		e I.	le	Leu	су		уя 320	Thr	Gly	Сув	3
Gly	Thr 1325		n Cy	s Me	et G	ly	Lys 133		u I	Ъз	Суз	As		rg 335	Сув	Суз	Asp	Ş
Arg	Tyr 1340		ı Gl	u Ty	'r A	ap	Leu 134!		u F	ro	His	Ly		al 350	His	Val	His	3
<211 <212 <213 <220 <223)> SE L> LE 2> TY 3> OF 3> OF 3> OT 3> OT	NGTH PE: GANJ ATUF	I: 1: PRT SM: E: INF	353 Art ORMA							уре	pti	đe					
Met	Ile			Val	. Ph	ie I	Leu 1	Leu	Met			eu	Leu	Thr	Pro		r Glu	Lu
1	m -		-	5				-	-	10			-			15		
Ser	Tyr	Val	Азр 20	Va]	. G1	y F	Pro I	-	Ser 25	: Va	1 L	уs	Ser	Ala	1 Cys 30	3 I l	e Glu	LU
Val	Asp	Ile 35	Gln	Glr	1 Th	ır E		Phe 40	Asp	ь Гу	s T	hr	Trp	Pro 45	Arg	g Pro	o Ile	le
Asp	Val 50	Ser	Lys	Ala	a As	-	31y 3 55	Ile	Ile	а Ту	ΥP		G1n 60	Gly	' Arg	g Thi	r Ty:	ŗr
Ser 65	Asn	Ile	Thr	Ilε	• Th 70		Fyr (Gln	Gly	∕Le	u P 7		Pro	Tyr	Glr	ı Gl	y Asj 80	_
His	Gly	Asp	Met	Tyr	: Va	11	fyr :	Ser	Ala	ı Gl	уН	is	Ala	Thr	Gl	7 Th:	r Th:	ır

con	- t-	1 m	110	a –
COL		T 11	ue	u

						400	,											50
											-	con	tin	ued		 		
				85					90					95				
Pro	Gln	Lys	Leu 100	Phe	Val	Ala	Asn	Tyr 105	Ser	Gln	Asp	Val	Lys 110	Gln	Phe			
Ala	Asn	Gly 115	Phe	Val	Val	Arg	Ile 120	Gly	Ala	Ala	Ala	Asn 125	Ser	Thr	Gly			
Thr	Val 130	Ile	Ile	Ser	Pro	Ser 135	Thr	Ser	Ala	Thr	Ile 140	Arg	Гуз	Ile	Tyr			
Pro 145	Ala	Phe	Met	Leu	Gly 150	Ser	Ser	Val	Gly	Asn 155	Phe	Ser	Asp	Gly	Lys 160			
Met	Gly	Arg	Phe	Phe 165	Asn	His	Thr	Leu	Val 170	Leu	Leu	Pro	Asp	Gly 175	Суз			
Gly	Thr	Leu	Leu 180	Arg	Ala	Phe	Tyr	Cys 185	Ile	Leu	Glu	Pro	Arg 190	Ser	Gly			
Asn	His	Cys 195	Pro	Ala	Gly	Asn	Ser 200	Tyr	Thr	Ser	Phe	Ala 205	Thr	Tyr	His			
Thr	Pro 210	Ala	Thr	Asp	Суз	Ser 215	Aab	Gly	Asn	Tyr	Asn 220	Arg	Asn	Ala	Ser			
Leu 225	Asn	Ser	Phe	ГАз	Glu 230	Tyr	Phe	Asn	Leu	Arg 235	Asn	Суз	Thr	Phe	Met 240			
Tyr	Thr	Tyr	Asn	Ile 245	Thr	Glu	Asp	Glu	Ile 250	Leu	Glu	Trp	Phe	Gly 255	Ile			
Thr	Gln	Thr	Ala 260	Gln	Gly	Val	His	Leu 265	Phe	Ser	Ser	Arg	Tyr 270	Val	Asp			
Leu	Tyr	Gly 275	Gly	Asn	Met	Phe	Gln 280	Phe	Ala	Thr	Leu	Pro 285	Val	Tyr	Asp			
Thr	Ile 290	Lys	Tyr	Tyr	Ser	Ile 295	Ile	Pro	His	Ser	Ile 300	Arg	Ser	Ile	Gln			
Ser 305	Asp	Arg	Lys	Ala	Trp 310	Ala	Ala	Phe	Tyr	Val 315	Tyr	Lys	Leu	Gln	Pro 320			
Leu	Thr	Phe	Leu	Leu 325	Asp	Phe	Ser	Val	Asp 330	Gly	Tyr	Ile	Arg	Arg 335	Ala			
Ile	Asp	Сув	Gly 340	Phe	Asn	Aab	Leu	Ser 345	Gln	Leu	His	Суз	Ser 350	Tyr	Glu			
Ser	Phe	Asp 355	Val	Glu	Ser	Gly	Val 360	Tyr	Ser	Val	Ser	Ser 365	Phe	Glu	Ala			
Lys	Pro 370	Ser	Gly	Ser	Val	Val 375	Glu	Gln	Ala	Glu	Gly 380	Val	Glu	Сүз	Asp			
Phe 385	Ser	Pro	Leu	Leu	Ser 390	Gly	Thr	Pro	Pro	Gln 395	Val	Tyr	Asn	Phe	Lys 400			
Arg	Leu	Val	Phe	Thr 405	Asn	Сув	Asn	Tyr	Asn 410	Leu	Thr	Lys	Leu	Leu 415	Ser			
Leu	Phe	Ser	Val 420	Asn	Asp	Phe	Thr	Сув 425	Ser	Gln	Ile	Ser	Pro 430	Ala	Ala			
Ile	Ala	Ser 435	Asn	Суз	Tyr	Ser	Ser 440	Leu	Ile	Leu	Asp	Tyr 445	Phe	Ser	Tyr			
Pro	Leu 450	Ser	Met	Гла	Ser	Asp 455	Leu	Ser	Val	Ser	Ser 460	Ala	Gly	Pro	Ile			
Ser 465	Gln	Phe	Asn	Tyr	Lys 470	Gln	Ser	Phe	Ser	Asn 475	Pro	Thr	Сув	Leu	Ile 480			
Leu	Ala	Thr	Val	Pro 485	His	Asn	Leu	Thr	Thr 490	Ile	Thr	Lys	Pro	Leu 495	Lys			
Tyr	Ser	Tyr	Ile 500	Asn	Гуз	Суз	Ser	Arg 505	Leu	Leu	Ser	Asp	Asp 510	Arg	Thr			

-continued

Glu	Val	Pro 515	Gln	Leu	Val	Asn	Ala 520	Asn	Gln	Tyr	Ser	Pro 525	Cys	Val	Ser
Ile	Val 530	Pro	Ser	Thr	Val	Trp 535	Glu	Asp	Gly	Asp	Tyr 540	Tyr	Arg	Lys	Gln
Leu 545	Ser	Pro	Leu	Glu	Gly 550	Gly	Gly	Trp	Leu	Val 555	Ala	Ser	Gly	Ser	Thr 560
Val	Ala	Met	Thr	Glu 565	Gln	Leu	Gln	Met	Gly 570	Phe	Gly	Ile	Thr	Val 575	Gln
Tyr	Gly	Thr	Asp 580	Thr	Asn	Ser	Val	Cys 585	Pro	Lys	Leu	Glu	Phe 590	Ala	Asn
Asp	Thr	Lys 595	Ile	Ala	Ser	Gln	Leu 600	Gly	Asn	Суа	Val	Glu 605	Tyr	Ser	Leu
Tyr	Gly 610	Val	Ser	Gly	Arg	Gly 615	Val	Phe	Gln	Asn	Cys 620	Thr	Ala	Val	Gly
Val 625	Arg	Gln	Gln	Arg	Phe 630	Val	Tyr	Asp	Ala	Tyr 635	Gln	Asn	Leu	Val	Gly 640
Tyr	Tyr	Ser	Aab	Asp 645	Gly	Asn	Tyr	Tyr	Cys 650	Leu	Arg	Ala	Сув	Val 655	Ser
Val	Pro	Val	Ser 660	Val	Ile	Tyr	Asp	Lys 665	Glu	Thr	Lys	Thr	His 670	Ala	Thr
Leu	Phe	Gly 675	Ser	Val	Ala	Сув	Glu 680	His	Ile	Ser	Ser	Thr 685	Met	Ser	Gln
Tyr	Ser 690	Arg	Ser	Thr	Arg	Ser 695	Met	Leu	Lys	Arg	Arg 700	Asp	Ser	Thr	Tyr
Gly 705	Pro	Leu	Gln	Thr	Pro 710	Val	Gly	Суз	Val	Leu 715	Gly	Leu	Val	Asn	Ser 720
Ser	Leu	Phe	Val	Glu 725	Asp	Сүя	Lys	Leu	Pro 730	Leu	Gly	Gln	Ser	Leu 735	Cys
Ala	Leu	Pro	Asp 740	Thr	Pro	Ser	Thr	Leu 745	Thr	Pro	Arg	Ser	Val 750	Arg	Ser
Val	Pro	Gly 755	Glu	Met	Arg	Leu	Ala 760	Ser	Ile	Ala	Phe	Asn 765	His	Pro	Ile
Gln	Val 770	Asp	Gln	Leu	Asn	Ser 775	Ser	Tyr	Phe	Lys	Leu 780	Ser	Ile	Pro	Thr
Asn 785	Phe	Ser	Phe	Gly	Val 790	Thr	Gln	Glu	Tyr	Ile 795	Gln	Thr	Thr	Ile	Gln 800
Lys	Val	Thr	Val	Asp 805	Сув	Lys	Gln	Tyr	Val 810	Сув	Asn	Gly	Phe	Gln 815	Lys
СЛа	Glu	Gln	Leu 820	Leu	Arg	Glu	Tyr	Gly 825	Gln	Phe	СЛа	Ser	Lуа 830	Ile	Asn
Gln	Ala	Leu 835	His	Gly	Ala	Asn	Leu 840	Arg	Gln	Asp	Asp	Ser 845	Val	Arg	Asn
Leu	Phe 850	Ala	Ser	Val	Lys	Ser 855	Ser	Gln	Ser	Ser	Pro 860	Ile	Ile	Pro	Gly
Phe 865	Gly	Gly	Asp	Phe	Asn 870	Leu	Thr	Leu	Leu	Glu 875	Pro	Val	Ser	Ile	Ser 880
Thr	Gly	Ser	Arg	Ser 885	Ala	Arg	Ser	Ala	11e 890	Glu	Asp	Leu	Leu	Phe 895	Asp
Lys	Val	Thr	Ile 900	Ala	Asp	Pro	Gly	Tyr 905	Met	Gln	Gly	Tyr	Asp 910	Asp	Cys
Met	Gln	Gln 915	Gly	Pro	Ala	Ser	Ala 920	Arg	Asp	Leu	Ile	Сув 925	Ala	Gln	Tyr

-continued

Val Ala Gly Tyr Lys Val Leu Pro Pro Leu Met Asp Val Asn Met Glu 930 935 940
Ala Ala Tyr Thr Ser Ser Leu Leu Gly Ser Ile Ala Gly Val Gly Trp 945 950 955 960
Thr Ala Gly Leu Ser Ser Phe Ala Ala Ile Pro Phe Ala Gln Ser Ile 965 970 975
Phe Tyr Arg Leu Asn Gly Val Gly Ile Thr Gln Gln Val Leu Ser Glu 980 985 990
Asn Gln Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Leu Gly Ala Met 995 1000 1005
Gln Thr Gly Phe Thr Thr Asn Glu Ala Phe Gln Lys Val Gln 1010 1015 1020
Asp Ala Val Asn Asn Ala Gln Ala Leu Ser Lys Leu Ala Ser 1025 1030 1035
Glu Leu Ser Asn Thr Phe Gly Ala Ile Ser Ala Ser Ile Gly Asp 1040 1045 1050
Ile Ile Gln Arg Leu Asp Val Leu Glu Gln Asp Ala Gln Ile Asp 1055 1060 1065
Arg Leu Ile Asn Gly Arg Leu Thr Thr Leu Asn Ala Phe Val Ala 1070 1075 1080
Gln Gln Leu Val Arg Ser Glu Ser Ala Ala Leu Ser Ala Gln Leu 1085 1090 1095
Ala Lys Asp Lys Val Asn Glu Cys Val Lys Ala Gln Ser Lys Arg 1100 1105 1110
Ser Gly Phe Cys Gly Gln Gly Thr His Ile Val Ser Phe Val Val 1115 1120 1125
Asn Ala Pro Asn Gly Leu Tyr Phe Met His Val Gly Tyr Tyr Pro 1130 1135 1140
Ser Asn His Ile Glu Val Val Ser Ala Tyr Gly Leu Cys Asp Ala 1145 1150 1155
Ala Asn Pro Thr Asn Cys Ile Ala Pro Val Asn Gly Tyr Phe Ile 1160 1165 1170
Lys Thr Asn Asn Thr Arg Ile Val Asp Glu Trp Ser Tyr Thr Gly 1175 1180 1185
Ser Ser Phe Tyr Ala Pro Glu Pro Ile Thr Ser Leu Asn Thr Lys 1190 1195 1200
Tyr Val Ala Pro Gln Val Thr Tyr Gln Asn Ile Ser Thr Asn Leu 1205 1210 1215
Pro Pro Leu Leu Gly Asn Ser Thr Gly Ile Asp Phe Gln Asp 1220 1225 1230
Glu Leu Asp Glu Phe Phe Lys Asn Val Ser Thr Ser Ile Pro Asn 1235 1240 1245
Phe Gly Ser Leu Thr Gln Ile Asn Thr Thr Leu Leu Asp Leu Thr 1250 1255 1260
Tyr Glu Met Leu Ser Leu Gln Gln Val Val Lys Ala Leu Asn Glu 1265 1270 1275
Ser Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr Thr Tyr Tyr Asn 1280 1285 1290
Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1295 1300 1305

Ala Leu Ala Leu Cys Val Phe Phe Ile Leu Cys Cys Thr Gly Cys 1310 1315 Leu Lys Cys Asn Arg Cys Cys Asp

4	б	1	

-continued

												con	tin	ued	
	132	5				133	30				1.	335			
Arg	Tyr 134		u Glu	u Ty:	r Asj	p Lei 134		lu P:	ro H:	is Ly		al 1 350	His '	Val H	His
<21 <21 <21 <21	L> L) 2> T 3> O) 3> F)	ENGTI YPE : RGAN EATU	ISM: RE:	15 Art:	ific: TION		_		P 0 1yj	pept	ide				
< 40)> SI	EQUE	NCE:	26											
Met 1	Ile	His	Ser	Val 5	Phe	Leu	Leu	Met	Phe 10	Leu	Leu	Thr	Pro	Thr 15	Glu
Ser	Asp	Cys	Lys 20	Leu	Pro	Leu	Gly	Gln 25	Ser	Leu	Суз	Ala	Leu 30	Pro	Asp
Thr	Pro	Ser 35	Thr	Leu	Thr	Pro	Arg 40	Ser	Val	Arg	Ser	Val 45	Pro	Gly	Glu
Met	Arg 50	Leu	Ala	Ser	Ile	Ala 55	Phe	Asn	His	Pro	Ile 60	Gln	Val	Aab	Gln
Leu 65	Asn	Ser	Ser	Tyr	Phe 70	Lys	Leu	Ser	Ile	Pro 75	Thr	Asn	Phe	Ser	Phe 80
Gly	Val	Thr	Gln	Glu 85	Tyr	Ile	Gln	Thr	Thr 90	Ile	Gln	Гла	Val	Thr 95	Val
Asp	Сув	Гуз	Gln 100	Tyr	Val	Суя	Asn	Gly 105	Phe	Gln	Lys	Сув	Glu 110	Gln	Leu
Leu	Arg	Glu 115	Tyr	Gly	Gln	Phe	Cys 120	Ser	Lys	Ile	Asn	Gln 125	Ala	Leu	His
Gly	Ala 130	Asn	Leu	Arg	Gln	Asp 135	Asp	Ser	Val	Arg	Asn 140	Leu	Phe	Ala	Ser
Val 145	Гла	Ser	Ser	Gln	Ser 150	Ser	Pro	Ile	Ile	Pro 155	Gly	Phe	Gly	Gly	Asp 160
Phe	Asn	Leu	Thr	Leu 165	Leu	Glu	Pro	Val	Ser 170	Ile	Ser	Thr	Gly	Ser 175	Arg
Ser	Ala	Arg	Ser 180	Ala	Ile	Glu	Aab	Leu 185	Leu	Phe	Asp	Гла	Val 190	Thr	Ile
Ala	Asp	Pro 195	Gly	Tyr	Met	Gln	Gly 200	Tyr	Asp	Asp	САа	Met 205	Gln	Gln	Gly
Pro	Ala 210	Ser	Ala	Arg	Asp	Leu 215	Ile	Сув	Ala	Gln	Tyr 220	Val	Ala	Gly	Tyr
Lys 225	Val	Leu	Pro	Pro	Leu 230	Met	Aab	Val	Asn	Met 235	Glu	Ala	Ala	Tyr	Thr 240
Ser	Ser	Leu	Leu	Gly 245	Ser	Ile	Ala	Gly	Val 250	Gly	Trp	Thr	Ala	Gly 255	Leu
Ser	Ser	Phe	Ala 260	Ala	Ile	Pro	Phe	Ala 265	Gln	Ser	Ile	Phe	Tyr 270	Arg	Leu
Asn	Gly	Val 275	Gly	Ile	Thr	Gln	Gln 280	Val	Leu	Ser	Glu	Asn 285	Gln	гуа	Leu
Ile	Ala 290	Asn	Lys	Phe	Asn	Gln 295	Ala	Leu	Gly	Ala	Met 300	Gln	Thr	Gly	Phe
Thr 305	Thr	Thr	Asn	Glu	Ala 310	Phe	Gln	Гуа	Val	Gln 315	Asp	Ala	Val	Asn	Asn 320
Asn	Ala	Gln	Ala	Leu 325	Ser	Гуз	Leu	Ala	Ser 330	Glu	Leu	Ser	Asn	Thr 335	Phe
Gly	Ala	Ile	Ser		Ser	Ile	Gly	Asp		Ile	Gln	Arg	Leu		Val

463

-continued

464

											_	con	tin	ued	
			340					345					350		
Leu	Glu	Gln 355	Aab	Ala	Gln	Ile	Asp 360	Arg	Leu	Ile	Asn	Gly 365	Arg	Leu	Thr
Thr	Leu 370	Asn	Ala	Phe	Val	Ala 375	Gln	Gln	Leu	Val	Arg 380	Ser	Glu	Ser	Ala
Ala 385	Leu	Ser	Ala	Gln	Leu 390	Ala	Гуа	Asp	Lys	Val 395	Asn	Glu	Суз	Val	Lys 400
Ala	Gln	Ser	Lys	Arg 405	Ser	Gly	Phe	Cys	Gly 410	Gln	Gly	Thr	His	Ile 415	Val
Ser	Phe	Val	Val 420	Asn	Ala	Pro	Asn	Gly 425	Leu	Tyr	Phe	Met	His 430	Val	Gly
Tyr	Tyr	Pro 435	Ser	Asn	His	Ile	Glu 440	Val	Val	Ser	Ala	Tyr 445	Gly	Leu	Cys
Asp	Ala 450	Ala	Asn	Pro	Thr	Asn 455	Суз	Ile	Ala	Pro	Val 460	Asn	Gly	Tyr	Phe
Ile 465	Lya	Thr	Asn	Asn	Thr 470	Arg	Ile	Val	Asp	Glu 475	Trp	Ser	Tyr	Thr	Gly 480
Ser	Ser	Phe	Tyr	Ala 485	Pro	Glu	Pro	Ile	Thr 490	Ser	Leu	Asn	Thr	Lys 495	Tyr
Val	Ala	Pro	Gln 500	Val	Thr	Tyr	Gln	Asn 505	Ile	Ser	Thr	Asn	Leu 510	Pro	Pro
Pro	Leu	Leu 515		Asn	Ser	Thr	Gly 520		Asp	Phe	Gln	Asp 525		Leu	Asp
Glu	Phe 530		Lys	Asn	Val	Ser 535		Ser	Ile	Pro	Asn 540		Gly	Ser	Leu
Thr 545		Ile	Asn	Thr	Thr 550	Leu	Leu	Asp	Leu	Thr 555		Glu	Met	Leu	Ser 560
	Gln	Gln	Val	Val 565		Ala	Leu	Asn	Glu 570		Tyr	Ile	Asp	Leu 575	
Glu	Leu	Gly	Asn 580		Thr	Tyr	Tyr	Asn 585		Trp	Pro	Asp	Lys 590		Glu
Glu	Ile	Leu 595		Lys	Ile	Tyr	His 600		Glu	Asn	Glu	Ile 605		Arg	Ile
ГЛа	Lys 610		Ile	Gly	Glu	Ala 615	000					003			
	910					012									
)> SH 1> LH														
<212	2> TY	PE:	PRT		dle	East	res	oira	torv	syna	drom	e co	ronav	/irue	8
)> SH									-110					-
Met 1	Ile	His	Ser	Val 5	Phe	Leu	Leu	Met	Phe 10	Leu	Leu	Thr	Pro	Thr 15	Glu
Ser	Tyr	Val	Asp 20	Val	Gly	Pro	Asp	Ser 25	Val	Lys	Ser	Ala	Суа 30	Ile	Glu
Val	Asp	Ile 35	Gln	Gln	Thr	Phe	Phe 40	Asp	Lys	Thr	Trp	Pro 45	Arg	Pro	Ile
Asp	Val 50		ГЛа	Ala	Asp	Gly 55		Ile	Tyr	Pro	Gln 60		Arg	Thr	Tyr
		Ile	Thr	Ile		Tyr	Gln	Gly	Leu			Tyr	Gln	Gly	_
65 His	Gly	Asp	Met	Tyr	70 Val	Tyr	Ser	Ala	Gly	75 His	Ala	Thr	Gly	Thr	80 Thr
				85					90					95	

-continued

466

											_	con		uea	
Pro	Gln	Lys	Leu 100	Phe	Val	Ala	Asn	Tyr 105	Ser	Gln	Asp	Val	Lys 110	Gln	Phe
Ala	Asn	Gly 115	Phe	Val	Val	Arg	Ile 120	Gly	Ala	Ala	Ala	Asn 125	Ser	Thr	Gly
Thr	Val 130	Ile	Ile	Ser	Pro	Ser 135	Thr	Ser	Ala	Thr	Ile 140	Arg	Lys	Ile	Tyr
Pro 145	Ala	Phe	Met	Leu	Gly 150	Ser	Ser	Val	Gly	Asn 155	Phe	Ser	Asp	Gly	Lys 160
Met	Gly	Arg	Phe	Phe 165	Asn	His	Thr	Leu	Val 170	Leu	Leu	Pro	Asp	Gly 175	Суз
Gly	Thr	Leu	Leu 180	Arg	Ala	Phe	Tyr	Cys 185	Ile	Leu	Glu	Pro	Arg 190	Ser	Gly
Asn	His	Cys 195	Pro	Ala	Gly	Asn	Ser 200	Tyr	Thr	Ser	Phe	Ala 205	Thr	Tyr	His
Thr	Pro 210	Ala	Thr	Asp	Сув	Ser 215	Asp	Gly	Asn	Tyr	Asn 220	Arg	Asn	Ala	Ser
Leu 225	Asn	Ser	Phe	ГЛа	Glu 230	Tyr	Phe	Asn	Leu	Arg 235	Asn	Суз	Thr	Phe	Met 240
Tyr	Thr	Tyr	Asn	Ile 245	Thr	Glu	Asp	Glu	Ile 250	Leu	Glu	Trp	Phe	G1y 255	Ile
Thr	Gln	Thr	Ala 260	Gln	Gly	Val	His	Leu 265	Phe	Ser	Ser	Arg	Tyr 270	Val	Asp
Leu	Tyr	Gly 275	Gly	Asn	Met	Phe	Gln 280		Ala	Thr	Leu	Pro 285		Tyr	Asp
Thr	Ile 290			Tyr	Ser	Ile 295		Pro	His	Ser	Ile 300		Ser	Ile	Gln
Ser 305		Arg	Lys	Ala	Trp 310	Ala	Ala	Phe	Tyr	Val 315		Lys	Leu	Gln	Pro 320
	Thr	Phe	Leu	Leu 325	Asp		Ser	Val	Asp 330		Tyr	Ile	Arg	Arg 335	
Ile	Asp	Сув	Gly 340	Phe	Asn	Asp	Leu	Ser 345		Leu	His	Сув	Ser 350		Glu
Ser	Phe	Asp 355	Val		Ser	Gly	Val 360		Ser	Val	Ser	Ser 365		Glu	Ala
ГÀа	Pro 370			Ser	Val	Val 375		Gln	Ala	Glu	Gly 380		Glu	Суа	Asp
Phe 385		Pro	Leu	Leu	Ser 390		Thr	Pro	Pro	Gln 395		Tyr	Asn	Phe	Lys 400
	Leu	Val	Phe	Thr 405	Asn	Суз	Asn	Tyr	Asn 410		Thr	Lys	Leu	Leu 415	
Leu	Phe	Ser	Val 420	Asn	Aap	Phe	Thr	Cys 425	Ser	Gln	Ile	Ser	Pro 430		Ala
Ile	Ala	Ser 435	Asn		Tyr	Ser	Ser 440	Leu		Leu	Asp	Tyr 445		Ser	Tyr
Pro				Гуз	Ser				Val	Ser			Gly	Pro	Ile
	450 Gln	Phe	Asn	Tyr	Lys	455 Gln	Ser	Phe	Ser		460 Pro	Thr	Сув	Leu	
465 Leu	Ala	Thr	Val	Pro	470 His	Asn	Leu	Thr	Thr	475 Ile	Thr	Гла	Pro	Leu	480 Lys
Tvr	Ser	Tvr	Ile	485 Asn	Lys	Cvs	Ser	Ara	490 Leu	Leu	Ser	Asp	Asp	495 Arq	Thr
-		-	500		-	-		505				-	510	-	
GIU	va⊥	F10	eru	пец	Val	АЗП	AIđ	ASU	στΠ	туr	ser	F10	сув	val	ber

467

468

												con	tin	ued	
		515					520					525			
Ile	Val 530	Pro	Ser	Thr	Val	Trp 535	Glu	Asp	Gly	Aap	Tyr 540	Tyr	Arg	Lys	Gln
Leu 545	Ser	Pro	Leu	Glu	Gly 550	Gly	Gly	Trp	Leu	Val 555	Ala	Ser	Gly	Ser	Thr 560
Val	Ala	Met	Thr	Glu 565	Gln	Leu	Gln	Met	Gly 570	Phe	Gly	Ile	Thr	Val 575	Gln
Tyr	Gly	Thr	Asp 580	Thr	Asn	Ser	Val	Cys 585	Pro	Lys	Leu	Glu	Phe 590	Ala	Asn
Asp	Thr	Lys 595	Ile	Ala	Ser	Gln	Leu 600	Gly	Asn	САв	Val	Glu 605	Tyr	Ser	Leu
Tyr	Gly 610	Val	Ser	Gly	Arg	Gly 615	Val	Phe	Gln	Asn	Cys 620	Thr	Ala	Val	Gly
625	•			-	Phe 630		-	-		635					640
Tyr	Tyr	Ser	Aab	Asp 645	Gly	Asn	Tyr	Tyr	Сув 650	Leu	Arg	Ala	Сув	Val 655	Ser
Val	Pro	Val	Ser 660	Val	Ile	Tyr	Asp	Lys 665	Glu	Thr	Lys	Thr	His 670	Ala	Thr
Leu	Phe	Gly 675	Ser	Val	Ala	Cys	Glu 680	His	Ile	Ser	Ser	Thr 685	Met	Ser	Gln
Tyr	Ser 690	Arg	Ser	Thr	Arg	Ser 695	Met	Leu	Гуа	Arg	Arg 700	Asp	Ser	Thr	Tyr
Gly 705	Pro	Leu	Gln	Thr	Pro 710	Val	Gly	Суз	Val	Leu 715	Gly	Leu	Val	Asn	Ser 720
Ser	Leu	Phe	Val	Glu 725	Asp	Cys	Lys	Leu	Pro 730	Leu	Gly	Gln	Ser	Leu 735	Cys
Ala	Leu	Pro	Asp 740	Thr	Pro	Ser	Thr	Leu 745	Thr	Pro	Arg	Ser	Val 750	Arg	Ser
Val	Pro	Gly 755	Glu	Met	Arg	Leu	Ala 760	Ser	Ile	Ala	Phe	Asn 765	His	Pro	Ile
Gln	Val 770	Asp	Gln	Leu	Asn	Ser 775	Ser	Tyr	Phe	Lys	Leu 780	Ser	Ile	Pro	Thr
Asn 785	Phe	Ser	Phe	Gly	Val 790	Thr	Gln	Glu	Tyr	Ile 795	Gln	Thr	Thr	Ile	Gln 800
Lys	Val	Thr	Val	Asp 805	Сув	Гла	Gln	Tyr	Val 810	Суз	Asn	Gly	Phe	Gln 815	Lys
Сүз	Glu	Gln	Leu 820	Leu	Arg	Glu	Tyr	Gly 825	Gln	Phe	Сүз	Ser	Lys 830	Ile	Asn
Gln	Ala	Leu 835	His	Gly	Ala	Asn	Leu 840	Arg	Gln	Aap	Asp	Ser 845	Val	Arg	Asn
Leu	Phe 850	Ala	Ser	Val	Lys	Ser 855	Ser	Gln	Ser	Ser	Pro 860	Ile	Ile	Pro	Gly
Phe 865	Gly	Gly	Asp	Phe	Asn 870	Leu	Thr	Leu	Leu	Glu 875	Pro	Val	Ser	Ile	Ser 880
Thr	Gly	Ser	Arg	Ser 885	Ala	Arg	Ser	Ala	Ile 890	Glu	Asp	Leu	Leu	Phe 895	Asp
ГЛа	Val	Thr	Ile 900	Ala	Asp	Pro	Gly	Tyr 905	Met	Gln	Gly	Tyr	Asp 910	Aab	Суз
Met	Gln	Gln 915	Gly	Pro	Ala	Ser	Ala 920	Arg	Asp	Leu	Ile	Cys 925	Ala	Gln	Tyr
Val	Ala 930	Gly	Tyr	Гуз	Val	Leu 935	Pro	Pro	Leu	Met	Asp 940	Val	Asn	Met	Glu

Ala Ala Tyr Thr Ser Ser Leu Leu Gly Ser Ile Ala Gly Val Gly Trp 945 950 955 960
Thr Ala Gly Leu Ser Ser Phe Ala Ala Ile Pro Phe Ala Gln Ser Ile 965 970 975
Phe Tyr Arg Leu Asn Gly Val Gly Ile Thr Gln Gln Val Leu Ser Glu 980 985 990
Asn Gln Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Leu Gly Ala Met 995 1000 1005
Gln Thr Gly Phe Thr Thr Asn Glu Ala Phe Arg Lys Val Gln 1010 1015 1020
Asp Ala Val Asn Asn Asn Ala Gln Ala Leu Ser Lys Leu Ala Ser 1025 1030 1035
Glu Leu Ser Asn Thr Phe Gly Ala Ile Ser Ala Ser Ile Gly Asp 1040 1045 1050
Ile Ile Gln Arg Leu Asp Val Leu Glu Gln Asp Ala Gln Ile Asp 1055 1060 1065
Arg LeuIle Asn Gly Arg LeuThr Leu Asn AlaPhe Val Ala107010751080
Gln Gln Leu Val Arg Ser Glu Ser Ala Ala Leu Ser Ala Gln Leu 1085 1090 1095
Ala Lys Asp Lys Val Asn Glu Cys Val Lys Ala Gln Ser Lys Arg 1100 1105 1110
Ser Gly Phe Cys Gly Gln Gly Thr His Ile Val Ser Phe Val Val 1115 1120 1125
Asn Ala Pro Asn Gly Leu Tyr Phe Met His Val Gly Tyr Tyr Pro 1130 1135 1140
Ser Asn His Ile Glu Val Val Ser Ala Tyr Gly Leu Cys Asp Ala 1145 1150 1155
Ala Asn Pro Thr Asn Cys Ile Ala Pro Val Asn Gly Tyr Phe Ile 1160 1165 1170
Lys Thr Asn Asn Thr Arg Ile Val Asp Glu Trp Ser Tyr Thr Gly 1175 1180 1185
Ser Ser Phe Tyr Ala Pro Glu Pro Ile Thr Ser Leu Asn Thr Lys 1190 1195 1200
Tyr Val Ala Pro His Val Thr Tyr Gln Asn Ile Ser Thr Asn Leu 1205 1210 1215
Pro Pro Leu Leu Gly Asn Ser Thr Gly Ile Asp Phe Gln Asp 1220 1225 1230
Glu Leu Asp Glu Phe Phe Lys Asn Val Ser Thr Ser Ile Pro Asn 1235 1240 1245
Phe Gly Ser Leu Thr Gln Ile Asn Thr Thr Leu Leu Asp Leu Thr 1250 1255 1260
Tyr Glu Met Leu Ser Leu Gln Gln Val Val Lys Ala Leu Asn Glu 1265 1270 1275
Ser Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr Thr Tyr Tyr Asn 1280 1285 1290
Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1295 1300 1305
Ala Leu Ala Leu Cys Val Phe Phe Ile Leu Cys Cys Thr Gly Cys 1310 1315 1320
Gly Thr Asn Cys Met Gly Lys Leu Lys Cys Asn Arg Cys Cys Asp 1325 1330 1335

Arg	Tyr 134	Glu	1 Gl	u Ty:	r Asj	2 Lei 134		lu P:	ro Hi	is Ly		al 1 350	His N	/al H	lis	 	
)> SI	eq II Engti															
<212	2> T	YPE :	PRT			_											
<21.	3 > 01	RGAN:	ISM:	Mide	dle 1	East	res	pira	tory	syn¢	drom	e co:	rona	viru	3		
<400)> SI	EQUEN	ICE :	28													
Met 1	Ile	His	Ser	Val 5	Phe	Leu	Leu	Met	Phe 10	Leu	Leu	Thr	Pro	Thr 15	Glu		
Ser	Tyr	Val	Asp 20	Val	Gly	Pro	Aab	Ser 25	Val	Lys	Ser	Ala	30 Сув	Ile	Glu		
Val	Asp	Ile 35	Gln	Gln	Thr	Phe	Phe 40	Asp	Lys	Thr	Trp	Pro 45	Arg	Pro	Ile		
Asp	Val 50	Ser	Lys	Ala	Asp	Gly 55	Ile	Ile	Tyr	Pro	Gln 60	Gly	Arg	Thr	Tyr		
Ser 65	Asn	Ile	Thr	Ile	Thr 70	Tyr	Gln	Gly	Leu	Phe 75	Pro	Tyr	Gln	Gly	Asp 80		
His	Gly	Asp	Met	Tyr 85	Val	Tyr	Ser	Ala	Gly 90	His	Ala	Thr	Gly	Thr 95	Thr		
Pro	Gln	Lys	Leu 100	Phe	Val	Ala	Asn	Tyr 105	Ser	Gln	Asp	Val	Lys 110	Gln	Phe		
Ala	Asn	Gly 115	Phe	Val	Val	Arg	Ile 120	Gly	Ala	Ala	Ala	Asn 125	Ser	Thr	Gly		
Thr	Val 130	Ile	Ile	Ser	Pro	Ser 135	Thr	Ser	Ala	Thr	Ile 140	Arg	Lys	Ile	Tyr		
Pro 145	Ala	Phe	Met	Leu	Gly 150	Ser	Ser	Val	Gly	Asn 155	Phe	Ser	Asp	Gly	Lys 160		
Met	Gly	Arg	Phe	Ph e 165	Asn	His	Thr	Leu	Val 170	Leu	Leu	Pro	Asp	Gly 175	Сув		
Gly	Thr	Leu	Leu 180	Arg	Ala	Phe	Tyr	Cys 185	Ile	Leu	Glu	Pro	Arg 190	Ser	Gly		
Asn	His	Cys 195	Pro	Ala	Gly	Asn	Ser 200	Tyr	Thr	Ser	Phe	Ala 205	Thr	Tyr	His		
Thr	Pro 210	Ala	Thr	Asp	Суз	Ser 215	Asp	Gly	Asn	Tyr	Asn 220	Arg	Asn	Ala	Ser		
Leu 225	Asn	Ser	Phe	Гλа	Glu 230	Tyr	Phe	Asn	Leu	Arg 235	Asn	Сув	Thr	Phe	Met 240		
Tyr	Thr	Tyr	Asn	Ile 245	Thr	Glu	Asp	Glu	Ile 250	Leu	Glu	Trp	Phe	Gly 255	Ile		
Thr	Gln	Thr	Ala 260	Gln	Gly	Val	His	Leu 265	Phe	Ser	Ser	Arg	Tyr 270	Val	Asp		
Leu	Tyr	Gly 275	Gly	Asn	Met	Phe	Gln 280	Phe	Ala	Thr	Leu	Pro 285	Val	Tyr	Asp		
Thr	Ile 290	Lys	Tyr	Tyr	Ser	Ile 295	Ile	Pro	His	Ser	Ile 300	Arg	Ser	Ile	Gln		
Ser 305	Asp	Arg	Lys	Ala	Trp 310	Ala	Ala	Phe	Tyr	Val 315	Tyr	Гла	Leu	Gln	Pro 320		
Leu	Thr	Phe	Leu	Leu 325	Asp	Phe	Ser	Val	Asp 330	Gly	Tyr	Ile	Arg	Arg 335	Ala		
Ile	Asp	Суя	Gly 340	Phe	Asn	Asp	Leu	Ser 345	Gln	Leu	His	Cys	Ser 350	Tyr	Glu		
Ser	Phe	Asp 355	Val	Glu	Ser	Gly	Val 360	Tyr	Ser	Val	Ser	Ser 365	Phe	Glu	Ala		

Lys	Pro 370	Ser	Gly	Ser	Val	Val 375	Glu	Gln	Ala	Glu	Gly 380	Val	Glu	Суа	Asp
Phe 385	Ser	Pro	Leu	Leu	Ser 390	Gly	Thr	Pro	Pro	Gln 395	Val	Tyr	Asn	Phe	Lys 400
Arg	Leu	Val	Phe	Thr 405	Asn	Cys	Asn	Tyr	Asn 410	Leu	Thr	гуа	Leu	Leu 415	Ser
Leu	Phe	Ser	Val 420	Asn	Asp	Phe	Thr	Cys 425	Ser	Gln	Ile	Ser	Pro 430	Ala	Ala
Ile	Ala	Ser 435	Asn	Суа	Tyr	Ser	Ser 440	Leu	Ile	Leu	Asp	Tyr 445	Phe	Ser	Tyr
Pro	Leu 450	Ser	Met	Lys	Ser	Asp 455	Leu	Ser	Val	Ser	Ser 460	Ala	Gly	Pro	Ile
Ser 465	Gln	Phe	Asn	Tyr	Lys 470	Gln	Ser	Phe	Ser	Asn 475	Pro	Thr	Сув	Leu	Ile 480
Leu	Ala	Thr	Val	Pro 485	His	Asn	Leu	Thr	Thr 490	Ile	Thr	Гла	Pro	Leu 495	Гла
Tyr	Ser	Tyr	Ile 500	Asn	Lys	Сув	Ser	Arg 505	Leu	Leu	Ser	Asp	Asp 510	Arg	Thr
Glu	Val	Pro 515	Gln	Leu	Val	Asn	Ala 520	Asn	Gln	Tyr	Ser	Pro 525	Cys	Val	Ser
Ile	Val 530	Pro	Ser	Thr	Val	Trp 535	Glu	Asp	Gly	Asp	Tyr 540	Tyr	Arg	Lys	Gln
Leu 545	Ser	Pro	Leu	Glu	Gly 550	Gly	Gly	Trp	Leu	Val 555	Ala	Ser	Gly	Ser	Thr 560
Val	Ala	Met	Thr	Glu 565	Gln	Leu	Gln	Met	Gly 570	Phe	Gly	Ile	Thr	Val 575	Gln
			580	Thr				585					Phe 590		
			580	Thr				585							
Asp	Thr	Lys 595	580 Ile	Thr Ala	Ser	Gln	Leu 600	585 Gly	Asn	Сүз	Val	Glu 605	590	Ser	Leu
Asp Tyr	Thr Gly 610	Lys 595 Val	580 Ile Ser	Thr Ala Gly	Ser Arg	Gln Gly 615	Leu 600 Val	585 Gly Phe	Asn Gln	Cys Asn	Val Cys 620	Glu 605 Thr	590 Tyr	Ser Val	Leu Gly
Asp Tyr Val 625	Thr Gly 610 Arg	Lys 595 Val Gln	580 Ile Ser Gln	Thr Ala Gly Arg	Ser Arg Phe 630	Gln Gly 615 Val	Leu 600 Val Tyr	585 Gly Phe Asp	Asn Gln Ala	Cys Asn Tyr 635	Val Cys 620 Gln	Glu 605 Thr Asn	590 Tyr Ala	Ser Val Val	Leu Gly Gly 640
Asp Tyr Val 625 Tyr	Thr Gly 610 Arg Tyr	Lys 595 Val Gln Ser	580 Ile Ser Gln Asp	Thr Ala Gly Arg Asp 645	Ser Arg Phe 630 Gly	Gly 615 Val Asn	Leu 600 Val Tyr Tyr	585 Gly Phe Asp Tyr	Asn Gln Ala Cys 650	Cys Asn Tyr 635 Leu	Val Cys 620 Gln Arg	Glu 605 Thr Asn Ala	590 Tyr Ala Leu	Ser Val Val Val 655	Leu Gly Gly 640 Ser
Asp Tyr Val 625 Tyr Val	Thr Gly 610 Arg Tyr Pro	Lys 595 Val Gln Ser Val	580 Ile Ser Gln Asp Ser 660	Thr Ala Gly Arg 645 Val	Ser Arg Phe 630 Gly Ile	Gln 615 Val Asn Tyr	Leu 600 Val Tyr Tyr Asp	585 Gly Phe Asp Tyr Lys 665	Asn Gln Ala 650 Glu	Cys Asn Tyr 635 Leu Thr	Val Cys 620 Gln Arg Lys	Glu 605 Thr Asn Ala Thr	590 Tyr Ala Leu Cys His	Ser Val Val 655 Ala	Leu Gly Gly 640 Ser Thr
Asp Tyr Val 625 Tyr Val Leu	Thr Gly 610 Arg Tyr Pro Phe	Lys 595 Val Gln Ser Val Gly 675	580 Ile Ser Gln Asp Ser 660 Ser	Thr Ala Gly Arg 645 Val Val	Ser Arg Phe 630 Gly Ile Ala	Gln 615 Val Asn Tyr Cys	Leu 600 Val Tyr Tyr Asp Glu 680	585 Gly Phe Asp Tyr Lys 665 His	Asn Gln Ala Cys 650 Glu Ile	Cys Asn Tyr 635 Leu Thr Ser	Val Cys 620 Gln Arg Lys Ser	Glu 605 Thr Asn Ala Thr 685	590 Tyr Ala Leu Cys His 670	Ser Val Val Val 655 Ala Ser	Leu Gly Gly 640 Ser Thr Gln
Asp Tyr Val 625 Tyr Val Leu Tyr	Thr Gly 610 Arg Tyr Pro Phe Ser 690	Lys 595 Val Gln Ser Val Gly 675 Arg	580 Ile Ser Gln Asp Ser 660 Ser Ser	Thr Ala Gly Arg 645 Val Val Thr	Ser Arg Phe 630 Gly Ile Ala Arg	Gln Gly 615 Val Asn Tyr Cys Ser 695	Leu 600 Val Tyr Tyr Asp Glu 680 Met	585 Gly Phe Asp Tyr Lys 665 His Leu	Asn Gln Ala Cys 650 Glu Ile Lys	Cys Asn Tyr 635 Leu Thr Ser Arg	Val Cys 620 Gln Arg Lys Ser Arg 700	Glu 605 Thr Asn Ala Thr 685 Asp	590 Tyr Ala Leu Cys His 670 Met	Ser Val Val Val 655 Ala Ser Thr	Leu Gly 640 Ser Thr Gln Tyr
Asp Tyr Val 625 Tyr Val Leu Tyr Gly 705	Thr Gly 610 Arg Tyr Pro Phe Ser 690 Pro	Lys 595 Val Gln Ser Val Gly 675 Arg Leu	580 Ile Ser Gln Asp Ser Ser Ser Gln	Thr Ala Gly Arg 645 Val Val Thr Thr	Ser Arg Phe 630 Gly Ile Ala Arg Pro 710	Gln 615 Val Asn Tyr Cys Ser 695 Val	Leu 600 Val Tyr Tyr Asp Glu 680 Met Gly	585 Gly Phe Asp Tyr Lys 665 His Leu Cys	Asn Gln Ala Cys 650 Glu Ile Lys Val	Cys Asn Tyr 635 Leu Thr Ser Arg Leu 715	Val Cys 620 Gln Arg Lys Ser Arg 700 Gly	Glu 605 Thr Asn Ala Thr Thr 685 Asp Leu	590 Tyr Ala Leu Cys His 670 Met Ser	Ser Val Val 655 Ala Ser Thr Asn	Leu Gly Gly 640 Ser Thr Gln Tyr Ser 720
Asp Tyr Val 625 Tyr Val Leu Tyr Gly 705 Ser	Thr Gly 610 Arg Tyr Pro Phe Ser 690 Pro Leu	Lys 595 Val Gln Ser Val Gly 675 Arg Leu Phe	580 Ile Ser Gln Asp Ser Ser Ser Gln Val	Thr Ala Gly Arg 645 Val Val Thr Thr Glu 725	Ser Arg Phe 630 Gly Ile Ala Arg Pro 710 Asp	Gln Gly 615 Val Asn Tyr Cys Ser 695 Val Cys	Leu 600 Val Tyr Tyr Asp Glu 680 Met Gly Lys	585 Gly Phe Asp Tyr Lys 665 His Leu Cys Leu	Asn Gln Ala Cys 650 Glu Ile Lys Val Pro 730	Cys Asn Tyr 635 Leu Thr Ser Arg Leu 715 Leu	Val Cys 620 Gln Arg Lys Ser Arg 700 Gly Gly	Glu 605 Thr Asn Ala Thr Thr 685 Asp Leu Gln	590 Tyr Ala Leu Cys His 670 Met Ser Val	Ser Val Val 655 Ala Ser Thr Asn Leu 735	Leu Gly 640 Ser Thr Gln Tyr Ser 720 Cys
Asp Tyr Val 625 Tyr Val Leu Tyr 705 Ser Ala	Thr Gly 610 Arg Tyr Pro Phe Ser 690 Pro Leu Leu	Lys 595 Val Gln Ser Val Gly 675 Arg Leu Phe	580 Ile Ser Gln Asp Ser Ser Gln Val Asp 740	Thr Ala Gly Arg 645 Val Thr Thr Glu 725 Thr	Ser Arg Phe 630 Gly Ile Ala Arg Pro 710 Asp Pro	Gln 615 Val Asn Tyr Cys Ser Cys Val Cys Ser	Leu 600 Val Tyr Tyr Asp Glu 680 Met Gly Lys Thr	585 Gly Phe Asp Tyr Lye 665 His Leu Cys Leu Leu Leu	Asn Gln Ala Cys 650 Glu Ile Lys Val Pro 730 Thr	Cys Asn Tyr 635 Leu Thr Ser Arg Leu 715 Leu Pro	Val Cys 620 Gln Arg Lys Ser Arg 700 Gly Gly Arg	Glu 605 Thr Asn Ala Thr 685 Asp Leu Gln Ser	590 Tyr Ala Leu Cys His 670 Met Ser Val Ser Val	Ser Val Val G55 Ala Ser Thr Asn Leu 735 Arg	Leu Gly 640 Ser Thr Gln Tyr Ser 720 Cys Ser

Asn Phe Ser Phe Gly Val Thr Gln Glu Tyr Ile Gln Thr Thr Ile Gln785790795800	
Lys Val Thr Val Asp Cys Lys Gln Tyr Val Cys Asn Gly Phe Gln Lys 805 810 815	
Cys Glu Gln Leu Leu Arg Glu Tyr Gly Gln Phe Cys Ser Lys Ile Asn 820 825 830	
Gln Ala Leu His Gly Ala Asn Leu Arg Gln Asp Asp Ser Val Arg Asn 835 840 845	
Leu Phe Ala Ser Val Lys Ser Ser Gln Ser Ser Pro Ile Ile Pro Gly 850 855 860	
Phe Gly Gly Asp Phe Asn Leu Thr Leu Leu Glu Pro Val Ser Ile Ser 865 870 875 880	
Thr Gly Ser Arg Ser Ala Arg Ser Ala Ile Glu Asp Leu Leu Phe Asp 885 890 895	
Lys Val Thr Ile Ala Asp Pro Gly Tyr Met Gln Gly Tyr Asp Asp Cys 900 905 910	
Met Gln Gln Gly Pro Ala Ser Ala Arg Asp Leu Ile Cys Ala Gln Tyr 915 920 925	
Val Ala Gly Tyr Lys Val Leu Pro Pro Leu Met Asp Val Asn Met Glu 930 935 940	
Ala Ala Tyr Thr Ser Ser Leu Leu Gly Ser Ile Ala Gly Val Gly Trp 945 950 955 960	
Thr Ala Gly Leu Ser Ser Phe Ala Ala Ile Pro Phe Ala Gln Ser Ile 965 970 975	
Phe Tyr Arg Leu Asn Gly Val Gly Ile Thr Gln Gln Val Leu Ser Glu 980 985 990	
Asn Gln Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Leu Gly Ala Met 995 1000 1005	
Gln Thr Gly Phe Thr Thr Asn Glu Ala Phe Arg Lys Val Gln 1010 1015 1020	
Asp Ala Val Asn Asn Asn Ala Gln Ala Leu Ser Lys Leu Ala Ser 1025 1030 1035	
Glu Leu Ser Asn Thr Phe Gly Ala Ile Ser Ala Ser Ile Gly Asp 1040 1045 1050	
Ile Ile Gln Arg Leu Asp Val Leu Glu Gln Asp Ala Gln Ile Asp 1055 1060 1065	
Arg Leu Ile Asn Gly Arg Leu Thr Thr Leu Asn Ala Phe Val Ala 1070 1075 1080	
Gln Gln Leu Val Arg Ser Glu Ser Ala Ala Leu Ser Ala Gln Leu 1085 1090 1095	
Ala Lys Asp Lys Val Asn Glu Cys Val Lys Ala Gln Ser Lys Arg 1100 1105 1110	
Ser Gly Phe Cys Gly Gln Gly Thr His Ile Val Ser Phe Val Val 1115 1120 1125	
Asn Ala Pro Asn Gly Leu Tyr Phe Met His Val Gly Tyr Tyr Pro 1130 1135 1140	
Ser Asn His Ile Glu Val Val Ser Ala Tyr Gly Leu Cys Asp Ala 1145 1150 1155	
Ala Asn Pro Thr Asn Cys Ile Ala Pro Val Asn Gly Tyr Phe Ile 1160 1165 1170	
Lys Thr Asn Asn Thr Arg Ile Val Asp Glu Trp Ser Tyr Thr Gly 1175 1180 1185	
Ser Ser Phe Tyr Ala Pro Glu Pro Ile Thr Ser Leu Asn Thr Lys	

477

-continued

												-cor	itir	nuec	1
	1190)				11	95				1	L200			
Tyr	Val 1205		ı Pr	ю Ні	s Va	1 Th: 12:		yr G	ln A	sn I		Ser 1215	Thr	Asn	Leu
Pro	Pro 1220		b Le	u Le	u Gl	y As: 12:		er T	hr G	ly I		Asp 1230	Phe	Gln	Asp
Glu	Leu 1235	-	Gl	u Ph	e Ph	e Ly: 12-		sn V	al S	er T		Ser 1245	Ile	Pro	Asn
Phe	Gly 1250		Le	eu Th	r Gli	n Il. 129		sn T	hr T	hr L		Leu 1260	Asp	Leu	Thr
Tyr	Glu 1265		Le	eu Se	r Le	u Gli 12'		ln V	al V	al L		Ala 1275	Leu	Asn	Glu
Ser	Tyr 1280		e As	p Le	u Ly:	s Gl: 12:		eu G	ly A	sn I	-	fhr 1290	Tyr	Tyr	Asn
Lys	Trp 1295) Tr	р Ту	r Il	e Trj 13		eu G	ly P	he I		41a 1305	Gly	Leu	Val
Ala	Leu 1310		Le	eu Cy	s Va	l Ph 13:		he I	le L	eu C		Сув 1320	Thr	Gly	Cys
Gly	Thr 1325		а Су	ns Me	t Gl	у Ly: 13:		eu L	уз С	ys A		Arg 1335	Cys	Cya	Asp
Arg	Tyr 1340		ı Gl	u Ty	r Asj	p Lev 134		lu P	ro H	is L	-	/al L350	His	Val	His
)> SE Phe				Leu	Phe	Leu	Thr	Leu 10	. Thr	: Sei	r Gly	7 Sei	r As <u>ı</u> 15	o Leu
Asp	Arg	Сув	Thr 20	Thr	Phe	Asp	Asp	Val 25	Gln	. Ala	n Pro	> Asr	1 Tyj 30	r Thi	: Gln
His	Thr	Ser 35	Ser	Met	Arg	Gly	Val 40	Tyr	Tyr	Pro	Asp	9 Glu 45	ı Ile	e Phe	e Arg
Ser	Азр 50	Thr	Leu	Tyr	Leu	Thr 55	Gln	Asp	Leu	. Phe	e Lei 60	ı Pro	> Phe	е Туз	ser
Asn 65	Val	Thr	Gly	Phe	His 70	Thr	Ile	Asn	His	Thr 75	Phe	e Gl≯	/ Asr	ı Pro	> Val 80
Ile	Pro	Phe	Lys	Asp 85	Gly	Ile	Tyr	Phe	Ala 90	Ala	1 Thi	r Glu	ı Lyı	95 Sei	: Asn
Val	Val	Arg	Gly 100		Val	Phe	Gly	Ser 105		Met	: Asr	n Asr	110 Lys		f Gln
Ser	Val	Ile 115	Ile	lle	Asn	Asn	Ser 120	Thr	Asn	. Val	. Val	L Ile 129	-	g Ala	a Cys
Asn	Phe 130	Glu	Leu	. Cys	Asp	Asn 135	Pro	Phe	Phe	Ala	1 Val 140		: Буз	s Pro	> Met
Gly 145	Thr	Gln	Thr	His	Thr 150	Met	Ile	Phe	Asp	Asn 155		a Phe	e Asr	ı Cys	F Thr 160
Phe	Glu	Tyr	Ile	e Ser 165		Ala	Phe	Ser	Leu 170		va]	l Ser	Glu	1 Lys 179	s Ser
Gly	Asn	Phe	Lys 180		Leu	Arg	Glu	Phe 185		Phe	- Lys	a Asr	n Lys 19(_	Gly
Phe	Leu	Tyr 195			Гуз	Gly	Tyr 200			Ile	Asp	9 Val 205	. Val		l yab
		190					200					205	,		

480

Le	eu	Pro 210	Ser	Gly	Phe	Asn	Thr 215	Leu	Lys	Pro	Ile	Phe 220	Гла	Leu	Pro	Leu
G1 22		Ile	Asn	Ile	Thr	Asn 230	Phe	Arg	Ala	Ile	Leu 235	Thr	Ala	Phe	Ser	Pro 240
Al	.a	Gln	Asp	Ile	Trp 245	Gly	Thr	Ser	Ala	Ala 250	Ala	Tyr	Phe	Val	Gly 255	Tyr
Le	au	Гуз	Pro	Thr 260	Thr	Phe	Met	Leu	Lys 265	Tyr	Asp	Glu	Asn	Gly 270	Thr	Ile
Τŀ	ır	Asp	Ala 275	Val	Asp	Cys	Ser	Gln 280	Asn	Pro	Leu	Ala	Glu 285	Leu	ГЛа	Суз
Se	er	Val 290	Lys	Ser	Phe	Glu	Ile 295	Asp	Lys	Gly	Ile	Tyr 300	Gln	Thr	Ser	Asn
Ph 30		Arg	Val	Val	Pro	Ser 310	Gly	Asp	Val	Val	Arg 315	Phe	Pro	Asn	Ile	Thr 320
Aε	m	Leu	Сув	Pro	Phe 325	Gly	Glu	Val	Phe	Asn 330	Ala	Thr	Гла	Phe	Pro 335	Ser
Va	1	Tyr	Ala	Trp 340	Glu	Arg	Гла	ГЛа	Ile 345	Ser	Asn	Сүз	Val	Ala 350	Aab	Tyr
Se	er	Val	Leu 355	Tyr	Asn	Ser	Thr	Phe 360	Phe	Ser	Thr	Phe	Lys 365	Cys	Tyr	Gly
Va	1	Ser 370	Ala	Thr	Гла	Leu	Asn 375	Asp	Leu	Сув	Phe	Ser 380	Asn	Val	Tyr	Ala
Ас 38	-	Ser	Phe	Val	Val	Lув 390	Gly	Asp	Asp	Val	Arg 395	Gln	Ile	Ala	Pro	Gly 400
Gl	n	Thr	Gly	Val	Ile 405	Ala	Yab	Tyr	Asn	Tyr 410	Lys	Leu	Pro	Asp	Asp 415	Phe
M€	et	Gly	Сув	Val 420	Leu	Ala	Trp	Asn	Thr 425	Arg	Asn	Ile	Asp	Ala 430	Thr	Ser
Th	ır	Gly	Asn 435	Tyr	Asn	Tyr	Lys	Tyr 440	Arg	Tyr	Leu	Arg	His 445	Gly	Lys	Leu
Ar	g	Pro 450	Phe	Glu	Arg	Asp	Ile 455	Ser	Asn	Val	Pro	Phe 460	Ser	Pro	Asp	Gly
Lу 46		Pro	Сув	Thr	Pro	Pro 470	Ala	Leu	Asn	Сув	Tyr 475	Trp	Pro	Leu	Asn	Asp 480
Ту	r	Gly	Phe	Tyr	Thr 485	Thr	Thr	Gly	Ile	Gly 490	Tyr	Gln	Pro	Tyr	Arg 495	Val
Va	1	Val	Leu	Ser 500	Phe	Glu	Leu	Leu	Asn 505	Ala	Pro	Ala	Thr	Val 510	Сув	Gly
Pr	0	Lys	Leu 515	Ser	Thr	Asp	Leu	Ile 520	Lys	Asn	Gln	Сүз	Val 525	Asn	Phe	Asn
Pł	he	Asn 530	Gly	Leu	Thr	Gly	Thr 535	Gly	Val	Leu	Thr	Pro 540	Ser	Ser	ГАа	Arg
Ph 54		Gln	Pro	Phe	Gln	Gln 550	Phe	Gly	Arg	Asp	Val 555	Ser	Asp	Phe	Thr	Asp 560
Se	er	Val	Arg	Asp	Pro 565	Lys	Thr	Ser	Glu	11e 570	Leu	Asp	Ile	Ser	Pro 575	Суз
Se	er	Phe	Gly	Gly 580	Val	Ser	Val	Ile	Thr 585	Pro	Gly	Thr	Asn	Ala 590	Ser	Ser
Gl	.u	Val	Ala 595	Val	Leu	Tyr	Gln	Asp 600	Val	Asn	Сүя	Thr	Asp 605	Val	Ser	Thr
Al	a	Ile 610	His	Ala	Asp	Gln	Leu 615	Thr	Pro	Ala	Trp	Arg 620	Ile	Tyr	Ser	Thr
Gl	-y	Asn	Asn	Val	Phe	Gln	Thr	Gln	Ala	Gly	Суз	Leu	Ile	Gly	Ala	Glu

-continued

												con	tin	uea	
625					630					635					640
His	Val	Asp	Thr	Ser 645	-	Glu	САа	Asp	11e 650	Pro	Ile	Gly	Ala	Gly 655	
Cys	Ala	Ser	Tyr 660		Thr	Val	Ser	Leu 665	Leu	Arg	Ser	Thr	Ser 670	Gln	Lys
Ser	Ile	Val 675	Ala	Tyr	Thr	Met	Ser 680		Gly	Ala	Asp	Ser 685		Ile	Ala
Tyr	Ser 690	Asn	Asn	Thr	Ile	Ala 695		Pro	Thr	Asn	Phe 700	Ser	Ile	Ser	Ile
Thr 705	Thr	Glu	Val	Met	Pro 710	Val	Ser	Met	Ala	Lys 715	Thr	Ser	Val	Asp	Суз 720
Asn	Met	Tyr	Ile	Cys 725	Gly	Asp	Ser	Thr	Glu 730	Суз	Ala	Asn	Leu	Leu 735	Leu
Gln	Tyr	Gly	Ser 740	Phe	Сув	Thr	Gln	Leu 745	Asn	Arg	Ala	Leu	Ser 750	Gly	Ile
Ala	Ala	Glu 755	Gln	Asp	Arg	Asn	Thr 760		Glu	Val	Phe	Ala 765		Val	Lys
Gln	Met 770	Tyr	Lys	Thr	Pro	Thr 775	Leu	Lys	Tyr	Phe	Gly 780	Gly	Phe	Asn	Phe
Ser 785	Gln	Ile	Leu	Pro	Asp 790	Pro	Leu	Lys	Pro	Thr 795	Lys	Arg	Ser	Phe	Ile 800
Glu	Asp	Leu	Leu	Phe 805	Asn	Lys	Val	Thr	Leu 810	Ala	Asp	Ala	Gly	Phe 815	Met
ГЛЗ	Gln	Tyr	Gly 820	Glu	Суз	Leu	Gly	Asp 825	Ile	Asn	Ala	Arg	Asp 830	Leu	Ile
Суа	Ala	Gln 835	Lys	Phe	Asn	Gly	Leu 840	Thr	Val	Leu	Pro	Pro 845		Leu	Thr
Asp	Asp 850	Met	Ile	Ala	Ala	Tyr 855	Thr	Ala	Ala	Leu	Val 860	Ser	Gly	Thr	Ala
Thr 865	Ala	Gly	Trp	Thr	Phe 870	Gly	Ala	Gly	Ala	Ala 875	Leu	Gln	Ile	Pro	Phe 880
Ala	Met	Gln	Met	Ala 885	Tyr	Arg	Phe	Asn	Gly 890	Ile	Gly	Val	Thr	Gln 895	Asn
Val	Leu	Tyr	Glu 900	Asn	Gln	Lys	Gln	Ile 905	Ala	Asn	Gln	Phe	Asn 910	Lya	Ala
Ile	Ser	Gln 915	Ile	Gln	Glu	Ser	Leu 920	Thr	Thr	Thr	Ser	Thr 925	Ala	Leu	Gly
Lys	Leu 930	Gln	Asp	Val	Val	Asn 935		Asn	Ala	Gln	Ala 940	Leu	Asn	Thr	Leu
Val 945	Гла	Gln	Leu	Ser	Ser 950	Asn	Phe	Gly	Ala	Ile 955	Ser	Ser	Val	Leu	Asn 960
	Ile	Leu	Ser	Arg 965	Leu	Asp	Lys	Val	Glu 970		Glu	Val	Gln	Ile 975	Asp
Arg	Leu	Ile	Thr 980	Gly	Arg	Leu	Gln	Ser 985	Leu	Gln	Thr	Tyr	Val 990	Thr	Gln
Gln	Leu	Ile 995	Arg	Ala	Ala	Glu	Ile 100		g Ala	a Se:	r Al	a As 10		eu A	la Ala
Thr	Lys 1010	Met	: Se	r Glı	u Cy:	s Va 10	1 ь		ly G	ln S				Val i	Asp
Phe	Cys	Gl	у Бу	a Gl	у Ту:	r Hi	s L	eu M	et Se	er Pl	he P:	ro	Gln ź	Ala i	Ala
Pro	1025 His	Glγ	7 Val	l Va	l Ph		u H.	is V	al Tì	hr T	yr V		Pro :	Ser (Gln
	1040)				104	45				1	050			

Glu Arg Asn Phe Thr Thr Ala Pro Ala Ile Cys His Glu Gly Lys 1055 1060 1065	
Ala Tyr Phe Pro Arg Glu Gly Val Phe Val Phe Asn Gly Thr Ser 1070 1075 1080	
Trp Phe Ile Thr Gln Arg Asn Phe Phe Ser Pro Gln Ile Ile Thr 1085 1090 1095	
Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp Val Val Ile Gly 1100 1105 1110	
Ile Ile Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro Glu Leu Asp 1115 1120 1125	
Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His Thr Ser 1130 1135 1140	
Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser Val 1145 1150 1155	
Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys 1160 1165 1170	
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr 1175 1180 1185	
Glu Gln Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu Gly Phe Ile 1190 1195 1200	
Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu Cys Cys 1205 1210 1215	
Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys Gly 1220 1225 1230	
Ser CysCys Lys Phe Asp GluAsp Asp Ser Glu ProVal Leu Lys123512401245	
Gly Val Lys Leu His Tyr Thr 1250 1255	
<210> SEQ ID NO 30 <211> LENGTH: 1353 <212> TYPE: PRT <213> ORGANISM: Human coronavirus	
<400> SEQUENCE: 30	
Met Phe Leu Ile Leu Ile Ser Leu Pro Thr Ala Phe Ala Val Il. 1 5 10 15	e
Gly Asp Leu Lys Cys Thr Ser Asp Asn Ile Asn Asp Lys Asp Thr Gly 20 25 30	Y
Pro Pro Pro Ile Ser Thr Asp Thr Val Asp Val Thr Asn Gly Leu Gly 35 40 45	Y
Thr Tyr Tyr Val Leu Asp Arg Val Tyr Leu Asn Thr Thr Leu Phe Lev 50 55 60	u
Asn Gly Tyr Tyr Pro Thr Ser Gly Ser Thr Tyr Arg Asn Met Ala Le 65 70 75 80	u
Lys Gly Ser Val Leu Leu Ser Arg Leu Trp Phe Lys Pro Pro Phe Lev 85 90 95	u
Ser Asp Phe Ile Asn Gly Ile Phe Ala Lys Val Lys Asn Thr Lys Va 100 105 110	1
Ile Lys Asp Arg Val Met Tyr Ser Glu Phe Pro Ala Ile Thr Ile Gly 115 120 125	Y
Ser Thr Phe Val Asn Thr Ser Tyr Ser Val Val Val Gln Pro Arg Th 130 135 140	r

485

486

_

											-	con	tin	ued	
145					150					155					160
Val	Ser	Val	Суз	Gln 165	Tyr	Asn	Met	Суз	Glu 170	Tyr	Pro	Gln	Thr	Ile 175	Суз
His	Pro	Asn	Leu 180	Gly	Asn	His	Arg	Lys 185	Glu	Leu	Trp	His	Leu 190	Asp	Thr
Gly	Val	Val 195	Ser	Сүз	Leu	Tyr	Lys 200	Arg	Asn	Phe	Thr	Tyr 205	Asp	Val	Asn
Ala	Asp 210	Tyr	Leu	Tyr	Phe	His 215	Phe	Tyr	Gln	Glu	Gly 220	Gly	Thr	Phe	Tyr
Ala 225	Tyr	Phe	Thr	Asp	Thr 230	Gly	Val	Val	Thr	Lys 235	Phe	Leu	Phe	Asn	Val 240
Tyr	Leu	Gly	Met	Ala 245	Leu	Ser	His	Tyr	Tyr 250	Val	Met	Pro	Leu	Thr 255	Cys
Asn	Ser	Lys	Leu 260	Thr	Leu	Glu	Tyr	Trp 265	Val	Thr	Pro	Leu	Thr 270	Ser	Arg
Gln	Tyr	Leu 275	Leu	Ala	Phe	Asn	Gln 280	Asp	Gly	Ile	Ile	Phe 285	Asn	Ala	Glu
Asp	Cys 290	Met	Ser	Asp	Phe	Met 295	Ser	Glu	Ile	Lys	Cys 300	Lys	Thr	Gln	Ser
Ile 305	Ala	Pro	Pro	Thr	Gly 310	Val	Tyr	Glu	Leu	Asn 315	Gly	Tyr	Thr	Val	Gln 320
Pro	Ile	Ala	Asp	Val 325	Tyr	Arg	Arg	Гла	Pro 330	Asn	Leu	Pro	Asn	Сув 335	Asn
Ile	Glu	Ala	Trp 340	Leu	Asn	Aab	ГÀа	Ser 345	Val	Pro	Ser	Pro	Leu 350	Asn	Trp
Glu	Arg	Lys 355	Thr	Phe	Ser	Asn	Сув 360	Asn	Phe	Asn	Met	Ser 365	Ser	Leu	Met
Ser	Phe 370	Ile	Gln	Ala	Asp	Ser 375	Phe	Thr	Суа	Asn	Asn 380	Ile	Asp	Ala	Ala
Lуя 385	Ile	Tyr	Gly	Met	Сув 390	Phe	Ser	Ser	Ile	Thr 395	Ile	Asp	Lys	Phe	Ala 400
Ile	Pro	Asn	Gly	Arg 405	Lys	Val	Aap	Leu	Gln 410	Leu	Gly	Asn	Leu	Gly 415	Tyr
Leu	Gln	Ser	Phe 420	Asn	Tyr	Arg	Ile	Asp 425	Thr	Thr	Ala	Thr	Ser 430	Сүз	Gln
Leu	Tyr	Tyr 435	Asn	Leu	Pro	Ala	Ala 440	Asn	Val	Ser	Val	Ser 445	Arg	Phe	Asn
Pro	Ser 450	Thr	Trp	Asn	Гуз	Arg 455	Phe	Gly	Phe	Ile	Glu 460	Asp	Ser	Val	Phe
Lys 465	Pro	Arg	Pro	Ala	Gly 470	Val	Leu	Thr	Asn	His 475	Asp	Val	Val	Tyr	Ala 480
Gln	His	Cys	Phe	Lys 485	Ala	Pro	Lys	Asn	Phe 490	Cys	Pro	Cys	Lys	Leu 495	Asn
Gly	Ser	Сув	Val 500	Gly	Ser	Gly	Pro	Gly 505	Lys	Asn	Asn	Gly	Ile 510	Gly	Thr
Сүв	Pro	Ala 515	Gly	Thr	Asn	Tyr	Leu 520	Thr	Сув	Asp	Asn	Leu 525	Сув	Thr	Pro
Asp	Pro 530	Ile	Thr	Phe	Thr	Gly 535	Thr	Tyr	Lys	Сув	Pro 540	Gln	Thr	ГЛа	Ser
Leu 545		Gly	Ile	Gly	Glu 550		Суз	Ser	Gly	Leu 555		Val	Lys	Ser	Asp 560
	Сув	Gly	Gly			Суз	Thr	Сув	-		Gln	Ala	Phe		
				565					570					575	

Т	rp	Ser	Ala	Asp 580	Ser	Суз	Leu	Gln	Gly 585	Asp	Lys	САа	Asn	Ile 590	Phe	Ala
A	sn	Phe	Ile 595	Leu	His	Asp	Val	Asn 600	Ser	Gly	Leu	Thr	Cys 605	Ser	Thr	Asp
L	eu	Gln 610	Lys	Ala	Asn	Thr	Asp 615	Ile	Ile	Leu	Gly	Val 620	Сүв	Val	Asn	Tyr
	sp 25	Leu	Tyr	Gly	Ile	Leu 630	Gly	Gln	Gly	Ile	Phe 635	Val	Glu	Val	Asn	Ala 640
Т	hr	Tyr	Tyr	Asn	Ser 645	Trp	Gln	Asn	Leu	Leu 650	Tyr	Asp	Ser	Asn	Gly 655	Asn
L	eu	Tyr	Gly	Phe 660	Arg	Asp	Tyr	Ile	Ile 665	Asn	Arg	Thr	Phe	Met 670	Ile	Arg
S	er	Cys	Tyr 675	Ser	Gly	Arg	Val	Ser 680	Ala	Ala	Phe	His	Ala 685	Asn	Ser	Ser
G	lu	Pro 690	Ala	Leu	Leu	Phe	Arg 695	Asn	Ile	Lys	Суя	Asn 700	Tyr	Val	Phe	Asn
	sn 05	Ser	Leu	Thr	Arg	Gln 710	Leu	Gln	Pro	Ile	Asn 715	Tyr	Phe	Asp	Ser	Tyr 720
L	eu	Gly	Сув	Val	Val 725	Asn	Ala	Tyr	Asn	Ser 730	Thr	Ala	Ile	Ser	Val 735	Gln
Т	hr	Сув	Asp	Leu 740	Thr	Val	Gly	Ser	Gly 745	Tyr	Суя	Val	Asp	Tyr 750	Ser	Lys
A	sn	Arg	Arg 755	Ser	Arg	Gly	Ala	Ile 760	Thr	Thr	Gly	Tyr	Arg 765	Phe	Thr	Asn
Р	he	Glu 770	Pro	Phe	Thr	Val	Asn 775	Ser	Val	Asn	Asp	Ser 780	Leu	Glu	Pro	Val
	ly 85	Gly	Leu	Tyr	Glu	Ile 790	Gln	Ile	Pro	Ser	Glu 795	Phe	Thr	Ile	Gly	Asn 800
Μ	et	Val	Glu	Phe	Ile 805	Gln	Thr	Ser	Ser	Pro 810	Lys	Val	Thr	Ile	Asp 815	Сүз
A	la	Ala	Phe	Val 820	Сүз	Gly	Aab	Tyr	Ala 825	Ala	Сув	Lys	Ser	Gln 830	Leu	Val
G	lu	Tyr	Gly 835	Ser	Phe	Суз	Yab	Asn 840	Ile	Asn	Ala	Ile	Leu 845	Thr	Glu	Val
A	sn	Glu 850	Leu	Leu	Asp	Thr	Thr 855	Gln	Leu	Gln	Val	Ala 860	Asn	Ser	Leu	Met
	sn 65	Gly	Val	Thr	Leu	Ser 870	Thr	Lys	Leu	Lys	Asp 875	Gly	Val	Asn	Phe	Asn 880
v	al	Asp	Asp	Ile	Asn 885	Phe	Ser	Pro	Val	Leu 890	Gly	САа	Leu	Gly	Ser 895	Glu
Ċ	уs	Ser	Lys	Ala 900	Ser	Ser	Arg	Ser	Ala 905	Ile	Glu	Asp	Leu	Leu 910	Phe	Asp
L	уs	Val	Lys 915	Leu	Ser	Asp	Val	Gly 920	Phe	Val	Glu	Ala	Tyr 925	Asn	Asn	Суз
Т	hr	Gly 930	Gly	Ala	Glu	Ile	Arg 935	Asp	Leu	Ile	Сув	Val 940	Gln	Ser	Tyr	Гув
	ly 45	Ile	Гуа	Val	Leu	Pro 950	Pro	Leu	Leu	Ser	Glu 955	Asn	Gln	Ile	Ser	Gly 960
T	yr	Thr	Leu	Ala	Ala 965	Thr	Ser	Ala	Ser	Leu 970	Phe	Pro	Pro	Trp	Thr 975	Ala
A	la	Ala	Gly	Val 980	Pro	Phe	Tyr	Leu	Asn 985	Val	Gln	Tyr	Arg	Ile 990	Asn	Gly

-continued

eu Gly Val Thr Met Asp Val Leu Ser Gln Asn Gln Lys Leu Ile Ala 995 1000 1005
sn Ala Phe Asn Asn Ala Leu Tyr Ala Ile Gln Glu Gly Phe Asp 1010 1015 1020
la Thr Asn Ser Ala Leu Val Lys Ile Gln Ala Val Val Asn Ala 1025 1030 1035
sn Ala Glu Ala Leu Asn Asn Leu Leu Gln Gln Leu Ser Asn Arg 1040 1045 1050
he Gly Ala Ile Ser Ala Ser Leu Gln Glu Ile Leu Ser Arg Leu 1055 1060 1065
sp Ala Leu Glu Ala Glu Ala Gln Ile Asp Arg Leu Ile Asn Gly 1070 1075 1080
rg Leu Thr Ala Leu Asn Ala Tyr Val Ser Gln Gln Leu Ser Asp 1085 1090 1095
er Thr Leu Val Lys Phe Ser Ala Ala Gln Ala Met Glu Lys Val 1100 1105 1110
sn Glu Cys Val Lys Ser Gln Ser Arg Ile Asn Phe Cys Gly 1115 1120 1125
sn Gly Asn His Ile Ile Ser Leu Val Gln Asn Ala Pro Tyr Gly 1130 1135 1140
eu Tyr Phe Ile His Phe Ser Tyr Val Pro Thr Lys Tyr Val Thr 1145 1150 1155
la Arg Val Ser Pro Gly Leu Cys Ile Ala Gly Asp Arg Gly Ile 1160 1165 1170
la Pro Lys Ser Gly Tyr Phe Val Asn Val Asn Asn Thr Trp Met 1175 1180 1185
yr Thr Gly Ser Gly Tyr Tyr Tyr Pro Glu Pro Ile Thr Glu Asn 1190 1195 1200
sn Val Val Met Ser Thr Cys Ala Val Asn Tyr Thr Lys Ala 1205 1210 1215
ro Tyr Val Met Leu Asn Thr Ser Ile Pro Asn Leu Pro Asp Phe 1220 1225 1230
ys Glu Glu Leu Asp Gln Trp Phe Lys Asn Gln Thr Ser Val Ala 1235 1240 1245
ro Asp Leu Ser Leu Asp Tyr Ile Asn Val Thr Phe Leu Asp Leu 1250 1255 1260
In Val Glu Met Asn Arg Leu Gln Glu Ala Ile Lys Val Leu Asn 1265 1270 1275
In Ser Tyr Ile Asn Leu Lys Asp Ile Gly Thr Tyr Glu Tyr Tyr 1280 1285 1290
al Lys Trp Pro Trp Tyr Val Trp Leu Leu Ile Cys Leu Ala Gly 1295 1300 1305
al Ala Met Leu Val Leu Leu Phe Phe Ile Cys Cys Thr Gly 1310 1315 1320
ya Gly Thr Ser Cya Phe Lya Lya Cya Gly Gly Cya Cya Aap Aap 1325 1330 1335
'yr Thr Gly Tyr Gln Glu Leu Val Ile Lys Thr Ser His Asp Asp 1340 1345 1350
210> SEQ ID NO 31 211> LENGTH: 1351 212> TYPE: PRT
213> ORGANISM: Human coronavirus

<400> SEQUENCE: 31

	Met 1	Phe	Leu	Ile	Ile 5	Phe	Ile	Leu	Pro	Thr 10	Thr	Leu	Ala	Val	Ile 15	Gly
	Asp	Phe	Asn	Сув 20	Thr	Asn	Ser	Phe	Ile 25	Asn	Asp	Tyr	Asn	L уа 30	Thr	Ile
	Pro	Arg	Ile 35	Ser	Glu	Asp	Val	Val 40	Asp	Val	Ser	Leu	Gly 45	Leu	Gly	Thr
	Tyr	Tyr 50	Val	Leu	Asn	Arg	Val 55	Tyr	Leu	Asn	Thr	Thr 60	Leu	Leu	Phe	Thr
	Gly 65	Tyr	Phe	Pro	Lys	Ser 70	Gly	Ala	Asn	Phe	Arg 75	Asp	Leu	Ala	Leu	Lys 80
,	Gly	Ser	Ile	Tyr	Leu 85	Ser	Thr	Leu	Trp	Tyr 90	Lys	Pro	Pro	Phe	Leu 95	Ser
	Asp	Phe	Asn	Asn 100	Gly	Ile	Phe	Ser	Lys 105	Val	Lys	Asn	Thr	Lys 110	Leu	Tyr
	Val	Asn	Asn 115	Thr	Leu	Tyr	Ser	Gl u 120	Phe	Ser	Thr	Ile	Val 125	Ile	Gly	Ser
	Val	Phe 130	Val	Asn	Thr	Ser	Tyr 135	Thr	Ile	Val	Val	Gln 140	Pro	His	Asn	Gly
	Ile 145	Leu	Glu	Ile	Thr	Ala 150	Cys	Gln	Tyr	Thr	Met 155	Суз	Glu	Tyr	Pro	His 160
	Thr	Val	Сув	Lys	Ser 165	Lys	Gly	Ser	Ile	Arg 170	Asn	Glu	Ser	Trp	His 175	Ile
	Asp	Ser	Ser	Glu 180	Pro	Leu	Cys	Leu	Phe 185	Lys	Lys	Asn	Phe	Thr 190	Tyr	Asn
			195	-	-		-	200			-		205	-	Gly	
		210		-	-		215		-			220			Leu	
	225		-		-	230					235	-			Pro	240
		-			245					250					Glu 255	-
				260					265					270	Yab	
		-	275					280	-	-			285		Leu	
		290					295					300			Val	
	305					310					315				Arg	320
					325					330					Asn 335	
				340					345					350	Asn	
,	Asn	Phe	Asn 355	Leu	Ser	Thr	Leu	Leu 360	Arg	Leu	Val	His	Val 365	Asp	Ser	Phe
	Ser	Cys 370	Asn	Asn	Leu	Asp	Lys 375	Ser	Гла	Ile	Phe	Gly 380	Ser	Сув	Phe	Asn
	Ser 385	Ile	Thr	Val	Asp	Lys 390	Phe	Ala	Ile	Pro	Asn 395	Arg	Arg	Arg	Asp	Asp 400
	Leu	Gln	Leu	Gly	Ser 405	Ser	Gly	Phe	Leu	Gln 410	Ser	Ser	Asn	Tyr	Lys 415	Ile

Asp	Ile	Ser	Ser 420	Ser	Ser	Суз	Gln	Leu 425	Tyr	Tyr	Ser	Leu	Pro 430	Leu	Val
Asn	Val	Thr 435	Ile	Asn	Asn	Phe	Asn 440	Pro	Ser	Ser	Trp	Asn 445	Arg	Arg	Tyr
Gly	Phe 450	Gly	Ser	Phe	Asn	Leu 455	Ser	Ser	Tyr	Asp	Val 460	Val	Tyr	Ser	Asp
His 465	Сүз	Phe	Ser	Val	Asn 470	Ser	Asp	Phe	Сув	Pro 475	Сүз	Ala	Asp	Pro	Ser 480
Val	Val	Asn	Ser	Суз 485	Ala	Lys	Ser	Lys	Pro 490	Pro	Ser	Ala	Ile	Суз 495	Pro
Ala	Gly	Thr	Lys 500	Tyr	Arg	His	Сув	Asp 505	Leu	Asp	Thr	Thr	Leu 510	Tyr	Val
Lys	Asn	Trp 515	Суз	Arg	Суз	Ser	Сув 520	Leu	Pro	Asp	Pro	Ile 525	Ser	Thr	Tyr
Ser	Pro 530	Asn	Thr	Сүя	Pro	Gln 535	Lуя	Гуз	Val	Val	Val 540	Gly	Ile	Gly	Glu
His 545	Сүз	Pro	Gly	Leu	Gly 550	Ile	Asn	Glu	Glu	Lys 555	СЛа	Gly	Thr	Gln	Leu 560
				565	Phe	-			570				-	575	
	-		580		Ser			585	-				590		
		595	-		Asn		600			-		605	_		
	610				Ile	615					620				
625					Gln 630					635					640
-				645	Asn Leu			-	650			-		655	
-		-	660		Ser			665		-			670		
		675			Asn		680					685			
	690		-	-	Pro	695	-	-		-	700				
705					710 Leu		-		_	715	-		-	-	720
Arg	Met	Gly	Ser	725 Gly	Phe	Сув	Ile	Asp	730 Tyr	Ala	Leu	Pro	Ser	735 Ser	Arg
Arg	Lys		740 Arg	Gly	Ile	Ser		745 Pro	Tyr	Arg	Phe		750 Thr	Phe	Glu
Pro		755 Asn	Val	Ser	Phe		760 Asn	Asp	Ser	Val	Glu	765 Thr	Val	Gly	Gly
Leu	770 Phe	Glu	Ile	Gln	Ile	775 Pro	Thr	Asn	Phe	Thr	780 Ile	Ala	Gly	His	Glu
785 Glu	Phe	Ile	Gln	Thr	790 Ser	Ser	Pro	Гуа	Val	795 Thr	Ile	Asp	Суя	Ser	800 Ala
				805	Tyr			-	810			-	-	815	
		-	820		Asn			825					830		-
στλ		- 11C	-Y8	чар	AGII	- 1C	HOII	0er	E	ueu	лан	JIU	vai	HOII	· ~ F

												00		11	ucu	•	
		835					840					84	15				
Leu	Leu 850	Asp	Ile	Thr	Gln	Leu 855	Gln	Val	Ala	Asn	86		eu	Met	Gln	Gly	
Val 865	Thr	Leu	Ser	Ser	Asn 870	Leu	Asn	Thr	Asn	Leu 875		s S€	er	Asp	Val	Asp 880	
Asn	Ile	Asp	Phe	Lys 885	Ser	Leu	Leu	Gly	Сув 890		Gl	y S€	er	Gln	Cys 895	Gly	•
Ser	Ser	Ser	Arg 900		Leu	Leu	Glu	Asp 905		Leu	. Ph	e Ae		Lys 910		Lys	•
Leu	Ser	Asp 915		Gly	Phe	Val	Glu 920		Tyr	Asn	As:	n Cy 92		Thr	Gly	Gly	
Ser	Glu 930			Asp		Leu 935		Val	Gln	Ser	Ph 94		'n	Gly	Ile	- Lys	•
Val 945	Leu	Pro	Pro	Ile	Leu 950	Ser	Glu	Thr	Gln	Ile 955		r Gl	y	Tyr	Thr	Thr 960	
Ala	Ala	Thr	Val	Ala 965	Ala	Met	Phe	Pro	Pro 970		Se	r Al	la	Ala	Ala 975	Gly	
Val	Pro	Phe	Ser 980		Asn	Val	Gln	Tyr 985		Ile	As	n Gl		Leu 990		Val	
Thr	Met	Asp 995		Leu	Asn		Asn 1000		n Ly	s Le	u I		Ala 100		sn A	la Pl	he
Asn	Lys 1010		ı Leı	ı Leı	ı Sei	r Il¢ 103		ln A	sn G	ly P		Thr 1020		la	Thr	Asn	
Ser	Ala 1025		ı Ala	a Ly:	∃ Il€	e Glr 103		er V	al V	al A		Ala 1035		sn.	Ala	Gln	
Ala	Leu 1040		n Sei	r Lei	ı Leı	1 Gl1 104		ln L	eu P	he A		Lys 1050		he	Gly	Ala	
Ile	Ser 1055		: Sei	r Lei	ı Glr	n Glu 106		le L	eu S	er A	_	Leu 1065		ab .	Asn	Leu	
Glu	Ala 1070		n Val	l Glı	n Ile	e Asr 107		rg L	eu I	le A		Gly 1080		rg	Leu	Thr	
Ala	Leu 1085		n Ala	а Туз	r Val	L Sei 109		ln G	ln L	eu S		Asp 1095		le	Thr	Leu	
Ile	Lys 1100		a Gly	7 Ala	a Sei	r Arg 11(la I	le G	lu L		Val 1110		sn	Glu	Cys	
Val					r Pro									sn	Gly	Asn	
His	Ile 1130		ı Sei	r Lei	ı Val	l Glr 113		ən A	la P	ro T		Gly 1140		eu	Leu	Phe	
Ile	His 1145		e Sei	r Tyj	r Lys	9 Pro 119		ır S	er P	he L	-	Thr 1155		al	Leu	Val	
Ser	Pro 1160	-	/ Let	і Суя	s Lei	1 Sei 110		ly A	sp A	rg G	-	Ile 1170		la	Pro	Lys	
Gln	Gly 1175	-	: Phe	e Il∢	e Lys	3 Gl1 118		an A	sp S	er T	_	Met 1185		he	Thr	Gly	
Ser	Ser 1190	-	: Туз	r Tyi	r Pro	Glu 119		ro I	le S	er A	-	Lys 1200		sn j	Val	Val	
Phe	Met 1205		n Sei	r Cyi	s Sei	r Val 121		sn Pl	he T	hr L	-	Ala 1215		ro	Phe	Ile	
Tyr	Leu 1220		n Ası	n Sei	r Ile	e Pro 122		en L	eu S	er A	_	Phe 1230		lu .	Ala	Glu	
Leu	Ser 1235		ı Tr <u>ı</u>	p Phe	е Буя	3 ASI 124		is Ti	hr S	er I		Ala 1249		ro.	Asn	Leu	

-															
Thr	Phe 1250		n Se:	r Hi:	a Ile	e Ası 129		la Tì	nr Pł	ne Le		ap 260	Leu '	[yr]	ſyr
Glu	Met 1269		n Va	l Il(e Glr	n Glu 127		er I	le Ly	∕s S€		eu . 275	Asn :	Ser S	Ser
Phe	Ile 1280		n Lei	u Ly:	; Glu	1 Il. 129		ly Tì	ur Tj	yr G		et 290	Tyr '	Val I	ууа
Trp	Pro 1299		p Ty:	r Ile	e Tr <u>p</u>	Lei 130		∋u I:	le Va	al I:		eu 305	Phe :	Ile :	Ile
Phe	Leu 1310		t 11(e Lei	ı Phe	e Phe 133		le Cy	ya Cj	ya Cj		hr 320	Gly (Cya (Зly
Ser	Ala 1329		s Ph	e Sei	t Lys	5 Cyr 133		is A	an Cl	va Cl		ap 335	Glu '	Tyr (Зly
Gly	His 1340		n Asj	p Phe	e Val	L Il. 134		ys A	la Se	er Hi		ap . 350	Asp		
<21 <21 <21 <22 <22 <22	0 > SI 1 > LI 2 > T 3 > OI 3 > OI 3 > O 3 > O	ENGTI (PE : RGAN) EATUI THER	H: 5: PRT ISM: RE: INF(26 Art: DRMA			-		Poly	pept:	ide				
<40)> SH	EQUEI	NCE:	32											
Met 1	Phe	Ile	Phe	Leu 5	Leu	Phe	Leu	Thr	Leu 10	Thr	Ser	Gly	Ser	Asp 15	Leu
Asp	Arg	Ala	Leu 20	Ser	Gly	Ile	Ala	Ala 25	Glu	Gln	Asp	Arg	Asn 30	Thr	Arg
Glu	Val	Phe 35	Ala	Gln	Val	Lys	Gln 40	Met	Tyr	Lys	Thr	Pro 45	Thr	Leu	Lys
Tyr	Phe 50	Gly	Gly	Phe	Asn	Phe 55	Ser	Gln	Ile	Leu	Pro 60	Asp	Pro	Leu	Lys
Pro 65	Thr	Lys	Arg	Ser	Phe 70	Ile	Glu	Asp	Leu	Leu 75	Phe	Asn	Гуз	Val	Thr 80
Leu	Ala	Asp	Ala	Gly 85	Phe	Met	Lys	Gln	Tyr 90	Gly	Glu	Суз	Leu	Gly 95	Asp
Ile	Asn	Ala	Arg 100	Asp	Leu	Ile	Суз	Ala 105	Gln	Lys	Phe	Asn	Gly 110	Leu	Thr
Val	Leu	Pro 115	Pro	Leu	Leu	Thr	Asp 120	Asp	Met	Ile	Ala	Ala 125	Tyr	Thr	Ala
Ala	Leu 130	Val	Ser	Gly	Thr	Ala 135	Thr	Ala	Gly	Trp	Thr 140	Phe	Gly	Ala	Gly
Ala 145	Ala	Leu	Gln	Ile	Pro 150	Phe	Ala	Met	Gln	Met 155	Ala	Tyr	Arg	Phe	Asn 160
Gly	Ile	Gly	Val	Thr 165	Gln	Asn	Val	Leu	Tyr 170	Glu	Asn	Gln	Lys	Gln 175	Ile
Ala	Asn	Gln	Phe 180	Asn	Lys	Ala	Ile	Ser 185	Gln	Ile	Gln	Glu	Ser 190	Leu	Thr
Thr	Thr	Ser 195	Thr	Ala	Leu	Gly	Lув 200	Leu	Gln	Asp	Val	Val 205	Asn	Gln	Asn
Ala	Gln 210	Ala	Leu	Asn	Thr	Leu 215	Val	Гла	Gln	Leu	Ser 220	Ser	Asn	Phe	Gly
Ala 225	Ile	Ser	Ser	Val	Leu 230	Asn	Asp	Ile	Leu	Ser 235	Arg	Leu	Asp	Гуа	Val 240
Glu	Ala	Glu	Val	Gln 245	Ile	Asp	Arg	Leu	Ile 250	Thr	Gly	Arg	Leu	Gln 255	Ser

-continued

Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu Cys Val Leu Gly 275 280 285 Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr His Leu Met Ser 290 295 300 Phe Pro Gln Ala Ala Pro His Gly Val Val Phe Leu His Val Thr Tyr Val Pro Ser Gln Glu Arg Asn Phe Thr Thr Ala Pro Ala Ile Cys His Glu Gly Lys Ala Tyr Phe Pro Arg Glu Gly Val Phe Val Phe Asn Gly 340 345 350 Thr Ser Trp Phe Ile Thr Gln Arg Asn Phe Phe Ser Pro Gln Ile Ile 355 360 365 Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp Val Val Ile Gly 370 375 380 Ile Ile Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His Thr Ser Pro Asp 405 410 415 Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu Gln Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile 465 470 475 480 Val Met Val Thr Ile Leu Leu Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys Gly Val Lys Leu His Tyr Thr <210> SEQ ID NO 33 <211> LENGTH: 588 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 33 Met Ile His Ser Val Phe Leu Leu Met Phe Leu Leu Thr Pro Thr Glu Ser Asp Cys Lys Leu Pro Leu Gly Gln Ser Leu Cys Ala Leu Pro Asp Thr Pro Ser Thr Leu Thr Pro Arg Ser Val Arg Ser Val Pro Gly Glu Met Arg Leu Ala Ser Ile Ala Phe Asn His Pro Ile Gln Val Asp Gln Leu Asn Ser Ser Tyr Phe Lys Leu Ser Ile Pro Thr Asn Phe Ser Phe Gly Val Thr Gln Glu Tyr Ile Gln Thr Thr Ile Gln Lys Val Thr Val

																Ĩ
Asp	Суз	Lys	Gln 100	Tyr	Val	Суз	Asn	Gly 105	Phe	Gln	Lya	Суз	Glu 110	Gln	Leu	
Leu	Arg	Glu 115	Tyr	Gly	Gln	Phe	Cys 120	Ser	Lys	Ile	Asn	Gln 125	Ala	Leu	His	
Gly	Ala 130	Asn	Leu	Arg	Gln	Asp 135	Asp	Ser	Val	Arg	Asn 140	Leu	Phe	Ala	Ser	
Val 145	Гуз	Ser	Ser	Gln	Ser 150	Ser	Pro	Ile	Ile	Pro 155	Gly	Phe	Gly	Gly	Asp 160	
Phe	Asn	Leu	Thr	Leu 165	Leu	Glu	Pro	Val	Ser 170	Ile	Ser	Thr	Gly	Ser 175	Arg	
Ser	Ala	Arg	Ser 180	Ala	Ile	Glu	Asp	Leu 185	Leu	Phe	Asp	Lys	Val 190	Thr	Ile	
Ala	Asp	Pro 195	Gly	Tyr	Met	Gln	Gly 200	Tyr	Asp	Asp	Сүз	Met 205	Gln	Gln	Gly	
Pro	Ala 210	Ser	Ala	Arg	Asp	Leu 215	Ile	Сув	Ala	Gln	Tyr 220	Val	Ala	Gly	Tyr	
Lys 225	Val	Leu	Pro	Pro	Leu 230	Met	Asp	Val	Asn	Met 235	Glu	Ala	Ala	Tyr	Thr 240	
Ser	Ser	Leu	Leu	Gly 245	Ser	Ile	Ala	Gly	Val 250	Gly	Trp	Thr	Ala	Gly 255	Leu	
Ser	Ser	Phe	Ala 260	Ala	Ile	Pro	Phe	Ala 265	Gln	Ser	Ile	Phe	Tyr 270	Arg	Leu	
Asn	Gly	Val 275	Gly	Ile	Thr	Gln	Gln 280	Val	Leu	Ser	Glu	Asn 285	Gln	ГАз	Leu	
Ile	Ala 290	Asn	Lys	Phe	Asn	Gln 295	Ala	Leu	Gly	Ala	Met 300	Gln	Thr	Gly	Phe	
Thr 305	Thr	Thr	Asn	Glu	Ala 310	Phe	Gln	Lys	Val	Gln 315	Asp	Ala	Val	Asn	Asn 320	
Asn	Ala	Gln	Ala	Leu 325	Ser	Гуз	Leu	Ala	Ser 330	Glu	Leu	Ser	Asn	Thr 335	Phe	
Gly	Ala	Ile	Ser 340	Ala	Ser	Ile	Gly	Asp 345	Ile	Ile	Gln	Arg	Leu 350	Aap	Val	
Leu	Glu	Gln 355	Aab	Ala	Gln	Ile	Aap 360	Arg	Leu	Ile	Asn	Gly 365	Arg	Leu	Thr	
Thr	Leu 370	Asn	Ala	Phe	Val	Ala 375	Gln	Gln	Leu	Val	Arg 380	Ser	Glu	Ser	Ala	
Ala 385	Leu	Ser	Ala	Gln	Leu 390	Ala	Lys	Asp	Lys	Val 395	Asn	Glu	Cys	Val	Lys 400	
Ala	Gln	Ser	ГАа	Arg 405	Ser	Gly	Phe	Cys	Gly 410	Gln	Gly	Thr	His	Ile 415	Val	
Ser	Phe	Val	Val 420	Asn	Ala	Pro	Asn	Gly 425	Leu	Tyr	Phe	Met	His 430	Val	Gly	
Tyr	Tyr	Pro 435	Ser	Asn	His	Ile	Glu 440	Val	Val	Ser	Ala	Tyr 445	Gly	Leu	Cys	
Asp	Ala 450	Ala	Asn	Pro	Thr	Asn 455	Сув	Ile	Ala	Pro	Val 460	Asn	Gly	Tyr	Phe	
Ile 465	ГЛа	Thr	Asn	Asn	Thr 470	Arg	Ile	Val	Asp	Glu 475	Trp	Ser	Tyr	Thr	Gly 480	
Ser	Ser	Phe	Tyr	Ala 485	Pro	Glu	Pro	Ile	Thr 490	Ser	Leu	Asn	Thr	Lys 495	Tyr	
Val	Ala	Pro	Gln 500	Val	Thr	Tyr	Gln	Asn 505	Ile	Ser	Thr	Asn	Leu 510	Pro	Pro	

-continued

Pro Leu Leu Gly Asn Ser Thr Gly Ile Asp Phe Gln Asp Glu Leu Asp Glu Phe Phe Lys Asn Val Ser Thr Ser Ile Pro Asn Phe Gly Ser Leu Thr Gln Ile Asn Thr Thr Leu Leu Asp Leu Thr Tyr Glu Met Leu Ser Leu Gln Gln Val Val Lys Ala Leu Asn Glu Ser Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr Thr Tyr Tyr Asn Lys Trp Pro <210> SEQ ID NO 34 <211> LENGTH: 526 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 34 Met Phe Ile Phe Leu Leu Phe Leu Thr Leu Thr Ser Gly Ser Asp Leu Asp Arg Ala Leu Ser Gly Ile Ala Ala Glu Gln Asp Arg Asn Thr Arg 20 25 30 Glu Val Phe Ala Gln Val Lys Gln Met Tyr Lys Thr Pro Thr Leu Lys Tyr Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Met Lys Gln Tyr Gly Glu Cys Leu Gly Asp Ile Asn Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Asp Met Ile Ala Ala Tyr Thr Ala Ala Leu Val Ser Gly Thr Ala Thr Ala Gly Trp Thr Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn Gln Lys Gln Ile Ala Asn Gln Phe Asn Lys Ala Ile Ser Gln Ile Gln Glu Ser Leu Thr Thr Thr Ser Thr Ala Leu Gly Lys Leu Gln Asp Val Val Asn Gln Asn 195 200 205 Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg Leu Asp Lys Val Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu Cys Val Leu Gly

506

Concinaca
Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr His Leu Met Ser 290 295 300
Phe Pro Gln Ala Ala Pro His Gly Val Val Phe Leu His Val Thr Tyr 305 310 315 320
Val Pro Ser Gln Glu Arg Asn Phe Thr Thr Ala Pro Ala Ile Cys His 325 330 335
Glu Gly Lys Ala Tyr Phe Pro Arg Glu Gly Val Phe Val Phe Asn Gly 340 345 350
Thr Ser Trp Phe Ile Thr Gln Arg Asn Phe Phe Ser Pro Gln Ile Ile 355 360 365
Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp Val Val Ile Gly 370 375 380
Ile Ile Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro Glu Leu Asp Ser
385 390 395 400 Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His Thr Ser Pro Asp
405 410 415 Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser Val Val Asn Ile
420 425 430 Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys Asn Leu Asn Glu
435 440 445 Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu Gln Tyr Ile Lys
450 455 460
Trp Pro Trp Tyr Val Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile 465 470 475 480
Val Met Val Thr Ile Leu Leu Cys Cys Met Thr Ser Cys Cys Ser Cys 485 490 495
Leu Lys Gly Ala Cys Ser Cys Gly Ser Cys Cys Lys Phe Asp Glu Asp 500 505 510
Asp Ser Glu Pro Val Leu Lys Gly Val Lys Leu His Tyr Thr 515 520 525
<210> SEQ ID NO 35 <211> LENGTH: 1864 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 35
tcaagctttt ggaccctcgt acagaagcta atacgactca ctatagggaa ataagagaga 60
aaagaagagt aagaagaaat ataagagcca ccatgggtct caaggtgaac gtctctgccg 120
tatteatgge agtaetgtta aeteteeaaa eaceegeegg teaaatteat tggggeaate 180
tetetaagat aggggtagta ggaataggaa gtgeaageta eaaagttatg aetegtteea 240 geeateaate attagteata aaattaatge eeaatataae teteeteaat aaetgeaega 300
gggtagagat tgcagaatac aggagactac taagaacagt tttggaacca attagggatg 360
cacttaatgc aatgacccag aacataaggc cggttcagag cgtagcttca agtaggagac 420
acaagagatt tgegggagta gteetggeag gtgeggeeet aggtgttgee acagetgete 480
agataacago oggoattgoa ottoacoggt ocatgotgaa ototoaggoo atogacaato 540
tgagagegag cetggaaact actaateagg caattgagge aateagacaa geagggeagg 600
agatgatatt ggetgtteag ggtgteeaag aetaeateaa taatgagetg ataeegteta 660 tgaaceaget atettgtgat etaateggte agaagetegg geteaaattg ettagataet 720
eguarrayor accorgegar claarogger ayaayeteyy yereaaarey eerayatadt - 720

507

508

atacagaaat cetgteatta tttggeeeea geetaeggga eeeeatatet geggagatat	780
ctatccaggc tttgagttat gcacttggag gagatatcaa taaggtgtta gaaaagctcg	840
gatacagtgg aggcgattta ctaggcatct tagagagcag aggaataaag gctcggataa	900
ctcacgtcga cacagagtee tactteatag teeteagtat ageetateeg aegetgteeg	960
agattaaggg ggtgattgtc caccggctag aggggggtctc gtacaacata ggctctcaag	1020
agtggtatac cactgtgccc aagtatgttg caacccaagg gtaccttatc tcgaattttg	1080
atgagtcatc atgtactttc atgccagagg ggactgtgtg cagccaaaat gccttgtacc	1140
cgatgagtee tetgeteeaa gaatgeetee gggggteeae caagteetgt getegtaeae	1200
togtatoogg gtottttggg aacoggttoa ttttatoaca agggaacota atagocaatt	1260
gtgcatcaat totttgtaag tgttacacaa caggtacgat tattaatcaa gacootgaca	1320
agateetaac atacattget geegateget geeeggtagt egaggtgaac ggegtgacea	1380
tccaagtcgg gagcaggagg tatccagacg ctgtgtactt gcacagaatt gacctcggtc	1440
ctcccatatc attggagagg ttggacgtag ggacaaatct ggggaatgca attgccaaat	1500
tggaggatgc caaggaattg ttggaatcat cggaccagat attgagaagt atgaaaggtt	1560
tatcgagcac tagcatagtc tacatcctga ttgcagtgtg tcttggaggg ttgataggga	1620
teeccaettt aatatgttge tgeaggggge gttgtaacaa aaagggagaa caagttggta	1680
tgtcaagacc aggectaaag eetgaeetta caggaacate aaaateetat gtaagatege	1740
tttgatgata ataggetgga geeteggtgg ceaagettet tgeeeettgg geeteeeee	1800
agecceteet eccetteetg caecegtace eccgtggtet ttgaataaag tetgagtggg	1860
cggc	1864
<210> SEQ ID NO 36 <211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
<211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	60
<211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 36	60 120
<211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 36 atgggtetea aggtgaaegt etetgeegta tteatggeag taetgttaae tetecaaaca	
<pre><211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 36 atgggtctca aggtgaacgt ctctgccgta ttcatggcag tactgttaac tctccaaaca cccgccggtc aaattcattg gggcaatctc tctaagatag gggtagtagg aataggaagt</pre>	120
<pre><211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 36 atgggtetea aggtgaaegt etetgeegta tteatggeag tactgttaae tetecaaaea ccegeeggte aaatteattg gggeaatete tetaagatag gggtagtagg aataggaagt geaagetaea aagttatgae tegtteeage cateaateat tagteataaa attaatgeee</pre>	120 180
<pre><211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 36 atgggtetea aggtgaaegt etetgeegta tteatggeag taetgttaae tetecaaaea ceegeeggte aaatteattg gggeaatete tetaagatag gggtagtagg aataggaagt geaagetaea aagttatgae tegtteeage cateaateat tagteataaa attaatgeee aatataaete teeteaataa etgeaegagg gtagagattg cagaatacag gagaetaeta</pre>	120 180 240
<pre><211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 36 atgggtetea aggtgaaegt etetgeegta tteatggeag taetgttaae tetecaaaeae ccegeeggte aaatteattg gggeaatete tetaagatag gggtagtagg aataggaagt geaagetaea aagttatgae tegtteeage cateaateat tagteataaa attaatgeee aatataaete teeteaataa etgeaegagg gtagagattg eagaataeag gagaetaeta agaacagttt tggaaecaat tagggatgea ettaatgeaa tgaeecagaa eataaggeeg</pre>	120 180 240 300
<pre><211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 36 atgggtotca aggtgaacgt ctctgccgta ttcatggcag tactgttaac totocaaaca cccgccggtc aaattcattg gggcaatoto totaagatag gggtagtagg aataggaagt gcaagotaca aagttatgac togttocago catcaatcat tagtcataaa attaatgocc aatataacto tootcaataa ctgcacgagg gtagagattg cagaatacag gagactacta agaacagttt tggaaccaat tagggatgca ottaatgcaa tgacccagaa cataaggccg gttcagagcg tagottcaag taggagacac aagagattg cgggagtagt cctggcaggt</pre>	120 180 240 300 360
<pre><211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 36 atgggtetea aggtgaacgt etetgeegta tteatggeag taetgttaae tetecaaaca eccegeeggte aaatteattg gggeaatete tetaagatag gggtagtagg aataggaagt geaagetaea aagttatgae tegtteeage cateaateat tagteataaa attaatgeee aatataaete teeteaataa etgeaegagg gtagagattg eagaataeag gagaetaeta agaacagttt tggaaceaat tagggatgea ettaatgeaa tgaeeeagaa eataaggeeg gtteagageg tagetteaag taggagaeea aagaatttg egggagtagt eetggeaggt geggeeetag gtgttgeeae agetgeteag ataacageeg geattgeaet teaceggtee</pre>	120 180 240 360 420
<pre><211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 36 atgggtetea aggtgaacgt etetgeegta tteatggeag taetgttaae tetecaaaca ceegeeggte aaatteattg gggeaatete tetaagatag gggtagtagg aataggaagt geaagetaea aagttatgae tegtteeage cateaateat tagteataaa attaatgeee aatataaete teeteaataa etgeaegagg gtaggagttg cagaataeag gagaetaeta agaacagttt tggaaceaat tagggatgea ettaatgeaa tgaeecagaa cataaggeeg gtteagageg tagetteaag taggagaeac aagagattg egggagtagt eetggeaggt geggeeetag gtgttgeeae agetgeteag ataacageeg geattgeaet teaeeggtee atgetgaaet eteaggeet egaeaatetg agagegagee tggaaactae taateaggea</pre>	120 180 240 300 360 420 480
<pre><211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 36 atgggtetea aggtgaacgt etetgeegta tteatggeag taetgttaae tetecaaaca ceegeeggte aaatteattg gggeaatete tetaagatag gggtagtagg aataggaagt geaagetaca aagttatgae tegtteeage cateaateat tagteataaa attaatgeee aatataaete teeteaataa etgeaegagg gtaggagttg cagaatacag gagaetaeta agaacagttt tggaaceaat tagggatgea ettaatgeaa tgaeeeagaa eataaggeeg gtteagageg tagetteaag taggagaeac aagagattg egggagtagt eetggeaggt geggeeetag gtgttgeeae agetgeteag ataacageeg geattgeaet teaeeggtee atgetgaaet eteaggeeat egacaatetg agagegagee tggaaaetae taateaggea attgaggeaa teagacaage agggeaggag atgatattgg etgtteaggg tgteeaagae</pre>	120 180 240 300 360 420 480 540
<pre><211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 36 atgggtetea aggtgaacgt etetgeegta tteatggeag taetgttaae tetecaaaca eccegeeggte aaatteattg gggeaatete tetaagatag gggtagtagg aataggaagt geaagetaca aagttatgae tegtteeage cateaateat tagteataaa attaatgeee aatataaete teeteaataa etgeaegagg gtagagattg eagaataeag gagaetaeta agaacagttt tggaaceaat tagggatgea ettaatgeaa tgaeeeagaa eataaggeeg gtteagageg tagetteaag taggagaeea aagagattg egggagtagt eetggeaggt geggeeetag gtgttgeeae agetgeteag ataacageeg geattgeaet teaeeggtee atgetgaaet eteaggeea eggeaatetg agagegagee tggaaaetae taateaggea attgaggeaa teagaeaage agggeaggag atgatattgg etgtteaggg tgteeaagae taeateaata atgagetgat acegtetatg aaceagetat ettgtgatet aateggteage taeateaata atgagetgat acegtetages</pre>	120 180 240 300 360 420 480 540
<pre><211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 36 atgggtetca aggtgaacgt etetgeegta tteatggeag taetgttaae tetecaaaca ceegeeggte aaatteattg gggeaatete tetaagatag gggtagtagg aataggaagt geaagetaca aagttatgae tegtteeage cateaateat tagteataaa attaatgeee aatataaete teeteaataa etgeaegagg gtaggagttg cagaatacag gagaetaeta agaacagttt tggaaceaat tagggatgea ettaatgeaa tgaeeeagaa eataaggeeg gtteagageg tagetteaag taggagaeae aagagattg egggagtagt eetggeaggt geggeeetag gtgttgeeae agetgeteag ataacageeg geattgeaet teaeeggtee atgetgaaet eteaggeea eggegaggag atgatattg etgteaggat atgetgaaet eteaggeage agggeaggag atgatattg etgteagge tgeteeagae attgaggeaa teagaeaage agggeaggag atgatattg etgteagg tgteeaagae taeateaata atgagetgat acegtetatg aaceagetat ettgtgatet aateggteag aageteggge teaaattget tagatactat acagaaatee tgteattatt tggeeeeage aageteggge teaaattget tagatactat acagaaatee tgteattatt tggeeeeage aageteggge teaaattget tagatactat acagaaatee tgteattatt tggeeeeage</pre>	120 180 240 300 360 420 480 540 600
<pre><211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 36 atgggtctca aggtgaacgt ctctgccgta ttcatggcag tactgttaac tctccaaaca cccgccggtc aaattcattg gggcaatctc tctaagatag gggtagtagg aataggaagt gcaagctaca aagttatgac tcgtccagc catcaatcat tagtcataaa attaatgccc aatataactc tcctcaataa ctgcacgagg gtagagattg cagaatacag gagactacta agaacagttt tggaaccaat tagggatgca cttaatgcaa tgacccagaa cataaggccg gttcagagcg tagcttcaag taggagacac aagagattg cgggagtagt cctggcaggt atgctgaact ctcaggccat cgacaatctg agagcgagce tggaaactac taatcaggca atgctgaact ctcaggccat cgacaatctg agagcgagce tggaaactac taatcaggca atgaggcaa tcagacaagc agggcaggag atgatattgg ctgttcaggg tgtccaagac tacatcaata atgagctgat accgtctatg aaccagctat cttgtgatct aatcggcag aagctegggc tcaaattgc tagatactat acagaaatcc tgtcattat tggccccaga atgctggacc ccatatctge ggagatatct atccaggctt tgagttatgc acttggagga gagctcgggc ccaaattgc tagatactat acagaaatcc tgtcattatt tggccccagc ctacgggacc ccatatctge ggagatatct atccaggctt tgagttatgc acttggagga gatatcaata aggtgttaga aaagctcgga tacagtggag gcgatttact aggcatctta</pre>	120 180 240 300 360 420 480 540 600 660 720 780
<pre><211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 36 atgggtetca aggtgaacgt etetgecgta tteatggeag taetgttaae tetecaaaca ceegeeggte aaatteattg gggeaatete tetaagatag gggtagtagg aataggaagt geaagetaca aagttatgae tegtecaage cateaateat tagteataaa attaatgeee aatataaete teeteaata etgeaegagg gtagagattg eagaataeag gagaetaeta agaacagttt tggaaecaat tagggatgea ettaatgeaa tgaeceagaa eataaggeeg getgeeetag gtgttgeeae agetgeteag ataacageeg geattgeaet teaceggtee atgetgaaet eteagaeaage agggeaggag atgatattgg etgtteaggg tgtecaagae taeateaata atgagetgat acegteatg aaceagetat etgtecaage taeateaata atgagetgat acegteatg aaceagetat etgteataat tageeetag aageteggge teaaattget tagataetat acagaaatee tgteattatt tggeeeeage ctaegggaee ceataetge ggagatatet ateeaggett tgagttatge acttggagga</pre>	120 180 240 300 360 420 480 540 600 660

509

-continued

ggggtetegt acaacatagg eteteaagag tggtatacea etgtgeecaa gtatgttgea	960
acccaagggt accttatoto gaattttgat gagtoatoat gtaotttoat gooagaggg	1020
actgtgtgca gccaaaatgc cttgtacccg atgagteete tgetecaaga atgeeteegg	1080
gggtccacca agteetgtge tegtacaete gtateegggt ettttgggaa eeggtteatt	1140
ttatcacaag ggaacctaat agccaattgt gcatcaattc tttgtaagtg ttacacaaca	1200
ggtacgatta ttaatcaaga cootgacaag atootaacat acattgotgo ogatogotgo	1260
coggtagtog aggtgaacgg cgtgaccatc caagtoggga gcaggaggta tocagacgot	1320
gtgtacttgc acagaattga cctcggtcct cccatatcat tggagaggtt ggacgtaggg	1380
acaaatetgg ggaatgeaat tgecaaattg gaggatgeea aggaattgtt ggaateateg	1440
gaccagatat tgagaagtat gaaaggttta tcgagcacta gcatagtcta catectgatt	1500
gcagtgtgtc ttggagggtt gatagggatc cccactttaa tatgttgctg cagggggggt	1560
tgtaacaaaa agggagaaca agttggtatg tcaagaccag gcctaaagcc tgaccttaca	1620
ggaacatcaa aatcctatgt aagatcgctt tga	1653
<210> SEQ ID NO 37 <211> LENGTH: 1925 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 37	
ggggaaataa gagagaaaag aagagtaaga agaaatataa gagccaccat gggtctcaag	60
gtgaacgtot otgoogtatt catggoagta otgttaacto tooaaacaco ogooggtoaa	120
attcattggg gcaatctctc taagataggg gtagtaggaa taggaagtgc aagctacaaa	180
gttatgactc gttccagcca tcaatcatta gtcataaaat taatgcccaa tataactctc	240
ctcaataact gcacgagggt agagattgca gaatacagga gactactaag aacagttttg	
gaaccaatta gggatgcact taatgcaatg acccagaaca taaggccggt tcagagcgta	
getteaagta ggagacacaa gagatttgeg ggagtagtee tggeaggtge ggeeetaggt	420
gttgccacag ctgctcagat aacagccggc attgcacttc accggtccat gctgaactet	480
caggecateg acaatetgag agegageetg gaaactaeta ateaggeaat tgaggeaate	540
agacaagcag ggcaggagat gatattggct gttcagggtg tccaagacta catcaataat	600
gagetgatae egtetatgaa eeagetatet tgtgatetaa teggteagaa getegggete	660 720
aaattgetta gatactatac agaaateetg teattatttg geeeeageet aegggaeeee atatetgegg agatatetat ceaggetttg agttatgeae ttggaggaga tateaataag	
gtgttagaaa agotoggata cagtggaggo gatttactag goatottaga gagoagagga	840
ataaaggoto ggataactca cgtogacaca gagtoctact toatagtoot cagtatagoo	900
tatcogacge tgtcogagat taagggggtg attgtccace ggctagaggg ggtctcgtac	960
	1020
aacatagget etcaagagtg gtataccaet gtgeecaagt atgttgeaac ecaagggtae	1020
ettatetega attttgatga gteateatgt aettteatge eagaggggae tgtgtgeage	
caaaatgoot tgtaccogat gagtoototg otocaagaat gootoogggg gtocaccaag	
teetgtgete gtacaetegt atcegggtet tttgggaaee ggtteatttt atcaeaaggg	1200
aacctaatag ccaattgtgc atcaattett tgtaagtgtt acacaacagg tacgattatt	1260

511

-continued	
aatcaagacc ctgacaagat cctaacatac attgctgeeg atcgctgeec ggtagtegag	1320
gtgaacggcg tgaccatcca agtcgggagc aggaggtatc cagacgctgt gtacttgcac	1380
agaattgacc tcggtcctcc catatcattg gagaggttgg acgtagggac aaatctgggg	1440
aatgcaattg ccaaattgga ggatgccaag gaattgttgg aatcatcgga ccagatattg	1500
agaagtatga aaggtttatc gagcactagc atagtctaca teetgattge agtgtgtett	1560
ggagggttga tagggateee caetttaata tgttgetgea gggggegttg taacaaaaag	1620
ggagaacaag ttggtatgtc aagaccaggc ctaaagcetg acettacagg aacatcaaaa	1680
teetatgtaa gategetttg atgataatag getggageet eggtggeeaa gettettgee	1740
cettgggeet ceeeccagee ceteeteee tteetgeace egtaceeeeg tggtetttga	1800
ataaagtotg agtgggoggo aaaaaaaaa aaaaaaaaa aaaaaaaaaa	1860
AAAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAA	1920
tctag	1925
<210> SEQ ID NO 38 <211> LENGTH: 1864 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 38	
- tcaagctttt ggaccctogt acagaagota atacgactca ctatagggaa ataagagaga	60
aaagaagagt aagaagaaat ataagagcca ccatgggtct caaggtgaac gtctctgtca	120
tattcatggc agtactgtta actetteaaa caeceaeegg teaaateeat tggggeaate	180
tetetaagat aggggtggta ggggtaggaa gtgeaageta eaaagttatg aetegtteea	240
gccatcaatc attagtcata aagttaatgc ccaatataac tctcctcaac aattgcacga	300
gggtagggat tgcagaatac aggagactac tgagaacagt tetggaacea attagagatg	360
cacttaatgc aatgacccag aatataagac cggttcagag tgtagcttca agtaggagac	420
acaagagatt tgegggagtt gteetggeag gtgeggeeet aggegttgee acagetgete	480
aaataacago oggtattgoa ottoaccagt coatgotgaa ototoaagoo atogacaato	540
tgagagegag eetagaaact actaateagg caattgagge aateagaeaa geagggeagg	600
agatgatatt ggctgttcag ggtgtccaag actacatcaa taatgagctg ataccgtcta	660
tgaatcaact atcttgtgat ttaatcggcc agaagctagg gctcaaattg ctcagatact	720
atacagaaat cotgtoatta tttggcooca gottacggga coccatatot goggagatat	780
ctatecagge tttgagetat gegettggag gagatateaa taaggtgttg gaaaageteg	840
gatacagtgg aggtgatcta ctgggcatct tagagagcag aggaataaag gcccggataa	900
ctcacgtcga cacagagtee tactteattg tactcagtat ageetateeg aegetateeg	960
agattaaggg ggtgattgtc caceggetag agggggtete gtacaacata ggeteteaag	1020
agtggtatac cactgtgccc aagtatgttg caacccaagg gtaccttatc tcgaattttg	1080
atgagtcatc atgcactttc atgccagagg ggactgtgtg cagccagaat gccttgtacc	1140
cgatgagtee tetgeteeaa gaatgeetee gggggteeae taagteetgt getegtaeae	1200
togtatoogg gtotttoggg aacoggttoa ttttatoaca ggggaacota atagooaatt	1260
gigcalcaat colligcaag igilacacaa caggaacaat callaalcaa gacooigaca	1320
agateetaac atacattget geegateact geeeggtggt egaggtgaat ggegtgaeea	1380

tecaagtegg gageaggagg tateeggaeg etgtgtaett geacaggatt gaeeteggte	1440						
cteecatate tttggagagg ttggaegtag ggaeaaatet ggggaatgea attgetaagt	1500						
tggaggatgc caaggaattg ttggagtcat cggaccagat attgaggagt atgaaaggtt	1560						
tatogagoao tagtatagtt tacatootga ttgoagtgtg tottggagga ttgataggga	1620						
teecegettt aatatgttge tgeaggggge gttgtaacaa gaagggagaa caagttggta	1680						
tgtcaagacc aggectaaag cetgatetta caggaacate aaaateetat gtaaggteae	1740						
totgatgata ataggotgga gootoggtgg coaagottot tgeocottgg gootococoo	1800						
agececteet cecetteetg caccegtace ceegtggtet ttgaataaag tetgagtggg	1860						
cggc	1864						
<210> SEQ ID NO 39 <211> LENGTH: 1653 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 39							
atgggtetea aggtgaaegt etetgteata tteatggeag taetgttaae tetteaaaea	60						
cccaccggtc aaatccattg gggcaatctc tctaagatag gggtggtagg ggtaggaagt	120						
gcaagctaca aagttatgac tegtteeage cateaateat tagteataaa gttaatgeee	180						
aatataactc tcctcaacaa ttgcacgagg gtagggattg cagaatacag gagactactg	240						
agaacagtto tggaaccaat tagagatgoa ottaatgoaa tgacocagaa tataagacog	300						
gttcagagtg tagettcaag taggagacac aagagatttg egggagttgt eetggeaggt	360						
geggeeetag gegttgeeae agetgeteaa ataacageeg gtattgeaet teaceagtee	420						
atgetgaact etcaageeat egacaatetg agagegagee tagaaactae taateaggea	480						
attgaggcaa tcagacaagc agggcaggag atgatattgg ctgttcaggg tgtccaagac	540						
tacatcaata atgagetgat accgtetatg aatcaactat ettgtgattt aateggeeag	600						
aagctagggc tcaaattgct cagatactat acagaaatcc tgtcattatt tggccccagc	660						
ttacgggacc ccatatetge ggagatatet atccaggett tgagetatge gettggagga	720						
gatatcaata aggtgttgga aaagctcgga tacagtggag gtgatctact gggcatctta	780						
gagagcagag gaataaaggc ccggataact cacgtcgaca cagagtccta cttcattgta	840						
ctcagtatag cotatoogac gotatoogag attaaggggg tgattgtooa coggotagag	900						
ggggtetegt acaacatagg eteteaagag tggtatacea etgtgeeeaa gtatgttgea	960						
acccaagggt accttatete gaattttgat gagteateat geaettteat geeagagggg	1020						
actgtgtgca gecagaatge ettgtaeeeg atgagteete tgeteeaaga atgeeteegg	1080						
gggtccacta agteetgtge tegtacaete gtateegggt etttegggaa eeggtteatt	1140						
ttatcacagg ggaacctaat agccaattgt gcatcaatcc tttgcaagtg ttacacaaca	1200						
ggaacaatca ttaatcaaga cootgacaag atootaacat acattgotgo ogatcactgo	1260						
coggtggtog aggtgaatgg ogtgaccato caagtoggga goaggaggta tooggaogot	1320						
gtgtacttgc acaggattga cctcggtcct cccatatctt tggagaggtt ggacgtaggg	1380						
acaaatctgg ggaatgcaat tgctaagttg gaggatgcca aggaattgtt ggagtcatcg	1440						
gaccagatat tgaggagtat gaaaggttta tcgagcacta gtatagttta catcctgatt	1500						

515

-continued

-continued	
gcagtgtgtc ttggaggatt gatagggatc cccgctttaa tatgttgctg cagggggcgt	1560
tgtaacaaga agggagaaca agttggtatg tcaagaccag gcctaaagcc tgatcttaca	1620
ggaacatcaa aatcctatgt aaggtcactc tga	1653
<210> SEQ ID NO 40 <211> LENGTH: 1925 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 40	
ggggaaataa gagagaaaag aagagtaaga agaaatataa gagccaccat gggtctcaag	60
gtgaacgtot otgtoatatt catggoagta otgttaacto ttoaaacaoo caooggtoaa	120
atccattggg gcaatctctc taagataggg gtggtagggg taggaagtgc aagctacaaa	180
gttatgactc gttccagcca tcaatcatta gtcataaagt taatgcccaa tataactctc	240
ctcaacaatt gcacgagggt agggattgca gaatacagga gactactgag aacagttetg	300
gaaccaatta gagatgcact taatgcaatg acccagaata taagaccggt tcagagtgta	360
getteaagta ggagacacaa gagatttgeg ggagttgtee tggeaggtge ggeeetagge	420
gttgccacag ctgctcaaat aacagccggt attgcacttc accagtccat gctgaactct	480
caagccatcg acaatctgag agcgagccta gaaactacta atcaggcaat tgaggcaatc	540
agacaagcag ggcaggagat gatattggct gttcagggtg tccaagacta catcaataat	600
gagetgatae egtetatgaa teaaetatet tgtgatttaa teggeeagaa getagggete	660
aaattgotoa gatactatac agaaatootg toattatttg goocoagott acgggacooo	720
atatotgogg agatatotat ocaggotttg agotatgogo ttggaggaga tatoaataag	780
gtgttggaaa ageteggata cagtggaggt gatetaetgg geatettaga gageagagga	840
ataaaggeee ggataactea egtegacaca gagteetaet teattgtaet eagtatagee	900
tateegaege tateegagat taagggggtg attgteeaee ggetagaggg ggtetegtae	960
aacatagget etcaagagtg gtataceaet gtgeeeaagt atgttgeaae eeaagggtae	1020
ettatetega attttgatga gteateatge aettteatge eagagggggae tgtgtgeage	1080
cagaatgoot tgtaccogat gagtoototg otocaagaat gootoogggg gtocactaag	1140
teetgtgete gtacaetegt ateegggtet ttegggaace ggtteatttt ateaeagggg	1200
aacctaatag ccaattgtgc atcaateett tgeaagtgtt acacaacagg aacaateatt	1260
aatcaagace etgacaagat eetaacatae attgetgeeg ateaetgeee ggtggtegag	1320
gtgaatggog tgaccatoca agtogggago aggaggtato oggaogotgt gtaottgoad	1380
aggattgace teggteetee catatetttg gagaggttgg acgtagggae aaatetgggg	1440
aatgcaattg ctaagttgga ggatgccaag gaattgttgg agtcatcgga ccagatattg	1500
aggagtatga aaggtttatc gagcactagt atagtttaca teetgattge agtgtgtett	1560
ggaggattga tagggateee egetttaata tgttgetgea gggggegttg taacaagaag	1620
ggagaacaag ttggtatgtc aagaccaggc ctaaageetg atettacagg aacatcaaaa	1680
teetatgtaa ggteaetetg atgataatag getggageet eggtggeeaa gettettgee	1740
cettgggeet ecceccagee estecteece tteetgeace egtaceeeg tggtetttga	1800
ataaagtotg agtgggoggo aaaaaaaaaa aaaaaaaaaa	1860
aaaaaaaaa aaaaaaaaaa aaaaaaaaa aaaaaaaa	1920

5	1	7
Э	T	1

518

-continued

tctag

<210> SEQ ID NO 41 <211> LENGTH: 2065 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide						
<400> SEQUENCE: 41						
teaagetttt ggaccetegt	acagaagcta	atacgactca	ctatagggaa	ataagagaga	60	
aaagaagagt aagaagaaat	ataagageea	ccatgtcacc	gcaacgagac	cggataaatg	120	
cettetacaa agataaceet	tateccaagg	gaagtaggat	agttattaac	agagaacatc	180	
ttatgattga cagaccctat	gttetgetgg	ctgttctgtt	cgtcatgttt	ctgagettga	240	
teggattget ggeaattgea	ggcattagac	tteateggge	agccatctac	accgcggaga	300	
tecataaaag eetcagtaee	aatctggatg	tgactaactc	categageat	caggtcaagg	360	
acgtgetgae accaetett	aaaatcatcg	gggatgaagt	gggcctgaga	acaceteaga	420	
gattcactga cctagtgaaa	ttcatctcgg	acaagattaa	atteettaat	ccggataggg	480	
agtacgaett cagagatete	acttggtgca	tcaaccegee	agagaggatc	aaactagatt	540	
atgatcaata ctgtgcagat	gtggetgetg	aagagctcat	gaatgcattg	gtgaactcaa	600	
ctctactgga gaccagaaca	accactcagt	tcctagctgt	ctcaaaggga	aactgeteag	660	
ggcccactac aatcagaggt	caatteteaa	acatgtcgct	gtccttgttg	gacttgtact	720	
taggtegagg ttacaatgtg	tcatctatag	tcactatgac	atcccaggga	atgtatgggg	780	
gaacctacct agttgaaaag	cctaatctga	acagcaaagg	gtcagagttg	tcacaactga	840	
gcatgtaccg agtgtttgaa	gtaggtgtga	tcagaaaccc	gggtttgggg	geteeggtgt	900	
tccatatgac aaactatttt	gagcaaccag	tcagtaatgg	tctcggcaac	tgtatggtgg	960	
ctttggggga geteaaaete	geagecettt	gtcacgggga	cgattctatc	ataatteeet	1020	
atcagggatc agggaaaggt	gtcagettee	agctcgtcaa	getgggtgte	tggaaatccc	1080	
caaccgacat gcaatectgg	gtccccttat	caacggatga	tccagtggta	gacaggettt	1140	
acctctcatc tcacagaggt	gtcatcgctg	acaatcaagc	aaaatgggct	gteeegacaa	1200	
cacgaacaga tgacaagttg	cgaatggaga	catgcttcca	gcaggcgtgt	aaaggtaaaa	1260	
tccaagcact ctgcgagaat	cccgagtggg	taccattgaa	ggataacagg	atteetteat	1320	
acggggteet gtetgttgat	ctgagtctga	cggttgagct	taaaatcaaa	attgettegg	1380	
gattegggee attgateaca	cacggeteag	ggatggacct	atacaaatcc	aactgcaaca	1440	
atgtgtattg getgaetatt	ccgccaatga	gaaatctagc	cttaggcgta	atcaacacat	1500	
tggagtggat accgagattc	aaggttagtc	ccaacctctt	cactgtccca	attaaggaag	1560	
caggogaaga ctgccatgcc	ccaacatacc	tacctgcgga	ggtggacggt	gatgtcaaac	1620	
tcagttecaa cetggtgatt	ctacctggtc	aagatctcca	atatgttttg	gcaacctacg	1680	
atacctccag ggttgagcat	getgtggttt	attacgttta	cageccaage	cgctcatttt	1740	
cttactttta tccttttagg	ttgcctataa	agggggtccc	aatcgaacta	caagtggaat	1800	
gcttcacatg ggatcaaaaa	ctctggtgcc	gtcacttctg	tgtgettgeg	gactcagaat	1860	
ccggtggact tatcactcac	tctgggatgg	tgggcatggg	agtcagetge	acagetacee	1920	
gggaagatgg aaccaatcgc	agataatgat	aataggetgg	ageeteggtg	gccaagcttc	1980	

519

-continued

520

		-continued	
ttgeeeettg ggeetee	cood cagecooted tecectteet	gcaccegtac ceeegtggte	2040
tttgaataaa gtotgag	jtgg gegge		2065
<220> FEATURE:		ectide	
<400> SEQUENCE: 42	2		
atgtcaccgc aacgaga	accg gataaatgcc ttctacaaag	g ataaccetta teecaaggga	60
agtaggatag ttattaa	acag agaacatett atgattgaca	a gaccotatgt totgotggot	120
gttetgtteg teatgtt	ttet gagettgate ggattgetge	y caattgeagg cattagaett	180
categggeag ceateta	acac cgcggagatc cataaaagcc	: tcagtaccaa tctggatgtg	240
actaactcca togagoa	atca ggtcaaggac gtgctgacac	: cactetttaa aateateggg	300
gatgaagtgg geetgaq	gaac acctcagaga ttcactgacc	tagtgaaatt catctoggac	360
aagattaaat toottaa	atee ggatagggag taegaettea	a gagateteae ttggtgeate	420
aaccogccag agaggat	tcaa actagattat gatcaatact	: gtgcagatgt ggctgctgaa	480
gageteatga atgeatt	tggt gaactcaact ctactggaga	a ccagaacaac cactcagttc	540
ctagctgtct caaaggg	gaaa ctgctcaggg cccactacaa	a tcagaggtca attetcaaac	600
atgtegetgt cettgti	tgga ettgtaetta ggtegaggtt	acaatgtgtc atctatagtc	660
actatgacat cccaggo	gaat gtatgggggga acctacctag	g ttgaaaagcc taatctgaac	720
agcaaagggt cagagtt	tgtc acaactgagc atgtaccgag	g tgtttgaagt aggtgtgatc	780
agaaaccegg gtttggg	gggc teeggtgtte catatgacaa	a actattttga gcaaccagtc	840
agtaatggtc toggcaa	actg tatggtgget ttggggggage	: tcaaactcgc agecetttgt	900
cacgggggacg attetat	teat aatteeetat cagggateag	g ggaaaggtgt cagetteeag	960
ctogteaage tgggtgt	tetg gaaateeeca acegacatge	aateetgggt eeesttatea	1020
acggatgatc cagtggt	taga caggetttac eteteatete	acagaggtgt categetgae	1080
aatcaagcaa aatgggo	ctgt coogacaaca ogaacagato	y acaagttgog aatggagaca	1140
	gtaa aggtaaaatc caagcactet		1200
	ggat teetteatae ggggteetgt		
	aaat tgetteggga ttegggeeat		1320
	ccaa ctgcaacaat gtgtattggc		1380
	taat caacacattg gagtggatac		1440
-	caat taaggaagca ggcgaagact gtga tgtcaaactc agttccaacc		1500
	tgge aacetaegat aceteeagge		1620
	geeg cteattttet taettttate		1680
	taca agtggaatgc ttcacatggg		1740
cacttetgtg tgettge	egga etcagaatee ggtggaetta	a teacteacte tgggatggtg	1800
ggcatgggag teagetg	geac agetaceegg gaagatggaa	a ccaatcgcag ataa	1854

<210> SEQ ID NO 43 <211> LENGTH: 2126

5	•	1
-	1	

-continued

<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 43 ggggaaataa gagagaaaag aagagtaaga agaaatataa gagccaccat gtcaccgcaa 60 egagacegga taaatgeett etacaaagat aaceettate eeaagggaag taggatagtt 120 attaacagag aacatettat gattgacaga cectatgtte tgetggetgt tetgttegte 180 atgtttetga gettgategg attgetggea attgeaggea ttagaettea tegggeagee 240 atetacaceg eggagateea taaaageete agtaceaate tggatgtgae taaeteeate 300 gagcatcagg tcaaggacgt gctgacacca ctotttaaaa tcatcgggga tgaagtgggc 360 ctgagaacac ctcagagatt cactgaccta gtgaaattca tctcggacaa gattaaattc 420 480 ettaateegg atagggagta egaetteaga gateteaett ggtgeateaa eeegeeagag aggatcaaac tagattatga tcaatactgt gcagatgtgg ctgctgaaga gctcatgaat 540 gcattggtga actcaactet actggagace agaacaacea etcagtteet agetgtetea 600 aagggaaact geteagggee cactacaate agaggteaat teteaaacat gtegetgtee 660 ttgttggadt tgtadttagg tdgaggttad aatgtgtdat dtatagtdad tatgadated 720 cagggaatgt atgggggaac ctacctagtt gaaaageeta atetgaacag caaagggtea 780 840 gagttgtcac aactgagcat gtaccgagtg tttgaagtag gtgtgatcag aaacccgggt ttggggggtt cggtgtteca tatgacaaac tattttgagc aaccagtcag taatggtetc 900 ggcaactgta tggtggcttt gggggggctc aaactcgcag ccctttgtca cggggacgat 960 tetateataa tteeetatea gggateaggg aaaggtgtea getteeaget egteaagetg 1020 ggtgtctgga aatccccaac cgacatgcaa tcctgggtcc ccttatcaac ggatgatcca 1080 gtggtagaca ggetttacet eteateteae agaggtgtea tegetgacaa teaagcaaaa 1140 tgggctgtcc cgacaacacg aacagatgac aagttgcgaa tggagacatg cttccagcag 1200 gcgtgtaaag gtaaaatcca agcactctgc gagaatcccg agtgggtacc attgaaggat 1260 aacaggatte etteataegg ggteetgtet gttgatetga gtetgaeggt tgagettaaa 1320 atcaaaattg cttogggatt ogggooattg atcacacaog gotcagggat ggacotatac 1380 aaateeaact geaacaatgt gtattggetg actatteege caatgagaaa tetageetta 1440 ggegtaatea acacattgga gtggataeeg agatteaagg ttagteeeaa eetetteaet 1500 gtoccaatta aggaagcagg cgaagactgo catgocccaa catacotaco tgoggaggtg 1560 gacggtgatg teaaacteag ttecaacetg gtgattetae etggteaaga tetecaatat 1620 1680 gttttggcaa cotacgatac otocagggtt gagcatgotg tggtttatta ogtttacago ccaageeget cattitetta ettitateet titaggiige etataaaggg ggieeeaate 1740 gaactacaag tggaatgett cacatgggat caaaaactet ggtgeegtea ettetgtgtg 1800 ettgeggaet cagaateegg tggaettate acteactetg ggatggtggg catgggagte 1860 agetgeacag etaceeggga agatggaace aategeagat aatgataata ggetggagee 1920 teggtggeea agettettge ceettgggee teecceage cectecteee ettectgeae 1980 ccgtaccccc gtggtctttg aataaagtet gagtgggcgg caaaaaaaaaa aaaaaaaaaa 2040 2100 2126 aaaaaaaaaa aaaaaaaaaa atctag

-continued

<210> SEQ ID NO 44 <211> LENGTH: 2065 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 44 tcaagetttt ggaceetegt acagaageta ataegaetea etatagggaa ataagagaga 60 aaagaagagt aagaagaaat ataagagcca ccatgtcacc acaacgagac cggataaatg 120 cettetacaa agacaaceee cateetaagg gaagtaggat agttattaac agagaacate 180 ttatgattga tagacettat gttttgetgg etgttetatt egteatgttt etgagettga 240 tegggttget agecattgea ggeattagae tteateggge agecatetae acegeagaga 300 tecataaaag eeteageace aatetggatg taactaacte aategageat caggttaagg 360 420 acgtgetgae accactette aagateateg gtgatgaagt gggettgagg acaceteaga gattcactga cetagtgaag ttcatetetg acaagattaa attcettaat ceggacaggg 480 aatacgactt cagagatete aettggtgta teaaceegee agagagaate aaattggatt 540 600 atgatcaata ctgtgcagat gtggctgctg aagaactcat gaatgcattg gtgaactcaa etetaetgga gaccagggea accaateagt teetagetgt eteaaaggga aactgeteag 660 ggeccactac aatcagagge caatteteaa acatgteget gteeetgttg gaettgtatt 720 taagtegagg ttacaatgtg teatetatag teactatgae ateceaggga atgtaegggg 780 qaacttacct aqtqqaaaaq cctaatctqa qcaqcaaaqq qtcaqaqttq tcacaactqa 840 gcatgcaccg agtgtttgaa gtaggtgtta tcagaaatcc gggtttgggg gctccggtat 900 tecatatgae aaactatett gageaaceag teagtaatga ttteageaae tgeatggtgg 960 etttgggggga geteaagtte geageeetet gteacaggga agattetate acaatteeet 1020 atcagggate agggaaaggt gteagettee agettgteaa getaggtgte tggaaateee 1080 caacegacat geaateetgg gteeceetat caacggatga teeagtgata gacaggettt 1140 acctctcatc tcacagagge gttatcgetg acaatcaage aaaatggget gteecgacaa 1200 cacggacaga tgacaagttg cgaatggaga catgottoca gcaggogtgt aagggtaaaa 1260 tecaageact ttgegagaat eeegagtgga caccattgaa ggataacagg atteetteat 1320 acggggtett gtetgttgat etgagtetga cagttgaget taaaateaaa attgttteag 1380 gattegggee attgateaca caeggtteag ggatggaeet atacaaatee aaceacaaca 1440 atatgtattg getgactate eegecaatga agaacetgge ettaggtgta ateaacacat 1500 tggagtggat accgagatte aaggttagte ceaacetett cactgtteea attaaggaag 1560 caggegagga etgecatgee ceaacatace tacetgegga ggtggatggt gatgteaaac 1620 1680 tcaqttccaa tctqqtqatt ctacctqqtc aaqatctcca atatqttctq qcaacctacq atactteeag agttgaacat getgtagttt attacgttta cageceaage egeteatttt 1740 ettaetttta teettttagg ttgeetgtaa gggggggteee eattgaatta caagtggaat 1800 getteacatg ggaccaaaaa etetggtgee gteacttetg tgtgettgeg gacteagaat 1860 etggtggaca tateacteac tetgggatgg tgggcatggg agteagetge acagecaete 1920 gggaagatgg aaccagcogc agatagtgat aataggotgg agootoggtg gocaagotto 1980 ttgeccettg ggeeteeeee cageceetee teeeetteet geaceegtae eeeegtggte 2040 tttgaataaa gtetgagtgg gegge 2065

-continued

60

120

180

240

300

360

420

480

540

600

660 720

780

840

900

960

<210> SEQ ID NO 45 <211> LENGTH: 1854 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 45 atgtcaccac aacgagaccg gataaatgcc ttctacaaag acaaccecca tectaaggga agtaggatag ttattaacag agaacatett atgattgata gaeettatgt tttgetgget gttetatteg teatgtttet gagettgate gggttgetag ceattgeagg eattagaett categggeag ceatetaeae egeagagate cataaaagee teageaeeaa tetggatgta actaactcaa tegageatca ggttaaggae gtgetgaeae caetetteaa gateateggt gatgaagtgg gettgaggae aceteagaga tteactgaee tagtgaagtt catetetgae aagattaaat teettaatee ggacagggaa taegaettea gagateteae ttggtgtate aacccgccag agagaatcaa attggattat gatcaatact gtgcagatgt ggctgctgaa gaactcatga atgcattggt gaactcaact ctactggaga ccagggcaac caatcagttc ctagetgtet caaagggaaa etgeteaggg ceeactacaa teagaggeea atteteaaae atgtegetgt ceetgttgga ettgtattta agtegaggtt acaatgtgte atetatagte actatgacat cccagggaat gtacggggga acttacctag tggaaaagcc taatctgagc agcaaagggt cagagttgtc acaactgagc atgcaccgag tgtttgaagt aggtgttatc agaaateegg gtttgggggge teeggtatte catatgaeaa actatettga geaaceagte agtaatgatt teageaactg catggtgget ttgggggage teaagttege ageestetgt cacagggaag attetateac aatteestat cagggateag ggaaaggtgt cagetteeag ettgtcaage taggtgtetg gaaateeeca acegacatge aateetgggt eeeetatea 1020 acggatgate cagtgataga caggetttae eteteatete acagaggegt tategetgae 1080 aatcaagcaa aatgggetgt eeegacaaca eggacagatg acaagttgeg aatggagaca 1140 tgetteeage aggegtgtaa gggtaaaate caageaettt gegagaatee egagtggaca 1200 ccattgaagg ataacaggat teetteatae ggggtettgt etgttgatet gagtetgaca 1260 gttgagetta aaatcaaaat tgtttcagga ttegggeeat tgatcacaca eggttcaggg 1320 atggacetat acaaateeaa eeacaacaat atgtattgge tgactateee gecaatgaag 1380 aacctggcot taggtgtaat caacacattg gagtggatac cgagattcaa ggttagtcoc 1440 aacctettea etgtteeaat taaggaagea ggegaggaet geeatgeeee aacataeeta 1500 cctgcggagg tggatggtga tgtcaaactc agttccaatc tggtgattct acctggtcaa 1560 gatetecaat atgttetgge aacetaegat aettecagag ttgaacatge tgtagtttat 1620 tacgtttaca geocaageeg eteatttet taetttate ettttaggtt geetgtaagg 1680 ggggteecca ttgaattaca agtggaatge tteacatggg accaaaaaet etggtgeegt 1740 cacttetgtg tgettgegga etcagaatet ggtggacata teacteacte tgggatggtg 1800 ggcatgggag tcagctgcac agccactcgg gaagatggaa ccagccgcag atag 1854

<210> SEQ ID NO 46 <211> LENGTH: 2126 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

-continued

<223> OTHER	R INFORMATIO	DN: Synthet:	ic Polynucle	eotide			
<400> SEQUE	ENCE: 46						
ggggaaataa	gagagaaaag	aagagtaaga	agaaatataa	gagecaccat	gtcaccacaa	60	
cgagaccgga	taaatgeett	ctacaaagac	aacccccatc	ctaagggaag	taggatagtt	120	
attaacagag	aacatettat	gattgataga	ccttatgttt	tgetggetgt	tctattcgtc	180	
atgtttctga	gettgategg	gttgctagcc	attgcaggca	ttagacttca	tcgggcagcc	240	
atctacaccg	cagagateca	taaaageete	agcaccaatc	tggatgtaac	taactcaatc	300	
gagcatcagg	ttaaggacgt	gctgacacca	ctcttcaaga	tcatcggtga	tgaagtgggc	360	
ttgaggacac	ctcagagatt	cactgaccta	gtgaagttca	tctctgacaa	gattaaattc	420	
cttaatcogg	acagggaata	cgacttcaga	gateteaett	ggtgtatcaa	cccgccagag	480	
agaatcaaat	tggattatga	tcaatactgt	gcagatgtgg	ctgctgaaga	actcatgaat	540	
gcattggtga	actcaactct	actggagacc	agggcaacca	atcagtteet	agetgtetea	600	
aagggaaact	gctcagggcc	cactacaatc	agaggccaat	tetcaaacat	gtegetgtee	660	
ctgttggact	tgtatttaag	tcgaggttac	aatgtgtcat	ctatagtcac	tatgacatcc	720	
cagggaatgt	acgggggaac	ttacctagtg	gaaaagceta	atetgageag	caaagggtca	780	
gagttgtcac	aactgagcat	gcaccgagtg	tttgaagtag	gtgttatcag	aaatccgggt	840	
ttggggggtc	cggtattcca	tatgacaaac	tatettgage	aaccagtcag	taatgatttc	900	
agcaactgca	tggtggettt	ggggggagete	aagttegeag	ccetetgtea	cagggaagat	960	
tctatcacaa	ttecctatea	gggatcaggg	aaaggtgtca	gettecaget	tgtcaagcta	1020	
ggtgtetgga	aatcoccaac	cgacatgcaa	teetgggtee	ccctatcaac	ggatgatcca	1080	
gtgatagaca	ggetttaeet	ctcatctcac	agaggegtta	tcgctgacaa	tcaagcaaaa	1140	
tgggetgtee	cgacaacacg	gacagatgac	aagttgegaa	tggagacatg	cttccagcag	1200	
gcgtgtaagg	gtaaaatcca	agcactttgc	gagaatcccg	agtggacacc	attgaaggat	1260	
aacaggattc	cttcatacgg	ggtettgtet	gttgatctga	gtetgaeagt	tgagettaaa	1320	
atcaaaattg	tttcaggatt	cgggccattg	atcacacacg	gttcagggat	ggacctatac	1380	
aaatccaacc	acaacaatat	gtattggetg	actatecege	caatgaagaa	cctggcctta	1440	
ggtgtaatca	acacattgga	gtggataccg	agattcaagg	ttagteccaa	cctcttcact	1500	
gttccaatta	aggaagcagg	cgaggactgc	catgeceeaa	catacctacc	tgcggaggtg	1560	
gatggtgatg	tcaaactcag	ttccaatctg	gtgattctac	ctggtcaaga	tctccaatat	1620	
gttetggeaa	cctacgatac	ttccagagtt	gaacatgetg	tagtttatta	cgtttacagc	1680	
ccaageeget	cattttetta	etttateet	tttaggttgc	ctgtaagggg	ggtecceatt	1740	
gaattacaag	tggaatgett	cacatgggac	caaaaactet	ggtgccgtca	cttetgtgtg	1800	
cttgcggact	cagaatctgg	tggacatatc	actcactctg	ggatggtggg	catgggagtc	1860	
agctgcacag	ccactcggga	agatggaacc	agccgcagat	agtgataata	ggetggagee	1920	
teggtggeea	agettettge	ccettgggcc	teccccage	ccetcctccc	cttcctgcac	1980	
cegtacecee	gtggtetttg	aataaagtct	gagtgggggg	caaaaaaaaaa	aaaaaaaaaa	2040	
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2100	
	aaaaaaaaa					2126	
		5					

<210> SEQ ID NO 47 <211> LENGTH: 550

529

-continued

<213 <220	2> TY 3> OF 2> FE	RGAN EATUR	ESM: RE:				-		0.01		lde					
	> 01 > SE				FION	: SYI	ntnet	10	Poly	pepti	lae					
Met 1	Gly	Leu	Гла	Val 5	Asn	Val	Ser	Ala	Val 10	Phe	Met	Ala	Val	Leu 15	Leu	
Thr	Leu	Gln	Thr 20	Pro	Ala	Gly	Gln	Ile 25	His	Trp	Gly	Asn	Leu 30	Ser	Гуз	
Ile	Gly	Val 35	Val	Gly	Ile	Gly	Ser 40	Ala	Ser	Tyr	Lys	Val 45	Met	Thr	Arg	
Ser	Ser 50	His	Gln	Ser	Leu	Val 55	Ile	ГÀЗ	Leu	Met	Pro 60	Asn	Ile	Thr	Leu	
Leu 65	Asn	Asn	Суз	Thr	Arg 70	Val	Glu	Ile	Ala	Glu 75	Tyr	Arg	Arg	Leu	Leu 80	
Arg	Thr	Val	Leu	Glu 85	Pro	Ile	Arg	Asp	Ala 90	Leu	Asn	Ala	Met	Thr 95	Gln	
Asn	Ile	Arg	Pro 100	Val	Gln	Ser	Val	Ala 105	Ser	Ser	Arg	Arg	His 110	ГАз	Arg	
Phe	Ala	Gly 115	Val	Val	Leu	Ala	Gly 120	Ala	Ala	Leu	Gly	Val 125	Ala	Thr	Ala	
Ala	Gln 130	Ile	Thr	Ala	Gly	Ile 135	Ala	Leu	His	Arg	Ser 140	Met	Leu	Asn	Ser	
Gln 145	Ala	Ile	Asp	Asn	Leu 150	Arg	Ala	Ser	Leu	Glu 155	Thr	Thr	Asn	Gln	Ala 160	
Ile	Glu	Ala	Ile	Arg 165	Gln	Ala	Gly	Gln	Glu 170	Met	Ile	Leu	Ala	Val 175	Gln	
Gly	Val	Gln	Asp 180	Tyr	Ile	Asn	Asn	Glu 185	Leu	Ile	Pro	Ser	Met 190	Asn	Gln	
Leu	Ser	Суя 195	Asp	Leu	Ile	Gly	Gln 200	гуз	Leu	Gly	Leu	Lув 205	Leu	Leu	Arg	
Tyr	Tyr 210	Thr	Glu	Ile	Leu	Ser 215	Leu	Phe	Gly	Pro	Ser 220	Leu	Arg	Asp	Pro	
Ile 225	Ser	Ala	Glu	Ile	Ser 230	Ile	Gln	Ala	Leu	Ser 235	Tyr	Ala	Leu	Gly	Gly 240	
Asp	Ile	Asn	Lys	Val 245	Leu	Glu	Lys	Leu	Gly 250	Tyr	Ser	Gly	Gly	Asp 255	Leu	
Leu	Gly	Ile	Leu 260	Glu	Ser	Arg	Gly	Ile 265	Гуз	Ala	Arg	Ile	Thr 270	His	Val	
Asp	Thr	Glu 275	Ser	Tyr	Phe	Ile	Val 280	Leu	Ser	Ile	Ala	Tyr 285	Pro	Thr	Leu	
Ser	Glu 290	Ile	ГАз	Gly	Val	Ile 295	Val	His	Arg	Leu	Glu 300	Gly	Val	Ser	Tyr	
Asn 305	Ile	Gly	Ser	Gln	Glu 310	Trp	Tyr	Thr	Thr	Val 315	Pro	Lys	Tyr	Val	Ala 320	
Thr	Gln	Gly	Tyr	Leu 325	Ile	Ser	Asn	Phe	Asp 330	Glu	Ser	Ser	Сув	Thr 335	Phe	
Met	Pro	Glu	Gly 340	Thr	Val	Сув	Ser	Gln 345	Asn	Ala	Leu	Tyr	Pro 350	Met	Ser	
Pro	Leu	Leu 355	Gln	Glu	Cys	Leu	Arg 360	Gly	Ser	Thr	Lys	Ser 365	Суя	Ala	Arg	
Thr	Leu 370	Val	Ser	Gly	Ser	Phe 375	Gly	Asn	Arg	Phe	Ile 380	Leu	Ser	Gln	Gly	

											_	con	C TII	ucu	
Asn 385	Leu	Ile	Ala	Asn	Cys 390	Ala	Ser	Ile	Leu	Cys 395	ГЛЗ	Суз	Tyr	Thr	Thr 400
Gly	Thr	Ile	Ile	Asn 405	Gln	Asp	Pro	Asp	Lys 410	Ile	Leu	Thr	Tyr	Ile 415	Ala
Ala	Asp	Arg	Сув 420	Pro	Val	Val	Glu	Val 425	Asn	Gly	Val	Thr	Ile 430	Gln	Val
Gly	Ser	Arg 435	Arg	Tyr	Pro	Asp	Ala 440	Val	Tyr	Leu	His	Arg 445	Ile	Asp	Leu
Gly	Pro 450	Pro	Ile	Ser	Leu	Glu 455	Arg	Leu	Asp	Val	Gly 460	Thr	Asn	Leu	Gly
Asn 465	Ala	Ile	Ala	ГАа	Leu 470	Glu	Asp	Ala	Lys	Glu 475	Leu	Leu	Glu	Ser	Ser 480
Asp	Gln	Ile	Leu	Arg 485	Ser	Met	Lys	Gly	Leu 490	Ser	Ser	Thr	Ser	Ile 495	Val
Tyr	Ile	Leu	Ile 500	Ala	Val	Сув	Leu	Gly 505	Gly	Leu	Ile	Gly	Ile 510	Pro	Thr
Leu	Ile	Сув 515	САв	САа	Arg	Gly	Arg 520	Суз	Asn	Lys	ГЛа	Gly 525	Glu	Gln	Val
Gly	Met 530	Ser	Arg	Pro	Gly	Leu 535	Lys	Pro	Asp	Leu	Thr 540	Gly	Thr	Ser	Lys
Ser 545	Tyr	Val	Arg	Ser	Leu 550										
<21 <21 <22 <22	1 > L1 2 > T 3 > O1 0 > F1 3 > O' 0 > S1	YPE: RGANI EATUR THER	PRT SM: E: INF	Art: DRMA			-		olyj	pept:	ide				
Met 1	Gly	Leu	Lys	Val 5	Asn	Val	Ser	Val	Ile 10	Phe	Met	Ala	Val	Leu 15	Leu
Thr	Leu	Gln	Thr 20	Pro	Thr	Gly	Gln	Ile 25	His	Trp	Gly	Asn	Leu 30	Ser	Lys
Ile	Gly	Val 35	Val	Gly	Val	Gly	Ser 40	Ala	Ser	Tyr	ГЛа	Val 45	Met	Thr	Arg
Ser	Ser 50	His	Gln	Ser	Leu	Val	Ile	Lys	Leu	M≏+	Dro	3	T1 =	Thr	Leu
						55		-		nec	60	ASII	110		Lea
Leu 65	Asn	Asn	Сув	Thr			Gly	-			60				
65					Arg 70	Val		Ile	Ala	Glu 75	60 Tyr	Arg	Arg	Leu	Leu 80
65 Arg	Asn	Val	Leu	Glu 85	Arg 70 Pro	Val Ile	Arg	Ile Asp	Ala Ala 90	Glu 75 Leu	60 Tyr Asn	Arg Ala	Arg Met	Leu Thr 95	Leu 80 Gln
65 Arg Asn	Asn Thr	Val Arg	Leu Pro 100	Glu 85 Val	Arg 70 Pro Gln	Val Ile Ser	Arg Val	Ile Asp Ala 105	Ala Ala 90 Ser	Glu 75 Leu Ser	60 Tyr Asn Arg	Arg Ala Arg	Arg Met His 110	Leu Thr 95 Lys	Leu 80 Gln Arg
65 Arg Asn Phe	Asn Thr Ile	Val Arg Gly 115	Leu Pro 100 Val	Glu 85 Val Val	Arg 70 Pro Gln Leu	Val Ile Ser Ala	Arg Val Gly 120	Ile Asp Ala 105 Ala	Ala Ala 90 Ser Ala	Glu 75 Leu Ser Leu	60 Tyr Asn Arg Gly	Arg Ala Arg Val 125	Arg Met His 110 Ala	Leu Thr 95 Lys Thr	Leu 80 Gln Arg Ala
65 Arg Asn Phe Ala	Asn Thr Ile Ala Gln	Val Arg Gly 115 Ile	Leu Pro 100 Val Thr	Glu 85 Val Val Ala	Arg 70 Pro Gln Leu Gly	Val Ile Ser Ala Ile 135	Arg Val Gly 120 Ala	Ile Asp Ala 105 Ala Leu	Ala 90 Ser Ala His	Glu 75 Leu Ser Leu Gln	60 Tyr Asn Arg Gly Ser 140	Arg Ala Arg Val 125 Met	Arg Met His 110 Ala Leu	Leu Thr 95 Lys Thr Asn	Leu 80 Gln Arg Ala Ser

Ile Glu Ala Ile Arg Gln Ala Gly Gln Glu Met Ile Leu Ala Val Gln 165 170

Gly Val Gln Asp Tyr Ile Asn Asn Glu Leu Ile Pro Ser Met Asn Gln

-continued

Asp Ile Asn Lys Val Leu Glu Lys Leu Gly Tyr Ser Gly Gly Asp Leu Gly Ile Lat Gly Ile Leu Glu Ser Tyr Phe Ile Val Leu Ser Ile Ala Arg Ile Ala Arg Ile Val Zess Ile Ala Tyr Thr His Val Ser Glu Ile Lys Gly Val Try Thr Ala Tyr Thr Leu 225 To Thr Leu Ser Glu Gly Ser Tyr Glu Tyr Thr Thr Val Pro Lys Val Ala 300 Tyr Val Ala 300													COIL		ueu				
21021522011e Ser Ala Guu Ile Ser Ile Gin Ala Leu Ger Tyr Ala Leu Gly Gly 230Asp Ile Asn Lys Val Leu Glu Lys Leu Cly Tyr Ser Gly Gly Asp Leu 240Asp Ile Asn Lys Val Leu Glu Ser Arg Gly Ile Lys Ala Arg Ile Thr His Val 260Leu Cly Ile Leu Glu Ser Arg Gly Ile Lys Ala Arg Ile Thr His Val 260Asp Thr 71Bar Thr 71Clu Ser Tyr Phe Ile Val Leu Ser Ile Ala Tyr Pro Thr Leu 200Ser Glu Ile Lys Gly Val Ile Val His Arg Leu Glu Gly Val Ser Tyr 290Asp Thr 71Clu Ser Gln Glu Trp Tyr Thr Thr Val Pro Lys Tyr Val Ala 305Ser Glu Gly Tyr Leu Ile Ser Asn Phe Asp Glu Ser Ser Cys Thr Phe 325Asn The Glu Gly Tyr Lu Ile Ser Asn Phe Asp Glu Ser Ser Cys Ala Arg 340Thr Gln Gly Tyr Leu Ile Ser Asn Phe Asp Glu Ser Ser Cys Ala Arg 340Ser Glu Glu Glu Cys Leu Arg Gly Ser Thr Lys Ser Cys Ala Arg 340Pro Leu Leu Gln Glu Cys Leu Arg Gly Ser Thr Lys Ser Cys Ala Arg 360Sas Thr Leu Val Ser Gly Ser Phe Gly Asn Arg Phe Ile Leu Ser Gln Gly 370Asn Phi Cys Pro Val Val Glu Asn Ala Cu Tyr Thr Thr 400An Arg His Cys Pro Val Val Glu Asn Ala Gly Val Thr Thr 400Ala Asp His Cys Pro Val Val Glu Val Asn Gly Val Thr Ile Glu Nal 420Ala Asp His Cys Pro Val Val Glu Val Asn Gly Val Thr Ser Ile Val 450Asn Ala Lue Arg Ser Met Lys Gly Leu Ser Ser Thr Ser Ile Val 450Asn Glu Tle Leu Arg Ser Met Lys Gly Leu Ser Ser Thr Ser Ile Val 450Asn Glu Tle Leu Arg Ser Met Lys Gly Leu Ser Ser Thr Ser Ile Val 450Asn Glu Tle Leu Arg Ser Met Lys Gly Leu Ser Ser Thr Ser Ile Val 450Asn Glu Hie Lau Arg Cys Asn Lys Lys Gly Glu Glu Val 550 <td>Leu</td> <td>Ser</td> <td></td> <td>Aab</td> <td>Leu</td> <td>Ile</td> <td>Gly</td> <td></td> <td>Lys</td> <td>Leu</td> <td>Gly</td> <td>Leu</td> <td></td> <td>Leu</td> <td>Leu</td> <td>Arg</td>	Leu	Ser		Aab	Leu	Ile	Gly		Lys	Leu	Gly	Leu		Leu	Leu	Arg			
225 230 235 240 Asp Ile Asn Lys Val Leu Glu Lys Leu Gly Tyr Ser Gly Gly Asp Leu 255 250 250 250 255 255 Leu Gly Ile Leu Glu Ser Arg Gly Ile Lys Ala Arg Ile Thr His Val 260 265 18 As Arg Ile Thr His Val 265 77 78 71 18 Val Leu Clu Ser Ile Ala Tyr Pro Thr Leu 280 Asp Thr Glu Ser Tyr Phe Ile Val Leu Ser Ile Ala Tyr Pro Thr Leu 275 290 295 300 295 77 74 144 Asp Thr Glu Ser Tyr Phe Ile Val Leu Ser Ile Ala Tyr Pro Thr Leu 275 300 295 300 295 77 74 141 200 Ser Glu Ile Lys Gly Val Ile Val For Thr Thr Val Pro Lys Tyr Val Ala 310 310 77 77 76 77 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 </td <td>Tyr</td> <td></td> <td>Thr</td> <td>Glu</td> <td>Ile</td> <td>Leu</td> <td></td> <td>Leu</td> <td>Phe</td> <td>Gly</td> <td>Pro</td> <td></td> <td>Leu</td> <td>Arg</td> <td>Asp</td> <td>Pro</td>	Tyr		Thr	Glu	Ile	Leu		Leu	Phe	Gly	Pro		Leu	Arg	Asp	Pro			
245 250 255 Leu Gly 1le Leu Glu Ser Arg Gly 1le Lys Ala Arg 1le Thr His Val 265 77 Phe 1e Val Cas 1e Ala Arg 1le Thr His Val 275 77 Asp Thr Glu Ser Tyr 200 Fyr Phe 1e Val Cas Fyr Val Arg 70 77 1e 295 1e Ala Arg 1le Thr His Val 275 77 1e 1e 216 77 78 1e 216 77 78 77 1e 295 1e Ala Arg 1le Thr His Val 290 77 78 79 78 78 79 79	Ile 225	Ser	Ala	Glu	Ile		Ile	Gln	Ala	Leu		Tyr	Ala	Leu	Gly	_			
260 265 270 Asp Thr Qlu Ser Tyr Phe Ile Val Leu Ser Ile Ala Tyr Pro Tor Leu 285 286 11e Ala Tyr Pro Tor Leu 285 Ser Glu Ile Lys Gly Val Ile Val His Arg Leu Glu Gly Val Ser Tyr 290 11e Val Fir Arg Leu Glu Gly Val Jam 310 11e Val Fir Arg Leu Glu Gly Val Jam 320 Asp Thr Glu Gly Ser Gln Glu Trp Tyr Thr Thr Val Pro Lys Tyr Val Jam 320 11e Ser Asn Phe Asp Glu Ser Ser Cys Thr Phe 325 Met Pro Glu Gly Thr Val Cys Ser Gln Asn Ala Leu Tyr Pro Met Ser 346 360 286 Pro Leu Leu Gln Glu Cyr Leu Arg Gly Ser Thr Lys Ser Cys Ala Arg 370 375 386 11e Leu Yr Thr Thr 390 Asm Leu 11e Ala Asn Cys Ala Ser Ile Leu Cys Lys Cys Tyr Thr 400 380 380 380 380 Gly Thr Ile Ile Asn Gln Asp Pro Asp Lys Ile Leu Thr Tyr 11e Ala 405 410 411 410 413 Ala Asp His Cys Tyr Pro Asp Ala Val Tyr Leu His Arg Ile Asp Leu Gly 455 440 11e Asp 445 450 Gly Ser Arg Arg Tyr Pro Asp Ala Val Tyr Leu His Arg Ile Asp Leu Gly 445 450 450 450 Gly Ser Arg Arg Tyr Pro Asp Ala Val Tyr Leu His Arg Ile Asp Leu Gly 445 450 450 450 Gly Pro Pro To Ile Ser Leu Glu Asp Ala Lys Gly Leu Heu Glu Ser Ser Met 440 450 450 450 450 Gly Met Ser Arg Pro Gly Cys Arg Gly Arg Cy	Asp	Ile	Asn	Гла		Leu	Glu	Гуз	Leu		Tyr	Ser	Gly	Gly		Leu			
275 280 285 Ser Glu Ile Lys Gly Val Ile Val His Arg Leu Glu Gly Val Ser Tyr 295 Aen Ile Gly Ser Gln Glu Trp Tyr Thr Thr Val Pro Lys Tyr Val Ala 300 305 11e Gly Ser Gln Glu Trp Tyr Thr Thr Val Pro Lys Tyr Val Ala 305 11e Gly Tyr Leu Ile Ser Asn Phe Asp Glu Ser Ser Cys Thr Phe 320 340 Thr Gln Gly Tyr Leu Ile Ser Asn Phe Asp Glu Ser Ser Cys Ala Met Pro Glu Gly Thr Val Cys Ser Gln Asn Ala Leu Tyr Pro Met Ser 340 340 Pro Leu Leu Gln Glu Cys Leu Arg Gly Ser Thr Lys Ser Cys Ala Arg 355 11e Ala Asn Cys Ala Ser Ile Leu Cys Lys Cys Tyr Thr Thr 370 375 386 11e Ala Asn Cys Ala Ser Ile Leu Cys Lys Cys Tyr Thr Thr 385 11e Ala Asn Cys Ala Ser Ile Leu Cys Lys Cys Tyr Thr Thr 385 390 Gly Thr Ile Ile Asn Gln Asp Pro Asp Lys Ile Leu Thr Tyr Ile Ala 400 410 411 405 Ala Asp His Cys Pro Val Val Glu Val Asn Gly Val Thr His Gln Val 420 Pro Asp Ala Val Tyr Leu His Arg Ile Asp Leu 440 420 440 440 441 445 61y Pro Pro Ile Ser Leu Glu Asp Ala Lys Glu Leu Leu Gly	Leu	Gly	Ile		Glu	Ser	Arg	Gly		Гла	Ala	Arg	Ile		His	Val			
290295300Amen Ile Gly Ser Gln Glu Trp Tyr Thr Thr Val Pro Lyg Tyr Val Ala 310310310Thr Gln Gly Tyr Leu Ile Ser Am Phe Amp Glu Ser Ser Cys Thr Phe 325320Thr Gln Gly Tyr Leu Ile Ser Am Phe Amp Glu Ser Ser Cys Thr Phe 325336Met Pro Glu Gly Thr Val Cys Ser Gln Am Ala Leu Tyr Pro Met Ser 346346Pro Leu Leu Gln Glu Cys Leu Arg Gly Ser Thr Lys Ser Cys Ala Arg 355366Pro Leu Leu Gln Glu Cys Leu Arg Gly Am Arg Phe Ile Leu Ser Gln Gly 370380Am Leu Ile Ala Am Cys Ala Ser Ile Leu Cys Lys Cys Tyr Thr Thr 390380Am Leu Ile Ala Am Cys Ala Ser Ile Leu Cys Lys Cys Tyr Thr Thr 390381Am Leu Ile Ala Am Cys Ala Ser Ile Leu Cys Lys Cys Tyr Thr Thr 390380Gly Thr Ile Ile Am Gln Amp Pro Amp Lys Ile Leu Thr Tyr Ile Ala 410415Ala Amp His Cys Pro Val Val Glu Val Am Gly Val Thr Ile Gln Val 420425Gly Pro Pro Ile Ser Leu Glu Arg Leu Amp Val Gly Thr Am Leu Gly 450440Am Ala Ile Ala Lys Leu Glu Amp Lys Glu Leu Leu Glu Ser Ser 470485Amp Gln Ile Leu Arg Ser Met Lys Gly Leu Ser Ser Thr Ser Ile Val 485480Amp Gln Ile Leu Arg Ser Met Lys Gly Leu Ser Set Or Gly Glu Gln Val 510520Ser Tyr Val Arg Ser Leu 	Asp	Thr		Ser	Tyr	Phe	Ile		Leu	Ser	Ile	Ala		Pro	Thr	Leu			
305310315320Thr Gln Gly Tyr Leu Ile Ser Asn Phe Asp Glu Ser Ser Cys Thr Phe 325320Met Pro Glu Gly Thr Val Cys Ser Gln Asn Ala Leu Tyr Pro Met Ser 345345Pro Leu Leu Gln Glu Cys Leu Arg Gly Ser Thr Lys Ser Cys Ala Arg 355365Thr Leu Val Ser Gly Ser Phe Gly Asn Arg Phe Ile Leu Ser Gln Gly 370377Asn Leu Ile Ala Asn Cys Ala Ser Ile Leu Cys Lys Cys Tyr Thr Thr 395390Gly Thr Ile Ile Asn Gln Asp Pro Asp Lys Ile Leu Thr Tyr Ile Ala 400410Gly Ser Arg Arg Tyr Pro Asp Ala Val Tyr Leu His Arg Ile Asp Leu 425410Gly Ser Arg Arg Tyr Pro Asp Ala Val Tyr Leu His Arg Ile Asp Leu 435440Gly Pro Pro Ile Ser Leu Glu Asp Ala Lys Glu Leu Leu Glu Ser Ser 450455Asn Ala Ile Ala Lys Leu Glu Asp Ala Lys Glu Leu Leu Glu Ser Ser 455470Asp Gln Ile Leu Arg Ser Met Lys Gly Leu Ser Ser Thr Ser Ile Val 485490Asp Gln Ile Leu Ile Ala Val Cys Leu Gly Gly Leu Ile Gly Ile Pro Ala 500520Cys Cys Cys Arg Gly Arg Cys Asn Lys Lys Gly Glu Gln Val 515525Ser Tyr Val Arg Ser Leu 530520Calox SEQ ID NO 49 call> LENGTH: 617calox SEQ ID NO 49 call> LENGTH: 617calox Seq ID NO 49 call> LENGTH: 617calox Seq ID NO 49 call> Seq ID NO 49 call> Cys Cys Tyr Synthetic Polypeptide	Ser		Ile	Lys	Gly	Val		Val	His	Arg	Leu		Gly	Val	Ser	Tyr			
325330335Met Pro Glu Gly Thr Val Cys Ser Gln Asn Ala Leu Tyr Pro Met Ser 340Ser Thr Lys Ser Cys Ala Arg 360Pro Leu Leu Gln Glu Cys Leu Arg Gly Ser Thr Lys Ser Cys Ala Arg 355Thr Leu Val Ser Gly Ser Phe Gly Asn Arg Phe Ile Leu Ser Gln Gly 370Sam Leu Ile Ala Asn Cys Ala Ser Ile Leu Cys Lys Cys Tyr Thr Thr 390Gly Thr Ile Ile Asn Gln Asp Pro Asp Lys Ile Leu Thr Tyr Ile Ala 400Ala Asp His Cys Pro Val Val Glu Val Asn Gly Val Thr Ile Gln Val 420Gly Ser Arg Arg Tyr Pro Asp Ala Val Tyr Leu His Arg Ile Asp Leu 435Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly 455Asn Ala Ile Ala Lys Leu Glu Asp Ala Lys Glu Leu Leu Glu Ser Ser 470Asp Gln Ile Leu Arg Ser Met Lys Gly Leu Ser Ser Thr Ser Ile Val 485Asp Gln Ile Leu Arg Ser Met Lys Gly Gly Leu Ile Gly Ile Pro Ala 500Ser Tyr Val Arg Ser Leu 515Gly Met Ser Arg Pro Gly Leu Lys Pro Asp Leu Thr Gly Thr Ser Lys 530Ser Tyr Val Arg Ser Leu 530Ser Tyr Val Arg Ser Leu 520Cla SEQ ID NO 49 <211> LENGTH: 617 <212> TYPE: FRT	Asn 305	Ile	Gly	Ser	Gln		Trp	Tyr	Thr	Thr		Pro	Гуз	Tyr	Val				
340345350ProLeuGluGluCysLeuArgGlySerThrLysSerCysAlaArg355GluSerGlySerThrLysSerCysAlaArg370370SerGlySerThrLysSerCysTyrThrThr385370SerGlySerTheGlyAsnArgPheTheLeuSerGlnGly385390AlaSerTheLeuCysLysCysTyrThrThrThr385390AlaSerTheLeuCysLysThr	Thr	Gln	Gly	Tyr		Ile	Ser	Asn	Phe		Glu	Ser	Ser	Сув		Phe			
355360365Thr Leu Val Ser Gly Ser Phe Gly Asn Arg Phe Ile Leu Ser Gln Gly 370375Asn Leu Ile Ala Asn Cys Ala Ser Ile Leu Cys Lys Cys Tyr Thr Thr 390395Gly Thr Ile Ile Asn Gln Asp Pro Asp Lys Ile Leu Thr Tyr Ile Ala 405400Gly Thr Ile Ile Asn Gln Asp Pro Asp Lys Ile Leu Thr Tyr Ile Ala 	<	<	<	Met	Pro	Glu		Thr	Val	Cys	Ser		Asn	Ala	Leu	Tyr		Met	Ser
370375380Aam Leu Ile Ala Aan Cys Ala Ser Ile Leu Cys Lys Cys Tyr Thr Thr 395Thr The Ala Aan Cys Ala Ser Ile Leu Cys Lys Cys Tyr Thr Thr 400Gly Thr Ile Ile Aan Gin Aap Pro Aap Lys Ile Leu Thr Tyr Ile Ala 405Aan Aap His Cys Pro Val Val Glu Val Aan Gly Val Thr Ile Gin Val 425Ala Aap His Cys Pro Val Val Glu Val Aan Gly Val Thr Ile Gin Val 420Gly Val Tyr Leu His Arg Ile Aap Leu 435Gly Ser Arg Arg Tyr Pro Aap Ala Val Tyr Leu His Arg Ile Aap Leu 435Gly Thr Aan Leu Gly 465Gly Pro Pro Ile Ser Leu Glu Aap Ala Lys Glu Leu Leu Glu Ser Ser 465Glu Ser Ser Thr Ser Ile Val 485Aasn Ala Ile Ala Lys Leu Glu Aap Ala Lys Gly Leu Ser Ser Thr Ser Ile Val 485Gly Cys Cys Arg Gly Arg Cys Aan Lys Lys Gly Glu Glu Gln Val 515Leu Ile Cys Cys Cys Arg Gly Arg Cys Aan Lys Lys Gly Glu Glu Gln Val 515Ser Arg Pro Gly Leu Lys Pro Aap Leu Thr Gly Thr Ser Lys 540Gly Met Ser Arg Pro Gly Leu Lys Pro Aap Leu Thr Gly Thr Ser Lys 530Sec Tyr Val Arg Ser Leu 550<<10> SEQ ID NO 49 <211> LENGTH: 617 <212> TYPE: PRT<113> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide	Pro	Leu		Gln	Glu	Сув	Leu	-	Gly	Ser	Thr	Lys		Сув	Ala	Arg			
385390395400Gly Thr Ile Ile Asm Gln Asp Pro Asp Lys Ile Leu Thr Tyr Ile Ala 405405410411Ala Asp His Cys Pro Val Val Glu Val Asm Gly Val Thr Ile Gln Val 420425420425Gly Ser Arg Arg Tyr Pro Asp Ala Val Tyr Leu His Arg Ile Asp Leu 435445445445Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Cly Thr Asn Leu Gly 455460460460Asm Ala Ile Ala Lys Leu Glu Asp Ala Lys Glu Leu Leu Glu Ser Ser 470475460495Asp Gln Ile Leu Arg Ser Met Lys Gly Leu Ser Ser Thr Ser Ile Val 485490495495Tyr Ile Leu Ile Ala Val Cys Leu Gly Gly Leu Ile Gly Ile Pro Ala 500520520520Gly Met Ser Arg Pro Gly Leu Lys Pro Asp Leu Thr Gly Thr Ser Lys 530535540540Ser Tyr Val Arg Ser Leu 545550540540540C210> SEQ ID NO 49 <211> LENGTH: 617 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide59550	Thr		Val	Ser	Gly	Ser		Gly	Asn	Arg	Phe		Leu	Ser	Gln	Glγ			
405410415Ala Asp His Cys Pro Val Val Glu Val Glu Val Asn Gly Val Thr Ile Gln Val 420Gly Val Thr Ile Gln Val 435Gly Val Thr Ile Gln Val 435Gly Ser Arg Arg Tyr Pro Asp Ala Val Tyr Leu His Arg Ile Asp Leu 435Glu Arg Leu Asp Val Gly Thr Asn Leu Gly 460Gly Thr Asn Leu Gly 460Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly 450Glu Asp Ala Lys Glu Leu Leu Glu Ser Ser 465Glu Ser Ser Thr Ser Ile Val 495Asp Gln Ile Leu Arg Ser Met Lys Gly Leu Ser Ser Thr Ser Ile Val 485490Gly Ile Pro Ala 500Leu Ile Cys Cys Cys Arg Gly Arg Cys Asn Lys Lys Gly Glu Gln Val 515Ser Arg Pro Gly Leu Lys Pro Asp Leu Thr Gly Thr Ser Lys 530Ser Tyr Val Arg Ser Leu 540550<210> SEQ ID NO 49 <211> LENGTH: 617 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide	Asn 385	Leu	Ile	Ala	Asn		Ala	Ser	Ile	Leu		Lys	Cys	Tyr	Thr				
420425430Gly Ser Arg Arg Tyr Pro Asp Ala Val Tyr Leu His Arg Ile Asp Leu 435440445Gly Pro Pro Ile Ser Leu Glu Arg Leu Asp Val Gly Thr Asn Leu Gly 450455460Asn Ala Ile Ala Lys Leu Glu Asp Ala Lys Glu Leu Leu Glu Ser Ser 465470Asp Ala Lys Glu Leu Leu Glu Ser Ser 	Gly	Thr	Ile	Ile		Gln	Asp	Pro	Asp		Ile	Leu	Thr	Tyr		Ala			
435440445Gly ProProIleSerLeuGluArgLeuAspValGlyThrAsnLeuGlyAsnAlaIleAlaLysLeuGluAsnLeuGluSerSerSerSerSerSerSerSerSerSerSerSerGlyLeuGluLeuGluSerSerSerSerSerSerSerSerSerThrSerIleVal495SerThrSerIleVal495SerThrSerIleVal495SerThrSerIleVal495SerIleVal495SerIleVal495SerIleVal495SerIleVal495SerIleVal495SerIleVal495SerIleVal495SerIleVal495SerIleVal495SerIleVal495SerIleVal495SerIleVal495SerIleVal495SerSerIleVal495Ser<	Ala	Asp	His		Pro	Val	Val	Glu		Asn	Gly	Val	Thr		Gln	Val			
450 455 460 Asm Ala Ile Ala Lys Leu Glu Asp Ala Lys Glu Leu Leu Glu Ser Ser 465 470 475 475 480 Asp Gln Ile Leu Arg Ser Met Lys Gly Leu Ser Ser Thr Ser Ile Val 485 Tyr Ile Leu Ile Ala Val Cys Leu Gly Gly Leu Ile Gly Ile Pro Ala 500 505 505 Leu Ile Gly Glu Gln Val 515 500 520 Arg Gly Arg Cys Asn Lys Lys Gly Glu Gln Val 515 525 535 535 540 Ser Tyr Val Arg Ser Leu 540 550 <210> SEQ ID NO 49 <211> LENGTH: 617 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide	Gly	Ser		Arg	Tyr	Pro	Asp		Val	Tyr	Leu	His		Ile	Asp	Leu			
465 470 475 480 Asp Gln Ile Leu Arg Ser Met Lys Gly Leu Ser Ser Thr Ser Ile Val 485 490 11e Val 495 11e Val 495 Tyr Ile Leu Ile Ala Val Cys Leu Gly Gly Leu Ile Gly Ile Pro Ala 500 11e Pro Ala 500 11e Pro Ala 500 11e Pro Ala 500 Leu Ile Cys Cys Cys Cys Arg Gly Arg Cys Asn Lys Lys Gly Glu Gln Val 515 12e Lys Pro Asp Leu Thr Gly Thr Ser Lys 530 11e Pro Ala 525 Gly Met Ser Arg Pro Gly Leu Lys Pro Asp Leu Thr Gly Thr Ser Lys 530 540 11e Pro Ala 540 Ser Tyr Val Arg Ser Leu 545 550 <210> SEQ ID NO 49 121 12e Prot 530 <211> LENGTH: 617 510 <212> TYPE: PRT 71F Fature: <220> FEATURE: 220 <223> OTHER INFORMATION: Synthetic Polypeptide	Gly		Pro	Ile	Ser	Leu		Arg	Leu	Asp	Val	-	Thr	Asn	Leu	Gly			
485490495Tyr Ile Leu Ile Ala Val Cys Leu Gly Gly Gly Leu Ile Gly Ile Pro Ala 500Soo Pro Ala 505Soo Pro Ala 505Leu Ile Cys Cys Cys Cys Arg Gly Arg Cys Asn Lys Lys Gly Gly Glu Gln Val 515Soo Pro Gly Leu Lys Pro Asp Leu Thr Gly Thr Ser Lys 530Soo Pro Gly Leu Lys Pro Asp Leu Thr Gly Thr Ser Lys 540Ser Tyr Val Arg Ser Leu 545Soo Pro Heu 550Soo Pro Heu 540Soo Pro Heu 540<210> SEQ ID NO 49 <211> LENGTH: 617 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide	Asn 465	Ala	Ile	Ala	ГАа		Glu	Asp	Ala	Lys		Leu	Leu	Glu	Ser				
500505510Leu Ile Cys Cys Cys Arg Gly Arg Cys Asn Lys Lys Gly Glu Gln Val515520Ser Tyr Val Arg Pro Gly Leu Lys Pro Asp Leu Thr Gly Thr Ser Lys530535540Ser Tyr Val Arg Ser Leu545550<210> SEQ ID NO 49<211> LENGTH: 617<212> TYPE: PRT<213> ORGANISM: Artificial Sequence<220> FEATURE:<223> OTHER INFORMATION: Synthetic Polypeptide	Asp	Gln	Ile	Leu			Met	Lys	Gly		Ser	Ser	Thr	Ser		Val			
515 520 525 Gly Met Ser Arg Pro Gly Leu Lys Pro Asp Leu Thr Gly Thr Ser Lys 530 535 540 Ser Tyr Val Arg Ser Leu 545 550 <210> SEQ ID NO 49 <211> LENGTH: 617 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide	Tyr	Ile	Leu		Ala	Val	Сув	Leu			Leu	Ile	Gly		Pro	Ala			
530 535 540 Ser Tyr Val Arg Ser Leu 545 550 <210> SEQ ID NO 49 <211> LENGTH: 617 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide	Leu	Ile			САа	Arg	Gly			Asn	Lys	ГАЗ	-	Glu	Gln	Val			
545 550 <210> SEQ ID NO 49 <211> LENGTH: 617 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide	Gly		Ser	Arg	Pro				Pro	Asp	Leu		Gly	Thr	Ser	Lys			
<211> LENGTH: 617 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide	Ser 545	Tyr	Val	Arg	Ser														
	<211 <212 <213 <220 <223	L> LH 2> TY 3> OH 0> FH 3> OY	ENGTI TPE : RGANI EATUI THER	H: 61 PRT ISM: RE: INF(17 Art: DRMA			_		Ројуј	pept:	ide							

-continued

535

Met Ser Pro Gln Arg Asp Arg Ile Asn Ala Phe Tyr Lys Asp Asn Pro 1 10 15 Tyr Pro Lys Gly Ser Arg Ile Val Ile Asn Arg Glu His Leu Met Ile 25 Asp Arg Pro Tyr Val Leu Leu Ala Val Leu Phe Val Met Phe Leu Ser 35 40 45 Leu Ile Gly Leu Leu Ala Ile Ala Gly Ile Arg Leu His Arg Ala Ala 50 55 60 Ile Tyr Thr Ala Glu Ile His Lys Ser Leu Ser Thr Asn Leu Asp Val65707580 Thr Asn Ser Ile Glu His Gln Val Lys Asp Val Leu Thr Pro Leu Phe 85 90 95 Lys Ile Ile Gly Asp Glu Val Gly Leu Arg Thr Pro Gln Arg Phe Thr 100 105 110 Asp Leu Val Lys Phe Ile Ser Asp Lys Ile Lys Phe Leu Asn Pro Asp 115 120 125 Arg Glu Tyr Asp Phe Arg Asp Leu Thr Trp Cys Ile Asn Pro Pro Glu130135140 Arg Ile Lys Leu Asp Tyr Asp Gln Tyr Cys Ala Asp Val Ala Ala Glu 145 150 155 160 Glu Leu Met Asn Ala Leu Val Asn Ser Thr Leu Leu Glu Thr Arg Thr 165 175 170 Thr Thr Gln Phe Leu Ala Val Ser Lys Gly Asn Cys Ser Gly Pro Thr 180 185 190 Thr Ile Arg Gly Gln Phe Ser Asn Met Ser Leu Ser Leu Leu Asp Leu 195 200 2.05 Tyr Leu Gly Arg Gly Tyr Asn Val Ser Ser Ile Val Thr Met Thr Ser 215 210 220 Gln Gly Met Tyr Gly Gly Thr Tyr Leu Val Glu Lys Pro Asn Leu Asn 230 235 225 240 Ser Lys Gly Ser Glu Leu Ser Gln Leu Ser Met Tyr Arg Val Phe Glu 245 250 Val Gly Val Ile Arg Asn Pro Gly Leu Gly Ala Pro Val Phe His Met 265 Thr Asn Tyr Phe Glu Gln Pro Val Ser Asn Gly Leu Gly Asn Cys Met 275 280 285 Val Ala Leu Gly Glu Leu Lys Leu Ala Ala Leu Cys His Gly Asp Asp 290 295 300 Ser Ile Ile Ile Pro Tyr Gln Gly Ser Gly Lys Gly Val Ser Phe Gln305310315320 Leu Val Lys Leu Gly Val Trp Lys Ser Pro Thr Asp Met Gln Ser Trp 325 330 335 Val Pro Leu Ser Thr Asp Asp Pro Val Val Asp Arg Leu Tyr Leu Ser 340 345 350 Ser His Arg Gly Val Ile Ala Asp Asn Gln Ala Lys Trp Ala Val Pro 355 360 365 Thr Thr Arg Thr Asp Asp Lys Leu Arg Met Glu Thr Cys Phe Gln Gln 370 375 380 Ala Cys Lys Gly Lys Ile Gln Ala Leu Cys Glu Asn Pro Glu Trp Val 390 400 385 395 Pro Leu Lys Asp Asn Arg Ile Pro Ser Tyr Gly Val Leu Ser Val Asp 405 410 415 Leu Ser Leu Thr Val Glu Leu Lys Ile Lys Ile Ala Ser Gly Phe Gly

											_	con	tin	ued	
			420					425					430		
Pro	Leu	11e 435	Thr	His	Gly	Ser	Gly 440	Met	Asp	Leu	Tyr	Lys 445	Ser	Asn	Суз
Asn	Asn 450	Val	Tyr	Trp	Leu	Thr 455	Ile	Pro	Pro	Met	Arg 460	Asn	Leu	Ala	Leu
Gly 465	Val	Ile	Asn	Thr	Leu 470	Glu	Trp	Ile	Pro	Arg 475	Phe	Гуз	Val	Ser	Pro 480
Asn	Leu	Phe	Thr	Val 485	Pro	Ile	ГАз	Glu	Ala 490	Gly	Glu	Asp	Сув	His 495	Ala
Pro	Thr	Tyr	Leu 500	Pro	Ala	Glu	Val	Asp 505	Gly	Aab	Val	Lys	Leu 510	Ser	Ser
Asn	Leu	Val 515	Ile	Leu	Pro	Gly	Gln 520	Asp	Leu	Gln	Tyr	Val 525	Leu	Ala	Thr
Tyr	Asp 530	Thr	Ser	Arg	Val	Glu 535	His	Ala	Val	Val	Tyr 540	Tyr	Val	Tyr	Ser
Pro 545	Ser	Arg	Ser	Phe	Ser 550	Tyr	Phe	Tyr	Pro	Phe 555	Arg	Leu	Pro	Ile	Lys 560
Gly	Val	Pro	Ile	Glu 565	Leu	Gln	Val	Glu	Cys 570	Phe	Thr	Trp	Asp	Gln 575	Lys
Leu	Trp	Cys	Arg 580	His	Phe	Cys	Val	Leu 585	Ala	Asp	Ser	Glu	Ser 590	Gly	Gly
Leu	Ile	Thr 595	His	Ser	Gly	Met	Val 600	Gly	Met	Gly	Val	Ser 605	Сув	Thr	Ala
Thr	Arg 610	Glu	Asp	Gly	Thr	Asn 615	Arg	Arg							
<211 <212 <212 <220 <222 <400	0> FI 3> 0: 0> SI	ENGTH (PE : RGANI SATUR THER EQUER	H: 6: PRT ISM: RE: INF(NCE:	17 Art: ORMA 50	TION	: Sy	Seque nthe	tic 1							
Met 1	Ser	Pro	Gln	Arg 5	Asp	Arg	Ile	Asn	Ala 10	Phe	Tyr	Lys	Asp	Asn 15	Pro
His	Pro	Lys	Gly 20	Ser	Arg	Ile	Val	Ile 25	Asn	Arg	Glu	His	Leu 30	Met	Ile
Asp	Arg	Pro 35	Tyr	Val	Leu	Leu	Ala 40	Val	Leu	Phe	Val	Met 45	Phe	Leu	Ser
Leu	Ile 50	Gly	Leu	Leu	Ala	11e 55	Ala	Gly	Ile	Arg	Leu 60	His	Arg	Ala	Ala
Ile 65	Tyr	Thr	Ala	Glu	Ile 70	His	ГАа	Ser	Leu	Ser 75	Thr	Asn	Leu	Yab	Val 80
Thr	Asn	Ser	Ile	Glu 85	His	Gln	Val	Lys	Asp 90	Val	Leu	Thr	Pro	Leu 95	Phe
Lys	Ile	Ile	Gly 100	Asp	Glu	Val	Gly	Leu 105	Arg	Thr	Pro	Gln	Arg 110	Phe	Thr
Asp	Leu	Val 115	Lys	Phe	Ile	Ser	Asp 120	Lys	Ile	Lys	Phe	Leu 125	Asn	Pro	Asp
Arg	Glu 130	Tyr	Asp	Phe	Arg	Asp 135	Leu	Thr	Trp	Сув	Ile 140	Asn	Pro	Pro	Glu
Arg 145	Ile	Lys	Leu	Asp	Tyr 150	Aab	Gln	Tyr	Сув	Ala 155	Asp	Val	Ala	Ala	Glu 160

-continued

												0011	CIII		
				165					170					175	
Thr	Asn	Gln	Phe 180	Leu	Ala	Val	Ser	Lys 185	Gly		Суз		Gly 190	Pro	Thr
Thr	Ile	Arg 195		Gln	Phe	Ser	Asn 200	Met	Ser	Leu	Ser	Leu 205	Leu	Asp	Leu
Tyr	Leu 210	Ser	Arg	Gly	Tyr	Asn 215		Ser	Ser	Ile	Val 220	Thr	Met	Thr	Ser
Gln 225	Gly	Met	Tyr	Gly	Gly 230	Thr	Tyr	Leu	Val	Glu 235		Pro	Asn	Leu	Ser 240
Ser	Lys	Gly	Ser	Glu 245		Ser	Gln	Leu	Ser 250	Met	His	Arg	Val	Phe 255	Glu
Val	Gly	Val	Ile 260		Asn	Pro	Gly	Leu 265		Ala	Pro	Val	Phe 270	His	Met
Thr	Asn	Tyr 275		Glu	Gln	Pro	Val 280	Ser	Asn	Asp	Phe	Ser 285	Asn	Cys	Met
Val	Ala 290	Leu	Gly	Glu	Leu	Lys 295		Ala	Ala	Leu	Суз 300	His	Arg	Glu	Asp
Ser 305	Ile	Thr	Ile	Pro	Tyr 310	Gln	Gly	Ser	Gly	Lys 315		Val	Ser	Phe	Gln 320
Leu	Val	Lys	Leu	Gly 325		Trp	Lys	Ser	Pro 330	Thr	Asp	Met	Gln	Ser 335	Trp
Val	Pro	Leu	Ser 340	Thr		Asp		Val 345	Ile		Arg		Tyr 350	Leu	Ser
Ser	His	Arg 355		Val	Ile	Ala	Asp 360	Asn		Ala		Trp 365	Ala	Val	Pro
Thr	Thr 370	Arg	Thr	Asp	Asp	Lys 375	Leu	Arg	Met	Glu	Thr 380	Cys	Phe	Gln	Gln
Ala 385	Cys	Гуа	Gly	Lys	Ile 390	Gln	Ala	Leu	Суз	Glu 395	Asn	Pro	Glu	Trp	Thr 400
Pro	Leu	Гуз	Asp	Asn 405		Ile	Pro	Ser	Tyr 410	Gly	Val	Leu	Ser	Val 415	Asp
Leu	Ser	Leu	Thr 420	Val	Glu	Leu	Lya	Ile 425		Ile	Val	Ser	Gly 430	Phe	Gly
Pro	Leu	Ile 435		His	Gly	Ser	Gly 440		Asp	Leu	Tyr	Lys 445	Ser	Asn	His
Asn	Asn 450					Thr 455		Pro			-		Leu	Ala	Leu
Gly 465	Val					Glu							Val	Ser	Pro 480
	Leu	Phe	Thr	Val 485	Pro	Ile	ГЛа	Glu	Ala 490	Gly	Glu	Asp	Сув	His 495	Ala
Pro	Thr	Tyr	Leu 500		Ala	Glu	Val	Asp 505		Asp	Val	Lys	Leu 510		Ser
Asn	Leu	Val 515	Ile	Leu	Pro	Gly	Gln 520	Asp	Leu	Gln	Tyr	Val 525	Leu	Ala	Thr
Tyr	Asp 530		Ser	Arg	Val	Glu 535		Ala	Val	Val	Tyr 540		Val	Tyr	Ser
		Arg	Ser	Phe		Tyr	Phe	Tyr	Pro			Leu	Pro	Val	_
545 Gly	Val	Pro	Ile		550 Leu	Gln	Val	Glu	-	555 Phe	Thr	Trp	Asp		560 Lys
Leu	Trp	Сув	Arg	565 His	Phe	Cys	Val	Leu	570 Ala	Asp	Ser	Glu	Ser	575 Gly	Gly
	-		580			-		585		-			590	-	-

-continued

His Ile Thr His Ser Gly Met Val Gly Met Gly Val Ser Cys Thr Ala 595 600 605 Thr Arg Glu Asp Gly Thr Ser Arg Arg 610 615 <210> SEQ ID NO 51 <211> LENGTH: 1729 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 51 tcaagetttt ggaceetegt acagaageta ataegaetea etatagggaa ataagagaga 60 aaagaagagt aagaagaaat ataagagcca ccatggcaca agtcattaat acaaacagcc 120 tqtcqctqtt qacccaqaat aacctqaaca aatcccaqtc cqcactqqqc actqctatcq 180 agegtttgte tteeggtetg egtateaaca gegegaaaga egatgeggea ggacaggega 240 ttgetaaceg ttttacegeg aacateaaag gtetgaetea ggetteeegt aacgetaacg 300 acqqtatete cattqeqeaq accaetqaaq qeqeqetqaa eqaaatcaae aacaaeetqe 360 agegtigting the sector of the 420 actecateca ggetgaaate acceagegee tgaaegaaat egaeegtgta teeggeeaga 480 540 ctcagttcaa cggcgtgaaa gtcctggcgc aggacaacac cctgaccatc caggttggtg ccaacgacgg tgaaactatc gatattgatt taaaagaaat cagctctaaa acactgggac 600 ttgataaget taatgteeaa gatgeetaea eeeegaaaga aaetgetgta aeegttgata 660 aaactaccta taaaaatggt acagateeta ttacageeca gageaataet gatateeaaa 720 ctgcaattgg cggtggtgca acggggggtta ctgggggctga tatcaaattt aaagatggtc 780 aatactattt agatgttaaa ggeggtgett etgetggtgt ttataaagee aettatgatg 840 aaactacaaa gaaagttaat attgatacga ctgataaaac teegttggca actgeggaag 900 ctacagetat teggggaacg gecactataa eecacaacea aattgetgaa gtaacaaaag 960 agggtgttga tacgaccaca gttgcggetc aacttgctgc agcaggggtt actggcgccg 1020 ataaggacaa tactagcott gtaaaactat ogtttgagga taaaaaoggt aaggttattg 1080 atggtggcta tgcagtgaaa atgggcgacg atttctatgc cgctacatat gatgagaaaa 1140 caggtgcaat tactgctaaa accactactt atacagatgg tactggcgtt gctcaaactg 1200 gagetgtgaa atttggtgge geaaatggta aatetgaagt tgttaetget acegatggta 1260 agacttactt agcaagcgac cttgacaaac ataacttcag aacaggcggt gagcttaaag 1320 aggttaatac agataagact gaaaacccac tgcagaaaat tgatgctgcc ttggcacagg 1380 ttgatacact tcgttctgac ctgggtgcgg ttcagaaccg tttcaactcc gctatcacca 1440 acctgggcaa taccgtaaat aacctgtett etgeeegtag eegtategaa gatteegaet 1500 acgcaaccga agtetecaac atgtetegeg egcagattet geageaggee ggtaceteeg 1560 ttetggegea ggegaaceag gtteegeaaa acgteetete tttaetgegt tgataatagg 1620 etggageete ggtggeeatg ettettgeee ettgggeete eeeeeageee eteeteeeet 1680 teetgeacee gtaceeegt ggtetttgaa taaagtetga gtgggegge 1729

<210> SEQ ID NO 52 <211> LENGTH: 1518 <212> TYPE: DNA

-continued

<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 52 atggcacaag teattaatae aaacageetg tegetgttga eecagaataa eetgaacaaa 60 teccagteeg caetgggeae tgetategag egtttgtett eeggtetgeg tateaaeage 120 gcgaaagacg atgcggcagg acaggcgatt gctaaccgtt ttaccgcgaa catcaaaggt 180 etgacteagg ettecegtaa egetaaegae ggtateteea ttgegeagae eaetgaagge 240 gegetgaaeg aaateaaeaa caacetgeag egtgtgegtg aaetggeggt teagtetgeg 300 aatggtacta actoccagto tgacotogac tocatocagg otgaaatcac coagogootg 360 aacgaaateg acegtgtate eggecagaet cagtteaaeg gegtgaaagt eetggegeag 420 gacaacacce tgaccateca ggttggtgee aacgacggtg aaactatega tattgattta 480 aaagaaatca getetaaaac actgggaett gataagetta atgteeaaga tgeetaeace 540 cogaaagaaa ctgotgtaac ogttgataaa actacotata aaaatggtac agatootatt 600 acageceaga geaataetga tatecaaaet geaattggeg gtggtgeaae gggggttaet 660 720 qqqqctqata tcaaatttaa aqatqqtcaa tactatttaq atqttaaaqq cqqtqcttct gctggtgttt ataaagccac ttatgatgaa actacaaaga aagttaatat tgatacgact 780 gataaaactc cgttggcaac tgcggaagct acagctattc ggggaacggc cactataacc 840 cacaaccaaa ttgctgaagt aacaaaagag ggtgttgata cgaccacagt tgcggctcaa 900 cttgctgcag caggggttac tggcgccgat aaggacaata ctagccttgt aaaactatcg 960 tttgaggata aaaacggtaa ggttattgat ggtggctatg cagtgaaaat gggcgacgat 1020 ttetatgeeg etacatatga tgagaaaaca ggtgeaatta etgetaaaac cactaettat 1080 acagatggta ctggcgttgc tcaaactgga gctgtgaaat ttggtggcgc aaatggtaaa 1140 tetgaagttg ttaetgetae egatggtaag acttaettag eaagegaeet tgaeaaaeat 1200 aacttcagaa caggeggtga gettaaagag gttaatacag ataagaetga aaacecaetg 1260 cagaaaattg atgetgeett ggeacaggtt gatacaette gttetgaeet gggtgeggtt 1320 cagaaccett tcaacteege tateaccaac etgegeaata cegtaaataa eetgtettet 1380 gecegtagee gtategaaga tteegaetae geaacegaag tetecaacat gtetegegeg 1440 1500 cagattetge ageaggeegg taceteegtt etggegeagg egaaceaggt teegeaaaae gteetetett taetgegt 1518 <210> SEQ ID NO 53 <211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 53 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc 60 auuaauacaa acageeugue geuguugaee cagaauaaee ugaacaaaue eeagueegea 120 cugggcacug cuaucgageg uuugucuuce ggucugegua ucaacagege gaaagaegau 180 geggeaggae aggegauuge uaaceguuuu aeegegaaca ucaaaggueu gaeucaggeu 240 ucceguaaeg cuaaegaegg uaucuceauu gegeagaeea cugaaggege geugaaegaa 300 360 aucaacaaca accuqcaqcq uquqcquqaa cuqqcqquuc aqucuqcqaa uqquacuaac

546

ucccagucug accucgacuc	cauccaggcu gaaau	caccc agcgccugaa	cgaaaucgac 420
cguguauccg gccagacuca	guucaacggc gugaa	agucc uggegeagga	caacacccug 480
accauccagg uuggugccaa	cgacggugaa acuau	cgaua uugauuuaaa	agaaaucage 540
ucuaaaacac ugggacuuga	uaagcuuaau gucca	agaug ccuacacece	gaaagaaacu 600
gcuguaaccg uugauaaaac	uaccuauaaa aaugg	uacag auccuauuac	ageccagage 660
aauacugaua uccaaacugc	aauuggeggu gguge	aacgg ggguuacugg	ggcugauauc 720
aaauuuaaag auggucaaua	cuauuuagau guuaa	aggeg gugeuueuge	ugguguuuau 780
aaagccacuu augaugaaac	uacaaagaaa guuaa	uauug auacgacuga	uaaaacuccg 840
uuggcaacug cggaagcuac	agcuauucgg ggaac	ggcca cuauaaccca	caaccaaauu 900
gcugaaguaa caaaagaggg	uguugauacg accac	aguug eggeucaacu	ugcugcagca 960
gggguuacug gegeegauaa	ggacaauacu agccu	uguaa aacuaucguu	ugaggauaaa 1020
aacgguaagg uuauugaugg	uggcuaugca gugaa	aaugg gcgacgauuu	cuaugeegeu 1080
acauaugaug agaaaacagg	ugcaauuacu gcuaa	aacca cuacuuauac	agaugguacu 1140
ggcguugcuc aaacuggagc	ugugaaauuu ggugg	cgcaa augguaaauc	ugaaguuguu 1200
acugcuaccg augguaagac	uuacuuagca agcga	ccuug acaaacauaa	cuucagaaca 1260
ggcggugagc uuaaagaggu	uaauacagau aagac	ugaaa acccacugca	gaaaauugau 1320
gcugccuugg cacagguuga	uacacuucgu ucuga	ccugg gugcgguuca	gaaceguuue 1380
aacuccgcua ucaccaaccu	gggcaauacc guaaa	uaacc ugucuucugc	ccguagccgu 1440
aucgaagauu ccgacuacgc	aaccgaaguc uccaa	caugu cucgcgcgca	gauucugcag 1500
caggeeggua ceuceguueu	ggegeaggeg aacca	gguuc cgcaaaacgu	ccucucuuua 1560
cugeguugau aauaggeugg	ageeueggug geeau	geuue uugeeeeuug	ggeeuceeee 1620
cagecceuce uccceuuccu	gcacceguae ecceg	ugguc uuugaauaaa	gucugagugg 1680
дсддсааааа аааааааааа	aaaaaaaaa aaaaa	aaaaa aaaaaaaaaa	aaaaaaaaa 1740
aaaaaaaaaa aaaaaaaaaaa	aaaaaaaaaa aaaaa	aaaaa aaaaaucuag	1790
<pre><210> SEQ ID NO 54 <211> LENGTH: 506 <212> TYPE: PRT <213> ORGANISM: Artif <220> FEATURE: <223> OTHER INFORMATIC <400> SEQUENCE: 54</pre>	-	ypeptide	
Met Ala Gln Val Ile A	sn Thr Asn Ser Le	u Ser Leu Leu Th:	r Gln Asn
1 5	10		15
Asn Leu Asn Lys Ser G 20	ln Ser Ala Leu Gl 25	y Thr Ala Ile Gl 30	u Arg Leu
Ser Ser Gly Leu Arg I 35	le Asn Ser Ala Ly 40	s Asp Asp Ala Al 45	a Gly Gln
Ala Ile Ala Asn Arg Pi 50	he Thr Ala Asn Il 55	e Lys Gly Leu Th: 60	r Gln Ala
Ser Arg Asn Ala Asn A 65 7		e Ala Gln Thr Th 75	r Glu Gly 80
Ala Leu Asn Glu Ile A 85	sn Asn Asn Leu Gl 90	n Arg Val Arg Gl	u Leu Ala 95
Val Gln Ser Ala Asn G 100	ly Thr Asn Ser Gl 105	n Ser Asp Leu Asj 11	

Gln Ala Glu Ile Thr Gln Arg Leu Asn Glu Ile Asp Arg Val Ser Gly

-continued

Gln Thr Gln Phe Asn Gly Val Lys Val Leu Ala Gln Asp Asn Thr Leu Thr Ile Gln Val Gly Ala Asn Asp Gly Glu Thr Ile Asp Ile Asp Leu Lys Glu Ile Ser Ser Lys Thr Leu Gly Leu Asp Lys Leu Asn Val Gln Asp Ala Tyr Thr Pro Lys Glu Thr Ala Val Thr Val Asp Lys Thr Thr Tyr Lys Asn Gly Thr Asp Pro Ile Thr Ala Gln Ser Asn Thr Asp Ile 195 200 205 Gln Thr Ala Ile Gly Gly Gly Ala Thr Gly Val Thr Gly Ala Asp Ile 210 215 220 Lys Phe Lys Asp Gly Gln Tyr Tyr Leu Asp Val Lys Gly Gly Ala Ser 225 230 235 240 Ala Gly Val Tyr Lys Ala Thr Tyr Asp Glu Thr Thr Lys Lys Val Asn 245 250 255 Ile Asp Thr Thr Asp Lys Thr Pro Leu Ala Thr Ala Glu Ala Thr Ala260265270 Ile Arg Gly Thr Ala Thr Ile Thr His Asn Gln Ile Ala Glu Val Thr Lys Glu Gly Val Asp Thr Thr Thr Val Ala Ala Gln Leu Ala Ala Ala Gly Val Thr Gly Ala Asp Lys Asp Asn Thr Ser Leu Val Lys Leu Ser Phe Glu Asp Lys Asn Gly Lys Val Ile Asp Gly Gly Tyr Ala Val Lys Met Gly Asp Asp Phe Tyr Ala Ala Thr Tyr Asp Glu Lys Thr Gly Ala Ile Thr Ala Lys Thr Thr Thr Tyr Thr Asp Gly Thr Gly Val Ala Gln Thr Gly Ala Val Lys Phe Gly Gly Ala Asn Gly Lys Ser Glu Val Val Thr Ala Thr Asp Gly Lys Thr Tyr Leu Ala Ser Asp Leu Asp Lys His 385 390 395 400 Asn Phe Arg Thr Gly Gly Glu Leu Lys Glu Val Asn Thr Asp Lys Thr Glu Asn Pro Leu Gln Lys Ile Asp Ala Ala Leu Ala Gln Val Asp Thr Leu Arg Ser Asp Leu Gly Ala Val Gln Asn Arg Phe Asn Ser Ala Ile 435 440 445 Thr Asn Leu Gly Asn Thr Val Asn Asn Leu Ser Ser Ala Arg Ser Arg Ile Glu Asp Ser Asp Tyr Ala Thr Glu Val Ser Asn Met Ser Arg Ala Gln Ile Leu Gln Gln Ala Gly Thr Ser Val Leu Ala Gln Ala Asn Gln Val Pro Gln Asn Val Leu Ser Leu Leu Arg

<210> SEQ ID NO 55 <211> LENGTH: 698

549

-continued

<21	2> TY 3> OF	RGAN:	ISM:	Art	ific:	ial :	Seque	ence							
<22	0> FI 3> 0'	THER	INF		TION	: Syı	nthe	tic l	ројуј	pept	ide				
)> SI Ala				Asn	Thr	Asn	Ser	Leu	Ser	Leu	Leu	Thr	Gln	Asn
1				5					10					15	
Asn	Leu	Asn	Lуз 20	Ser	Gln	Ser	Ala	Leu 25	Gly	Thr	Ala	Ile	Glu 30	Arg	Leu
Ser	Ser	Gly 35	Leu	Arg	Ile	Asn	Ser 40	Ala	Гла	Aab	Asp	Ala 45	Ala	Gly	Gln
Ala	Ile 50	Ala	Asn	Arg	Phe	Thr 55	Ala	Asn	Ile	Lys	Gly 60	Leu	Thr	Gln	Ala
Ser 65	Arg	Asn	Ala	Asn	Asp 70	Gly	Ile	Ser	Ile	Ala 75	Gln	Thr	Thr	Glu	Gly 80
Ala	Leu	Asn	Glu	Ile 85	Asn	Asn	Asn	Leu	Gln 90	Arg	Val	Arg	Glu	Leu 95	Ala
Val	Gln	Ser	Ala 100	Asn	Ser	Thr	Asn	Ser 105	Gln	Ser	Asp	Leu	Asp 110	Ser	Ile
Gln	Ala	Glu 115	Ile	Thr	Gln	Arg	Leu 120	Asn	Glu	Ile	Asp	Arg 125	Val	Ser	Gly
Gln	Thr 130	Gln	Phe	Asn	Gly	Val 135	Lys	Val	Leu	Ala	Gln 140	Asp	Asn	Thr	Leu
Thr 145	Ile	Gln	Val	Gly	Ala 150	Asn	Asp	Gly	Glu	Thr 155	Ile	Asp	Ile	Aab	Leu 160
ГЛЗ	Gln	Ile	Asn	Ser 165	Gln	Thr	Leu	Gly	Leu 170	Asp	Thr	Leu	Asn	Val 175	Gln
Gln	Lys	Tyr	Lys 180	Val	Ser	Asp	Thr	Ala 185	Ala	Thr	Val	Thr	Gly 190	Tyr	Ala
Asp	Thr	Thr 195	Ile	Ala	Leu	Asp	Asn 200	Ser	Thr	Phe	Lys	Ala 205	Ser	Ala	Thr
Gly	Leu 210	Gly	Gly	Thr	Asp	Gln 215	Lys	Ile	Asp	Gly	Asp 220	Leu	Lys	Phe	Asp
Asp 225	Thr	Thr	Gly	ГЛа	Tyr 230	Tyr	Ala	Гла	Val	Thr 235	Val	Thr	Gly	Gly	Thr 240
Gly	Lys	Asp	Gly	Tyr 245	Tyr	Glu	Val	Ser	Val 250	Asp	Lys	Thr	Asn	Gly 255	Glu
Val	Thr	Leu	Ala 260	Gly	Gly	Ala	Thr	Ser 265	Pro	Leu	Thr	Gly	Gly 270	Leu	Pro
Ala	Thr	Ala 275	Thr	Glu	Asp	Val	ГАа 780	Asn	Val	Gln	Val	Ala 285	Asn	Ala	Asp
Leu	Thr 290	Glu	Ala	Lys	Ala	Ala 295	Leu	Thr	Ala	Ala	Gly 300	Val	Thr	Gly	Thr
Ala 305	Ser	Val	Val	Lys	Met 310	Ser	Tyr	Thr	Asp	Asn 315	Asn	Gly	Lys	Thr	Ile 320
Asp	Gly	Gly	Leu	Ala 325	Val	Гла	Val	Gly	Asp 330	Asp	Tyr	Tyr	Ser	Ala 335	Thr
Gln	Asn	Lys	Asp 340	Gly	Ser	Ile	Ser	Ile 345	Asn	Thr	Thr	Lys	Tyr 350	Thr	Ala
Asp	Asp	-		Ser	Lys	Thr			Asn	Lys	Leu	-		Ala	Asp
Gly	Гуз	355 Thr	Glu	Val	Val	Ser	360 Ile	Gly	Gly	Lys	Thr	365 Tyr	Ala	Ala	Ser
-	370					375		-	-		380				

Lys Ala Glu Gly His Asn Phe Lys Ala Gln Pro Asp Leu Ala Glu Ala 385 390 395 400

A	la	Ala	Thr	Thr	Thr 405	Glu	Asn	Pro	Leu	Gln 410	Lys	Ile	Asp	Ala	Ala 415	Leu
A	la	Gln	Val	Asp 420		Leu	Arg	Ser	Asp 425		Gly	Ala	Val	Gln 430		Arg
P	he	Asn	Ser 435		Ile	Thr	Asn	Leu 440		Asn	Thr	Val	Asn 445		Leu	Thr
S	er	Ala 450		Ser	Arg	Ile	Glu 455		Ser	Asp	Tyr	Ala 460	Thr	Glu	Val	Ser
	sn 65		Ser	Arg	Ala	Gln 470		Leu	Gln	Gln	Ala 475		Thr	Ser	Val	Leu 480
		Gln	Ala	Asn	Gln 485		Pro	Gln	Asn	Val 490		Ser	Leu	Leu	Arg 495	
G	ly	Gly	Gly	Ser 500	Gly	Gly	Gly	Gly	Ser 505		Met	Ala	Pro	Asp 510		Asn
A	la	Asn	Pro 515		Ala	Asn	Pro	Asn 520		Asn	Pro	Asn	Ala 525		Pro	Asn
A	la	Asn 530		Asn	Ala	Asn	Pro 535		Ala	Asn	Pro	Asn 540	Ala	Asn	Pro	Asn
	la 45		Pro	Asn	Ala	Asn 550		Asn	Ala	Asn	Pro 555		Ala	Asn	Pro	Asn 560
		Asn	Pro	Asn	Ala 565		Pro	Asn	Ala	Asn 570	Pro	Asn	Ala	Asn	Pro 575	
A	la	Asn	Pro	Asn 580		Asn	Pro	Asn	Ala 585		Pro	Asn	Lys	Asn 590		Gln
G	ly	Asn	Gly 595	Gln	Gly	His	Asn	Met 600	Pro	Asn	Asp	Pro	Asn 605	Arg	Asn	Val
A	ab	Glu 610	Asn	Ala	Asn	Ala	Asn 615	Asn	Ala	Val	Lys	Asn 620	Asn	Asn	Asn	Glu
	lu 25	Pro	Ser	Asp	Lys	His 630	Ile	Glu	Gln	Tyr	Leu 635	Lys	Гуз	Ile	Lys	Asn 640
S	er	Ile	Ser	Thr	Glu 645	Trp	Ser	Pro	Суз	Ser 650	Val	Thr	Cys	Gly	Asn 655	Gly
I	le	Gln	Val	Arg 660	Ile	Lys	Pro	Gly	Ser 665	Ala	Asn	Lys	Pro	Lys 670	Asp	Glu
L	eu	Asp	Tyr 675	Glu	Asn	Asp	Ile	Glu 680	Гуз	Ьуз	Ile	Суз	Lys 685	Met	Glu	Гуз
C	Уa	Ser 690	Ser	Val	Phe	Asn	Val 695	Val	Asn	Ser						
	211 212 213 220 223	L> LH 2> TY 3> OH 0> FH 3> OY	CATUR THER	I: 69 PRT SM: XE: INF(92 Art: DRMA	ific: FION		-		9 0 1y	pepti	ide				
			EQUER Ala			Dara	A ~~~	7 1-	3.00	Dma	D ~~~	<u>م</u> ام	A ~~~	Dme	7.000	مام
1					5					10			Asn		15	
A	sn	Pro	Asn	Ala 20	Asn	Pro	Asn	Ala	Asn 25	Pro	Asn	Ala	Asn	Pro 30	Asn	Ala
A	sn	Pro	Asn 35	Ala	Asn	Pro	Asn	Ala 40	Asn	Pro	Asn	Ala	Asn 45	Pro	Asn	Ala

-continued

Asn	Pro 50	Asn	Ala	Asn	Pro	Asn 55	Ala	Asn	Pro	Asn	Ala 60	Asn	Pro	Asn	Ala
Asn 65	Pro	Asn	Ala	Asn	Pro 70	Asn	Ala	Asn	Pro	Asn 75	Ala	Asn	Pro	Asn	Ala 80
Asn	Pro	Asn	Lүз	Asn 85	Asn	Gln	Gly	Asn	Gly 90	Gln	Gly	His	Asn	Met 95	Pro
Asn	Asp	Pro	Asn 100	Arg	Asn	Val	Asp	Glu 105	Asn	Ala	Asn	Ala	Asn 110	Asn	Ala
Val	Lys	Asn 115	Asn	Asn	Asn	Glu	Glu 120	Pro	Ser	Asp	Lya	His 125	Ile	Glu	Gln
Tyr	Leu 130	Гуа	ГАа	Ile	Lys	Asn 135	Ser	Ile	Ser	Thr	Glu 140	Trp	Ser	Pro	Суз
Ser 145	Val	Thr	Cys	Gly	Asn 150	Gly	Ile	Gln	Val	Arg 155	Ile	Lys	Pro	Gly	Ser 160
Ala	Asn	Гуз	Pro	Lys 165	Asp	Glu	Leu	Asp	Tyr 170	Glu	Asn	Asp	Ile	Glu 175	Гуа
ГАз	Ile	Сув	Lys 180	Met	Glu	ГАЗ	САа	Ser 185	Ser	Val	Phe	Asn	Val 190	Val	Asn
Ser	Arg	Pro 195	Val	Thr	Met	Ala	Gln 200	Val	Ile	Asn	Thr	Asn 205	Ser	Leu	Ser
Leu	Leu 210	Thr	Gln	Asn	Asn	Leu 215	Asn	Гла	Ser	Gln	Ser 220	Ala	Leu	Gly	Thr
Ala 225	Ile	Glu	Arg	Leu	Ser 230	Ser	Gly	Leu	Arg	Ile 235	Asn	Ser	Ala	Lys	Asp 240
Asp	Ala	Ala	Gly	Gln 245	Ala	Ile	Ala	Asn	Arg 250	Phe	Thr	Ala	Asn	Ile 255	Гла
Gly	Leu	Thr	Gln 260	Ala	Ser	Arg	Asn	Ala 265	Asn	Asp	Gly	Ile	Ser 270	Ile	Ala
Gln	Thr	Thr 275	Glu	Gly	Ala	Leu	Asn 280	Glu	Ile	Asn	Asn	Asn 285	Leu	Gln	Arg
Val	Arg 290	Glu	Leu	Ala	Val	Gln 295	Ser	Ala	Asn	Ser	Thr 300	Asn	Ser	Gln	Ser
Asp 305	Leu	Asp	Ser	Ile	Gln 310	Ala	Glu	Ile	Thr	Gln 315	Arg	Leu	Asn	Glu	Ile 320
Asp	Arg	Val	Ser	Gly 325	Gln	Thr	Gln	Phe	Asn 330	Gly	Val	Lys	Val	Leu 335	Ala
Gln	Asp	Asn	Thr 340	Leu	Thr	Ile	Gln	Val 345	Gly	Ala	Asn	Asp	Gly 350	Glu	Thr
Ile	Asp	Ile 355	Asp	Leu	Lys	Gln	Ile 360	Asn	Ser	Gln	Thr	Leu 365	Gly	Leu	Азр
Thr	Leu 370	Asn	Val	Gln	Gln	Lув 375	Tyr	ГÀЗ	Val	Ser	Asp 380	Thr	Ala	Ala	Thr
Val 385	Thr	Gly	Tyr	Ala	Asp 390	Thr	Thr	Ile	Ala	Leu 395	Asp	Asn	Ser	Thr	Phe 400
Lys	Ala	Ser	Ala	Thr 405	Gly	Leu	Gly	Gly	Thr 410	Asp	Gln	Lys	Ile	Asp 415	Gly
Asp	Leu	Гуз	Phe 420	Asp	Asp	Thr	Thr	Gly 425	Lys	Tyr	Tyr	Ala	Lys 430	Val	Thr
Val	Thr	Gly 435	Gly	Thr	Gly	Гуз	Asp 440	Gly	Tyr	Tyr	Glu	Val 445	Ser	Val	Asp
Lys	Thr 450	Asn	Gly	Glu	Val	Thr 455	Leu	Ala	Gly	Gly	Ala 460	Thr	Ser	Pro	Leu
Thr	Gly	Gly	Leu	Pro	Ala	Thr	Ala	Thr	Glu	Asp	Val	Lys	Asn	Val	Gln

					-
-con	t	יר	וור	$ \Delta $	n –
0011	. ما		τu	<u> </u>	~

					000	,										 50		
										-	con	tin	ued					
465				470					475					480				
Val Ala	Asn	Ala	Asp 485	Leu	Thr	Glu	Ala	Lys 490	Ala	Ala	Leu	Thr	Ala 495	Ala				
Gly Val	. Thr	Gly 500		Ala	Ser	Val	Val 505	Lys	Met	Ser	Tyr	Thr 510	Asp	Asn				
Asn Gly	Lys 515	Thr	Ile	Asp	Gly	Gly 520	Leu	Ala	Val	Гуз	Val 525	Gly	Asp	Asp				
Tyr Tyr 530		Ala	Thr	Gln	Asn 535	Lys	Asp	Gly	Ser	Ile 540	Ser	Ile	Asn	Thr				
Thr Lys		Thr	Ala		Aab	Gly	Thr	Ser			Ala	Leu	Asn					
545 Leu Gly	, Gly	Ala	Asp	550 Gly		Thr	Glu	Val	555 Val	Ser	Ile	Gly	Gly	560 Lys				
Thr Tyr	Ala	Ala	565 Ser		Ala	Glu	Glv	570 His	Asn	Phe	Lvs	Ala	575 Gln	Pro				
_		580		-			585				-	590						
Asp Leu	595 b	GIu	Ala	Ala	Ala	Thr 600	Thr	Thr	GIu	Asn	Pro 605	Leu	GIn	ГЛЗ				
Ile Asp 610		Ala	Leu	Ala	Gln 615	Val	Asp	Thr	Leu	Arg 620	Ser	Asp	Leu	Gly				
Ala Val 625	Gln	Asn	Arg	Phe 630		Ser	Ala	Ile	Thr 635	Asn	Leu	Gly	Asn	Thr 640				
Val Asn	ı Asn	Leu	Thr 645	Ser	Ala	Arg	Ser	Arg 650	Ile	Glu	Asp	Ser	Asp 655	Tyr				
Ala Thr	Glu	Val 660	Ser	Asn	Met	Ser	Arg 665	Ala	Gln	Ile	Leu	Gln 670	Gln	Ala				
Gly Thr	Ser 675	Val	Leu	Ala	Gln	Ala 680	Asn	Gln	Val	Pro	Gln 685	Asn	Val	Leu				
Ser Leu 690		Arg																
<210> S <211> L																		
<212> T <213> C	YPE:	RNA		an m	etap	neum	oviru	15										
<400> S	EQUE	NCE :	57															
augagcu	ıgga	aggu	ggug	au u	aucu	ucago	e cuș	geug	auua	cac	cuca	aca (cggco	ugaag	60			
gagagcu	lacc 1	ugga	agag	ag ci	ugcu	ccace	c au	cacc	gagg	gcu	accu	gag (egugo	cugegg	120			
accggcu	ıggu	acac	caac	gu g	uuca	cecu	g gaq	ggugg	ggcg	acg	uggag	gaa (ccuga	accugo	180			
agegaeg	gcc	cuag	ccug	au c	aaga	ccgaç	g cuợ	ggac	cuga	cca	agago	cgc ı	ıcuga	agagag	240			
cugaaga	iccg i	uguc	cgcc	ga c	cage	uggco	c aga	agag	gaac	aga	ucga	gaa d	eccu	eggeag	300			
agcagau	ucg 1	ugcu	ggge	ge e	aucg	cucuç	g gga	aguc	geeg	cug	eegei	igc á	aguga	acagcu	. 360			
ggagugg	jeca 1	uuge	uaag	ac c	auca	gacuç	g gaa	aago	gagg	uga	cage	cau d	caaca	aaugee	420			
cugaaga	aga	ccaa	cgag	ge e	guga	gcace	e cuș	gggc	aaug	gag	ugaga	agu g	gcugo	gccaca	480			
geeguge	999	agcu	gaag	ga ci	uucg	ugago	c aaq	jaac	cuga	cca	gage	cau 🤇	caaca	aagaac	540			
aagugeg	jaca 1	ucga	ugac	cu g	aaga	uggco	c guợ	gagei	uucu	ccc	aguu	caa 🤇	caga	egguue	600			
cugaacg	ugg	ugag	acagi	uu c	uccg	acaa	g gei	ıgga	auca	cac	cuge	cau 1	lage	cuggad	660			
cugauga	ieeg i	acge	cgag	cu g	gcua	gage	gu	geee	aaca	uge	ccac	cag (egeug	ggccag	720			
aucaago	uga	ugcu	ggag	aa c	agag	ccauç	g gu	Jcgg:	agaa	agg	gcuu	cgg (cauco	cugauu	. 780			
ggggugu	laug	gaag	cucc	gu g	aucu	acauç	g guợ	gcag	cugc	cca	ucuu	egg (guga	aucgac	840			

557

558

							_
acacccugcu gga	ucgugaa	ggccgcuccu	ageugeuceg	agaagaaagg	aaacuaugcc	900	
ugucugcuga gag	aggacca	gggcugguac	ugccagaacg	ccggaagcac	aguguacuau	960	
cccaacgaga agg	acugega	gaccagaggc	gaccacgugu	ucugegacae	cgcugccgga	1020	
aucaacgugg ccg	agcagag	caaggagugc	aacaucaaca	ucagcacaac	caacuacccc	1080	
ugcaagguga gca	ccggacg	gcaccccauc	agcauggugg	cucugageee	ucugggegeu	1140	
cugguggccu gcu	auaaggg	cguguccugu	agcaucggca	gcaaucgggu	gggcaucauc	1200	
aagcagcuga aca	agggaug	cuccuacauc	accaaccagg	acgeegacae	cgugaccauc	1260	
gacaacaccg ugu	accagcu	gagcaaggug	gagggcgagc	agcacgugau	caagggcaga	1320	
cccgugagcu cca	gcuucga	ccccaucaag	uucccugagg	accaguucaa	ednddeeend	1380	
gaccaggugu uug	agaacau	cgagaacagc	caggeccugg	uggaccagag	caacagaauc	1440	
cuguccageg cug	agaaggg	caacaccggc	uucaucauug	ugaucauucu	gauegeegug	1500	
cugggcagcu cca	ugauccu	ggugageauc	uucaucauua	ucaagaagac	caagaaaccc	1560	
accggagece cuc	cugagcu	gageggegug	accaacaaug	gcuucauucc	ccacaacuga	1620	
<210> SEQ ID N <211> LENGTH: <212> TYPE: RN <213> ORGANISM	1620 A	metapneumor	<i>i</i> rus				
<400> SEQUENCE	: 58						
augucuugga aag	ugaugau	caucauuucg	uuacucauaa	caccccagca	cgggcuaaag	60	
gagaguuauu ugg	aagaauc	auguaguacu	auaacugagg	gauaccucag	uguuuuaaga	120	
acaggcuggu aca	cuaaugu	cuucacauua	gaaguuggug	auguugaaaa	ucuuacaugu	180	
acugauggac cua	gcuuaau	caaaacagaa	cuugaucuaa	caaaaagugc	uuuaagggaa	240	
cucaaaacag ucu	cugcuga	ucaguuggcg	agagaggagc	aaauugaaaa	ucccagacaa	300	
ucaagauuug ucu						360	
ggcauugcaa uag						420	
cucaaacaaa cua						480	
gcagugagag agc	uaaaaga	auuugugage	aaaaaccuga	cuagugcaau	caacaggaac	540	
aaaugugaca uug						600	
cuaaauguug ugc	ggcaguu	uucagacaau	gcagggauaa	caccagcaau	aucauuggac	660	
cugaugacug aug	cugaguu	ggccagagcu	guaucauaca	ugccaacauc	ugcagggcag	720	
auaaaacuga ugu	uggagaa	ccgcgcaaug	guaaggagaa	aaggauuugg	aauccugaua	780	
ggggucuacg gaa	gcucugu	gauuuacaug	guucaauugc	cgaucuuugg	ugucauagau	840	
acaccuuguu gga	ucaucaa	ggcagcuccc	ucuugcucag	aaaaaacgg	gaauuaugcu	900	
ugecuccuaa gag	aggauca	agggugguau	uguaaaaaug	caggaucuac	uguuuacuac	960	
ccaaaugaaa aag	acugcga	aacaagaggu	gaucauguuu	uuugugacac	agcagcaggg	1020	
aucaauguug cug	agcaauc	aagagaaugc	aacaucaaca	uaucuacuac	caacuaccca	1080	
ugcaaaguca gca	caggaag	acacccuaua	agcaugguug	cacuaucacc	ucucggugcu	1140	
uugguggcuu gcu	auaaagg	gguaagcugc	ucgauuggca	gcaauugggu	uggaaucauc	1200	
aaacaauuac cca	aaggcug	cucauacaua	accaaccagg	augcagacac	uguaacaauu	1260	
gacaauaccg ugu	aucaacu	aagcaaaguu	gaaggugaac	agcauguaau	aaaagggaga	1320	

559

560

	222					500
			-contin	nued		
ccaguuucaa gcaguuuuga	uccaaucaag	uuuccugagg	aucaguucaa	uguugegeuu	1380	
gaucaagucu ucgaaagcau	ugagaacagu	caggcacuag	uggaccaguc	aaacaaaauu	1440	
cuaaacagug cagaaaaagg	aaacacuggu	uucauuaucg	uaguaauuuu	gguugcuguu	1500	
cuuggucuaa ccaugauuuc	agugagcauc	aucaucauaa	ucaagaaaac	aaggaagccc	1560	
acaggagcac cuccagagcu	gaaugguguc	accaacggcg	guuucauacc	acauaguuag	1620	
<210> SEQ ID NO 59 <211> LENGTH: 1620 <212> TYPE: RNA <213> ORGANISM: Human	metapneumo	virus				
<400> SEQUENCE: 59						
augucuugga aagugaugau	uaucauuucg	uuacucauaa	caccucagca	uggacuaaaa	60	
gaaaguuauu uagaagaauc	auguaguacu	auaacugaag	gauaucucag	uguuuuaaga	120	
acagguuggu acaccaaugu	cuuuacauua	gaaguuggug	auguugaaaa	ucuuacaugu	180	
acugauggac cuagcuuaau	caaaacagaa	cuugaccuaa	ccaaaagugc	uuuaagagaa	240	
cucaaaacag uuucugcuga	ucaguuageg	agagaagaac	aaauugaaaa	ucccagacaa	300	
ucaagguuug uccuaggugc	aauagcucuu	ggaguugcca	cagcagcagc	agucacagca	360	
ggcauugcaa uagccaaaac	uauaaggcuu	gagagugaag	ugaaugcaau	caaaggugcu	420	
cucaaaacaa ccaaugaggc	aguaucaaca	cuaggaaaug	gagugcgggu	ccuagccacu	480	
gcaguaagag agcugaaaga	auuugugagc	aaaaaccuga	cuagugegau	caacaagaac	540	
aagugugaca uugcugauuu	gaagauggcu	gucagcuuca	gucaguucaa	cagaagauuc	600	
cuaaauguug ugeggeaguu	uucagacaau	gcagggauaa	caccagcaau	aucauuggac	660	
cugaugaaug augcugagcu	ggccagagcu	guaucauaca	ugccaacauc	ugcaggacag	720	
auaaaacuaa uguuagagaa	ccgugcaaug	gugaggagaa	aaggauuugg	aaucuugaua	780	
ggggucuacg gaagcucugu	gauuuacaug	guccageuge	cgaucuuugg	ugucauaaau	840	
acaccuuguu ggauaaucaa	ggcagcuccc	ucuuguucag	aaaaagaugg	aaauuaugcu	900	
ugccuccuaa gagaggauca	agggugguau	uguaaaaaug	caggauccac	uguuuacuac	960	
ccaaaugaaa aagacugcga	aacaagaggu	gaucauguuu	uuugugacac	agcagcaggg	1020	
aucaauguug cugagcaauc	aagagaaugc	aacaucaaca	uaucuaccac	caacuaccca	1080	
ugcaaaguca gcacaggaag	acacccuauc	agcaugguug	cacuaucacc	ucucggugcu	1140	
uugguagcuu gcuacaaagg	gguuageuge	ucgacuggca	guaaucaggu	uggaauaauc	1200	
aaacaacuac cuaaaggcug	cucauacaua	acuaaccagg	acgcagacac	uguaacaauu	1260	
gacaacacug uguaucaacu	aagcaaaguu	gagggugaac	agcauguaau	aaaagggaga	1320	
ccaguuucaa gcaguuuuga	uccaaucagg	uuuccugagg	aucaguucaa	uguugegeuu	1380	
gaucaagucu uugaaagcau	ugaaaacagu	caagcacuag	uggaccaguc	aaacaaaauu	1440	
cugaacagug cagaaaaagg	aaacacuggu	uucauuauug	uaauaauuuu	gauugcuguu	1500	
cuuggguuaa ccaugauuuc	agugagcauc	aucaucauaa	ucaaaaaaaac	aaggaageee	1560	
acagggggcac cuccggagcu	gaaugguguu	accaacggcg	guuucauacc	gcauaguuag	1620	
<210> SEQ ID NO 60						

LENGTH: 1725
<212> TYPE: RNA
<213> ORGANISM: Human respiratory syncytial virus

<400> SEQUENCE: 60

561

562

					60
auggaguuge caauecucaa					120
uguuucgeuu ccagucaaaa					120
agcaaaggcu aucuuagugc					240
uuaaguaaua ucaaggaaaa				-	300
caagaauuag auaaauauaa					
ccagcagcca acaaucgagc					360
aauaccaaaa auaccaaugu					420
uuguuaggug uuggaucugc					480
gaagggggaag ugaacaaaau					540
uuaucaaaug gaguuagugu					600
aaacaguugu uaccuauugu					660
auagaguucc aacaaaagaa					720
gcagguguaa cuacaccugu	aagcacuuau	auguuaacua	auagugaauu	auuaucauua	780
aucaaugaua ugecuauaac	aaaugaucag	aaaaaguuaa	uguccaacaa	uguucaaaua	840
guuagacago aaaguuacuc	uaucaugucc	auaauaaagg	aggaagucuu	agcauaugua	900
guacaauuac cacuauaugg	uguaauagau	acacccuguu	ggaaacugca	cacauceecu	960
cuauguacaa ccaacacaaa	ggaagggucc	aacaucugcu	uaacaagaac	cgacagagga	1020
ugguauugug acaaugcagg	aucaguaucu	uucuucccac	aagcugaaac	auguaaaguu	1080
caaucgaauc ggguauuuug	ugacacaaug	aacaguuuaa	cauuaccaag	ugaaguaaau	1140
cucugcaaca uugacauauu	caaccccaaa	uaugauugca	aaauuaugac	uucaaaaaca	1200
gauguaagca geueeguuau	cacaucucua	ggagccauug	ugucaugcua	uggcaaaacu	1260
aaauguacag cauccaauaa	aaaucguggg	aucauaaaga	cauuuucuaa	cgggugugau	1320
uauguaucaa auaagggggu	ggauacugug	ucuguaggua	auacauuaua	uuauguaaau	1380
aagcaagaag gcaaaagucu	cuauguaaaa	ggugaaccaa	uaauaaauuu	cuaugaccca	1440
uuaguguuce ccucugauga	auuugaugca	ucaauaucuc	aagucaauga	gaagauuaac	1500
cagageeuag cauuuauueg	uaaauccgau	gaauuauuac	auaauguaaa	ugcugguaaa	1560
uccaccacaa auaucaugau	aacuacuaua	auuauaguga	uuauaguaau	auuguuauca	1620
uuaauugcag uuggacugcu	ccuauacugc	aaggccagaa	gcacaccagu	cacacuaagu	1680
aaggaucaac ugagugguau	aaauaauauu	gcauuuagua	acuga		1725
<210> SEQ ID NO 61 <211> LENGTH: 1617					
<212> TYPE: RNA <213> ORGANISM: Human	parainflue	nza virus			
<400> SEQUENCE: 61					
augecaauuu caauacuguu	aauuauuaca	accaugauca	uggcaucaca	cugccaaaua	60
gacaucacaa aacuacagca					120
ucacaaaacu ucgaaacaag					180
aacucuugug gugaccaaca					240
ccuuuauaug auggacuaag	auuacagaag	gaugugauag	ugacuaauca	agaauccaau	300
gaaaacacug aucccagaac	agaacgauuc	uuuggagggg	uaauuggaac	uauugcucua	360

563

564

				-contir	luea	
ggaguagcaa	ccucagcaca	aauuacagca	gcaguugcuc	ugguugaagc	caagcaggca	420
agaucagaca	uugaaaaacu	caaggaagca	aucagggaca	caaauaaagc	agugcaguca	480
guucagageu	cuguaggaaa	uuugauagua	gcaauuaaau	caguccagga	uuaugucaac	540
aaagaaaucg	ugccaucgau	ugegagaeua	gguugugaag	cagcaggacu	ucaguuaggg	600
auugcauuaa	cacagcauua	cucagaauua	acaaauauau	uuggugauaa	cauaggaucg	660
uuacaagaaa	aaggaauaaa	auuacaaggu	auagcaucau	uauaccguac	aaauaucaca	720
gaaauauuca	caacaucaac	aguugacaaa	uaugauauuu	augaucuauu	auuuacagaa	780
ucaauaaagg	ugagaguuau	agauguugau	uugaaugauu	acucaauaac	ccuccaaguc	840
agacucccuu	uauugaccag	acugcugaac	acucaaaucu	acaaaguaga	uuccauauca	900
uacaauaucc	aaaauagaga	augguauauc	ccucuuccca	gccauaucau	gacgaaaggg	960
gcauuucuag	guggagcaga	ugucaaagaa	ugcauagaag	cauucagcag	uuauauaugc	1020
ccuucugauc	caggauuugu	acuaaaccau	gaaauggaga	gcugucuauc	aggaaacaua	1080
ucccaauguc	caagaaccac	agucacauca	gacauaguuc	cuagguaugc	auuugucaau	1140
ggaggagugg	uugcgaauug	uauaacaacu	acauguacau	gcaaugguau	cgguaauaga	1200
aucaaccaac	caccugauca	aggagucaaa	auuauaacac	auaaagaaug	uaauacaaua	1260
gguaucaacg	gaaugcuauu	caacacaaac	aaagaaggaa	cucuugcauu	cuacacacca	1320
gacgacauaa	cauuaaacaa	uucuguugca	cuugaucega	uugacauauc	aaucgagcuc	1380
aacaaggcca	aaucagaucu	ugaggaauca	aaagaaugga	uaagaagguc	aaaucaaaag	1440
cuagauucua	uuggaaguug	gcaucaaucu	agcacuacaa	ucauaguuau	uuugauaaug	1500
augauuauau	uguuuauaau	uaauauaaca	auaauuacaa	uugcaauuaa	guauuacaga	1560
auucaaaaga	gaaaucgagu	ggaucaaaau	gauaageegu	auguauuaac	aaacaag	1617
<210> SEQ 1 <211> LENG <212> TYPE: <213> ORGAN	TH: 1716	parainfluer	nza virus 3			
<400> SEQUE	ENCE: 62					
auggaauacu	ggaagcacac	caaccacgga	aaggaugcug	guaaugagcu	ggagacaucc	60
acagecacue	auggcaacaa	gcucaccaac	aagauaacau	auauauugug	gacgauaacc	120
cugguguuau	uaucaauagu	cuucaucaua	gugcuaacua	auuccaucaa	aagugaaaag	180
gcccgcgaau	cauugcuaca	agacauaaau	aaugaguuua	uggaaguuac	agaaaagauc	240
caaguggcau	cggauaauac	uaaugaucua	auacagucag	gagugaauac	aaggcuucuu	300
acaauucaga	gucaugucca	gaauuauaua	ccaauaucau	ugacacaaca	aauaucggau	360
cuuaggaaau	ucauuaguga	aauuacaauu	agaaaugaua	aucaagaagu	gccaccacaa	420
agaauaacac	augauguggg	uauaaaaccu	uuaaauccag	augauuucug	gagaugcacg	480
ucuggucuuc	caucuuugau	gaaaacucca	aaaauaagau	uaaugeeggg	accaggauua	540
uuagcuaugc	caacgacugu	ugauggcugu	gucagaaccc	cguccuuagu	gauaaaugau	600
cugauuuaug	cuuacaccuc	aaaucuaauu	acucgagguu	gccaggauau	agggaaauca	660
uaucaaguau	uacagauagg	gauaauaacu	guaaacucag	acuugguacc	ugacuuaaau	720
ccuaggaucu	cucauaccuu	caacauaaau	gacaauagaa	agucauguuc	ucuagcacuc	780
cuaaauacag	auguauauca	acuguguuca	accccaaaag	uugaugaaag	aucagauuau	840
gcaucaucag	gcauagaaga	uauuguacuu	gauauuguca	auuaugaugg	cucaaucucg	900

565

566

acaacaagau uuaagaauaa uaauauaagu uuugauca	ac cauaugegge auuauaeeea 960										
ucuguuggac cagggauaua cuacaaaggc aaaauaau	au uucucgggua uggaggucuu 1020										
gaacauccaa uaaaugagaa ugcaaucugc aacacaac	ug gguguccugg gaaaacacag 1080										
agagacugua aucaagcauc ucauagucca ugguuuuc	ag auagaaggau ggucaacucu 1140										
auaauuguug uugacaaggg cuugaacuca guuccaaa	au ugaagguaug gacgauaucu 1200										
augagacaaa auuacugggg gucagaagga agauuacu	uc uacuagguaa caagaucuac 1260										
auauacacaa gaucuacaag uuggcacagc aaguuaca	au uaggaauaau ugacauuacu 1320										
gacuacagug auauaaggau aaaauggaca uggcauaa	ug ugcuaucaag accaggaaac 1380										
aaugaauguc cauggggaca uucauguccg gauggaug	ua uaacgggagu auauaccgau 1440										
gcauauccac ucaaucccac aggaagcauu guaucauc	ug ucauauugga cucacaaaaa 1500										
ucgagaguca acccagucau aacuuacuca acagcaac	cg aaaggguaaa cgagcuggcu 1560										
aucegaaaca aaacacucue ageuggguae acaacaac	aa gcugcauuac acacuauaac 1620										
aaaggguauu guuuucauau aguagaaaua aaucauaa	aa gcuuaaacac auuucaaccc 1680										
auguuguuca aaacagagau uccaaaaaagc ugcagu	1716										
<pre><210> SEQ ID NO 63 <211> LENGTH: 1716 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide</pre>											
<400> SEQUENCE: 63											
auggaauacu ggaagcacac caaccacggc aaggacgc	cq qcaacqaqcu qqaaaccaqc 60										
	eg geaacgaget ggaaaceage oo										
acagocacac acggcaacaa gougaccaac aagaucac											
	cu acauccugug gaccaucace 120										
acagocacac acggcaacaa gcugaccaac aagaucac	cu acauccugug gaccaucacc 120 ca auagcaucaa gagcgagaag 180										
acagocacao acggoaacaa gougaccaao aagaucac cuggugougo ugagoauogu guucaucauo gugougac	cu acauccugug gaccaucacc 120 ca auagcaucaa gagcgagaag 180 ca uggaagugac cgagaagauc 240										
acagecacae acggeaacaa geugaecaae aagaucae cuggugeuge ugageauegu guucaucaue gugeugae geeagagaga geeugeugea ggaeaucaae aacgaguu	cu acauccugug gaccaucace 120 ca auagcaucaa gagcgagaag 180 ca uggaagugac cgagaagauc 240 cg gegugaacac ceggeugeug 300										
acagecaeae aeggeaaeaa geugaeeaae aagaueae euggugeuge ugageauegu guueaueaue gugeugae geeagagaga geeugeugea ggaeaueaae aaegaguu eagguggeea gegaeaaeae eaaegaeeug auceagag	cu acauccugug gaccaucace 120 ca auagcaucaa gagcgagaag 180 ca uggaagugac cgagaagauc 240 cg gegugaacac ceggeugeug 300 ce ugaeccagea gaucagegae 360										
acagecacae aeggeaacaa geugaecaae aagaucae euggugeuge ugageauegu guucaucaue gugeugae geeagagaga geeugeugea ggaeaucaae aaegaguu eagguggeea gegaeaacae caaegaecug auceagag aceauceaga geeaegugea gaacuaeaue ceeaucag	cu acauccugug gaccaucacc 120 ca auagcaucaa gagcgagaag 180 ca uggaagugac cgagaagauc 240 cg gegugaacac ceggeugeug 300 ce ugaeccagea gaucagegae 360 ca accaggaagu geececceag 420										
acagccacac acggcaacaa gcugaccaac aagaucac cuggugcugc ugagcaucgu guucaucauc gugcugac gccagagaga gccugcugca ggacaucaac aacgaguu cagguggcca gcgacaacac caacgaccug auccagagu accauccaga gccacgugca gaacuacauc cccaucag cugcggaagu ucaucagcga gaucaccauc cggaacga	cu acauccugug gaccaucace 120 ca auagcaucaa gagcgagaag 180 ca uggaagugac cgagaagauc 240 cg gegugaacac ceggeugeug 300 ee ugacceagea gaucagegac 360 ca aceaggaagu geeececeag 420 cg acgauuucug gegguguaca 480										
acagecacae aeggeaacaa geugaecaae aagaucae euggugeuge ugageaucgu guucaucaue gugeugae geeagagaga geeugeugea ggaeaucaae aaegaguu eagguggeea gegaeaacae caaegaecug auceagag aceauceaga geeaegugea gaacuaeaue eegaaega eugeggaagu ucaucagega gaucaecaue eggaaega agaaucaece aegaeguggg caucaageee cugaaecee	cu acauccugug gaccaucacc 120 ca auagcaucaa gagcgagaag 180 ca uggaagugac cgagaagauc 240 cg gegugaacac ceggeugeug 300 ce ugaeccagea gaucagegac 360 ca accaggaagu geeeccecag 420 cg acgauuucug gegguguaca 480 ge ugaugecugg ceeuggacug 540										
acagccacac acggcaacaa gcugaccaac aagaucac cuggugcugc ugagcaucgu guucaucauc gugcugac gccagagaga gccugcugca ggacaucaac aacgaguu cagguggcca gcgacaacac caacgaccug auccagag accauccaga gccacgugca gaacuacauc cccaucag cugcggaagu ucaucagcga gaucaccauc cggaacgac agaaucaccc acgacguggg caucaagccc cugaacce agcggccugc ccagccugau gaagaccecc aagaucce	cu acauccugug gaccaucace 120 ca auagcaucaa gagcgagaag 180 ca uggaagugac cgagaagauc 240 cg gegugaacac ceggeugeug 300 ce ugaeccagea gaucagegac 360 ca accaggaagu geececceag 420 cg acgauuucug gegguguaca 480 ge ugaugecugg ceeuggacug 540 ce ceagecuegu gaucaaegau 600										
acagceacac acggeaacaa geugaceaac aagaucac euggugeuge ugageaucgu guucaucauc gugeugac geeagagaga geeugeugea ggacaucaac aacgaguu cagguggeea gegacaacac caacgaceug auccagag accauceaga geeacgugea gaacuacauc ceeaucaga cugeggaagu ucaucagega gaucaceauc eggaacga agaaucaece acgaeguggg caucaageee cugaacee ageeggeeuge ceageeugau gaagaceee aagauceg euggeeauge cuaceacagu ggauggeugu gugeggac	cu acauccugug gaccaucace 120 ca auagcaucaa gagcgagaag 180 ca uggaagugac cgagaagauc 240 cg gegugaacac ceggeugeug 300 cc ugacceagea gaucagegac 360 ca accaggaagu geeececeag 420 cg acgauuucug gegguguaca 480 ge ugaugeeugg ceeuggacug 540 ce ceageeuegu gaucaaegau 600 cu geeaggauau eggeaagage 660										
acagceacac acggeaacaa geugaceaac aagaucace euggugeuge ugageaucgu guucaucaue gugeugace geeagagaga geeugeugea ggacaucaac aacgaguu cagguggeea gegacaacac caacgaecug auccagag accauceaga geeaegugea gaucaceaue eggaaega agaaucaeee acgaeguggg caucaageee eugaaecea ageggeeuge ceageeugau gaagaeeeee aagaucege eugggeeauge cuaceacagu ggauggeugu gugeggae eugaucuaeg eeuaeaceag caaccugaue accegggg	cu acauccugug gaccaucace 120 ca auagcaucaa gagcgagaag 180 ca uggaagugac cgagaagauc 240 cg gegugaacac ceggeugeug 300 ce ugaeccagea gaucagegac 360 ca accaggaagu geeecceag 420 cg acgauuucug gegguguaca 480 ge ugaugecugg ceeuggacug 540 ce ceagecuegu gaucaaegau 600 cu geeaggauau eggeaagage 660 cg accuggugee egaecugaac 720										
acagecaeae aeggeaacaa geugaecaae aagaucae euggugeuge ugageaucgu guucaucaue gugeugae geeaggagaga geeugeugea ggaeaucaae aacgaguu eagguggeea gegaeaacae caaegaecug auceagag aceauceaga geeaegugea gaacuaeaue eegaacga eugeggaagu ucaucagega gaucaecaue eugaacee agaaguee ceageeugau gaagaeceee aagauceg euggeeauge cuaeeacagu ggauggeugu gugeggae euggeeauge cuaeeacagu ggauggeugu gugeggae uaeeagguge ugeagauegg caucaucaee gugaacue	cu acauccugug gaccaucace 120 ca auagcaucaa gagcgagaag 180 ca uggaagugac cgagaagauc 240 cg gegugaacac ceggeugeug 300 ce ugacceagea gaucagegac 360 ca accaggaagu geeececeag 420 cg acgauuucug gegguguaca 480 ge ugaugeeugg ceeuggacug 540 ce ceageeuegu gaucaaegau 600 cu geeaggauau eggeaagage 660 cu geeaggauau eggeaagage 660 cu accuggugee egaceugaac 720 aa agageugeag ceuggeueug 780										
acagceacac acggeaacaa geugaceaac aagaucace euggugeuge ugageaucgu guucaucauc gugeugace geeagagaga geeugeugea ggacaucaac aacgaguu cagguggeea gegacaacac caacgaecug auceagag accauceaga geeaegugea gaacuacauc ceeaucaga eugeggaagu ucaucagega gaucaceauc eggaacga agaaucaece acgaeguggg caucaageee cugaaceee ageggeeuge ceageeugau gaagaeceee aagauceg euggeeauge cuaceacagu ggauggeugu gugeggae cugaucuaeg ceuacaecag caaceugauc aceegggg uaecagguge ugeagauegg caucaucaee gugaacude cuugeggauca geeaecug caaceugauc aceegggg	cu acauccugug gaccaucace 120 ca auagcaucaa gagcgagaag 180 ca uggaagugac cgagaagauc 240 cg gcgugaacac ccggcugcug 300 cc ugacccagca gaucagcgac 360 ca accaggaagu gccccccag 420 cg acgauuucug gcgguguaca 480 gc ugaugccugg cccuggacug 540 cc ccagccucgu gaucaacgau 600 cu gccaggauau cggcaagagc 660 cg accuggugcc cgaccugaac 720 aa agagcugcag ccuggcucug 780 gg uggacgagag aagcgacuac 640										
acagecaeae aeggeaacaa geugaecaae aagaucae euggugeuge ugageaucgu guucaucaue gugeugae geeagagaga geeugeugea ggacaucaae aacgaguu eagguggeea gegacaaeae caaegaecug auceagag accauceaga geeaegugea gaacuaeaue ceeaucag gugeggaagu ucaucagega gaucaecaue eggaaega agaaucaece aegaeguggg caucaageee eugaaecee ageeggeeuge ceageeugau gaagaeceee aagauceg cuggeeauge cuaecaeagu ggauggeugu gugeggae euggeeauge cuaecaecag caaecugaue aecegggg uaecagguge ugeagauegg caucaucaee gugaaeuee cugaucuaeg eeuaeaeegg caucaucaee gugaaeuee cugaaeaagu geeaeaecuu caaeaucaae gaeaacag cuugaaeaeeg aeguguaeea geugugeage aeeeceaae	cu acauccugug gaccaucace 120 ca auagcaucaa gagcgagaag 180 ca uggaagugac cgagaagauc 240 cg gegugaacac ceggeugeug 300 ce ugacceagea gaucagegac 360 ca accaggaagu geeeceeag 420 cg acgauuucug gegguguaca 480 ge ugaugecugg ceeuggacug 540 ce ceagecuegu gaucaaegau 600 cu geeaggauau eggeaagage 660 cg accuggugee egaceugaac 720 aa agageugeag ceuggeucug 780 gg uggaegagag aagegacuae 640 ga acuacgaegg cageaucage 900										
acagccacac acggcaacaa gcugaccaac aagaucac cuggugcugc ugagcaucgu guucaucauc gugcugac gccagagaga gccugcugca ggacaucaac aacgaguu cagguggcca gcgacaacac caacgaccug auccagag accauccaga gccacgugca gaacuacauc cccaucaga cugcggaagu ucaucagcga gaucaccauc cggaacga agaaucaccc acgacguggg caucaagcec cugaaccec agcggccauge ccagecugau gaagaccece aagauceg cuggccauge cuaccaccag gaagagcugu gugeggac cuggccauge cuaccaccag gaagagcugu gugeggac cuggccauge cuaccaccag caaccugauc accegggg uaccagguge ugcagaucgg caucaucace gugaacuc cuugeggauca gecacaccuu caacaucaac gacaacag cuggaacaceg acguguacca gcugugeage acceccaa gccagcageg gcaucgagga uaucgugeug gacaucag	cu acauccugug gaccaucace 120 ca auagcaucaa gagcgagaag 180 ca uggaagugac cgagaagauc 240 cg gegugaacac ceggeugeug 300 ce ugaeccagea gaucagegac 360 ca accaggaagu geececceag 420 cg acgauuucug gegguguaca 480 ge ugaugecugg ceeuggacug 540 ce ceagecuegu gaucaaegau 600 cu geeaggauau eggeaagage 660 cg accuggugee egaecugaac 720 aa agageugeag ceuggeucug 780 gg uggaegagag aagegacuae 840 ga acuaegaegg cageaucage 900 ge ceuaegeege ceuguaeceu 960										
acagccacac acggcaacaa gcugaccaac aagaucac cuggugcugc ugagcaucgu guucaucauc gugcugac gccagagaga gccugcugca ggacaucaac aacgaguu cagguggcca gcgacaacac caacgaccug auccagag accauccaga gccacgugca gaacuacauc cccaucag cugcggaagu ucaucagcga gaucaccauc cggaacga agaaucacce acgacguggg caucaagece cugaacce agcggccuge ccagccugau gaagaccece aagauceg cugggccauge cuaccacagu ggauggcugu gugeggac cugaucuacg ccuacaccag caaccugauc accegggg uaccagguge ugcagaucgg caucaucace gugaacuac cuugaacace acgacgugg caucaucace gugaacuac cugggccauge cuaccacagu ggauggeugu gugeggac cugaucuacg ccuacaccag caaccugauc accegggg uaccagguge ugcagaucgg caucaucace gugaacuac ccucggauca gccacaccuu caacaucaac gacaacag gccagcageg gcaucgagga uaucgugcug gacaucgu accacceggu ucaagaacaa caacaucage uucgacca	cu acauccugug gaccaucace 120 ca auagcaucaa gagcgagaag 180 ca uggaagugac cgagaagauc 240 cg gegugaacac ceggeugeug 300 ce ugacceagea gaucagegac 360 ca accaggaagu geeeecceag 420 cg acgauuucug gegguguaca 480 ge ugaugeeugg eecuggacug 540 ce ceageeuegu gaucaaegau 600 cu geeaggauau eggeaagag 660 cg accuggugee egaccugaac 720 aa agageugeag eeuggeueug 780 gg uggaegagag aagegacuae 840 ga acuaegaegg eageaucag 900 ge eeuaegeege eeuguaeeeu 960 cu uceugggeua eggeggeeug 1020										
acagccacac acggcaacaa gcugaccaac aagaucac cuggugcugc ugagcaucgu guucaucauc gugcugac gccagagaga gccugcugca ggacaucaac aacgaguu cagguggcca gcgacaacac caacgaccug auccagag accauccaga gccacgugca gaacuacauc cccaucaga cugcggaagu ucaucagcga gaucaccauc cggaacga agaaucaccc acgacguggg caucaagcec cugaaccec ageggccuge ccagccugau gaagaccece aagauceg cuggccauge cuaccaccag gaagagcugu gugeggac cuggccauge cuaccaccag caaccugau gugeggac cuggaucaa gccacacuu gaagaccece gugaacuc cugaacaceg acguguacca gcugugeage acceceggg uaccagguge ugcagaucgg caucaucace gugaacuc cuugaacaceg acguguacca gcugugeage acceceaa gccagcageg gcaucgagga uaucgugeug gacaucgu aucugugggec cuggcaucua cuacaagge aagaucau gaacaccegu ucaagaacaa caacaucage uucgaccaa uucugugggec cuggcaucua cuacaaggge aagaucau gaacacceca ucaacgagaa cgccaucuge aacaccac	cu acauccugug gaccaucace 120 ca auagcaucaa gagcgagaag 180 ca uggaagugac cgagaagauc 240 cg gegugaacac ceggeugeug 300 ce ugacceagea gaucagegac 360 ca accaggaagu geeeceeaga 420 cg acgauuucug gegguguaca 480 ge ugaugecugg ceeuggacug 540 ce ceagecuegu gaucaaegau 600 cu geeaggauau eggeaagage 660 cg accuggugee egaceugaac 720 aa agageugeag ceuggeucug 780 gg uggaegagag aagegacuae 840 ga acuaegaegg cageaucage 900 ge ceuaegeege eeuguaeeeu 960 cu uccugggeua eggeggeeug 1020										
acagccacac acggcaacaa gcugaccaac aagaucac cuggugcugc ugagcaucgu guucaucauc gugcugac gccagagaga gccugcugca ggacaucaac aacgaguu cagguggcca gcgacaacac caacgaccug auccagag accauccaga gccacgugca gaacuacauc cccaucaga cugcggaagu ucaucagcga gaucaccauc cggaacga agaaucaccc acgacguggg caucaagccc cugaaccco agcggccugc ccagccugau gaagaccccc aagauceg cuggccaugc cuaccaccagu ggauggcugu gugcggac cuggacaugc cuaccaccag caaccugau accegggg uaccaggugc ugcagaucgg caucaucacc gugaacuce cuggaacaacg ccuacaccag caaccugau gacaacag cuggaacaacg acguguacca gcugugcagc acceccaac gcucggauca gccacaccuu caacaucaac gacaacag cuugaacaccg acguguacca gcugugcag acceccaa gccagcageg gcaucgagga uaucgugcug gacaucgu accacceggu ucaagaacaa caacaucagc uucgaccaa uucugugggcc cuggcaucua cuacaagggc aagaucau	cu acauccugug gaccaucacc 120 ca auagcaucaa gagcgagaag 180 ca uggaagugac cgagaagauc 240 cg gegugaacac ceggeugeug 300 ce ugaeccagea gaucagegac 360 ca accaggaagu geececceag 420 cg acgauuucug gegguguaca 480 ge ugaugecugg ceeuggacug 540 ce ceagecuegu gaucaaegau 600 cu geeaggauau eggeaagage 660 cg accuggugee egaecugaac 720 aa agageugeag eeuggeucug 780 gg uggacgagag aagegacuae 840 ga acuaegaegg cageaucage 900 ge ceuaegeege eeuguaeceu 960 cu ueeugggeua eggeggeeug 1020 cg geugeceugg caagaaccag 1080 cg acegeagaau ggucaacucu 1140										

-cont	inued
-conc	Indea

-continued	
augegeeaga acuacugggg cagegaggge agacuucuge ugeugggaaa caagaucuae	1260
aucuacacec gguecaceag cuggeacage aaacugeage ugggaaucau egacaucace	1320
gacuacagog acaucoggau caaguggaco uggcacaaog ugougagoag acooggoaac	1380
aaugagugee cuuggggeea cageugeeee gauggaugua ucaeeggegu guacaeegae	1440
gecuaceeee ugaauceuae eggeuceaue gugueeageg ugaueeugga cageeagaaa	1500
agcagaguga accccgugau cacauacagc accgccaccg agagagugaa cgaacuggcc	1560
aucagaaaca agacccugag cgccggcuac accaccacaa gcugcaucac acacuacaac	1620
aagggcuacu gcuuccacau cguggaaauc aaccacaagu cccugaacac cuuccagccc	1680
augeuguuca agaeegagau ceccaagage ugeuee	1716
<210> SEQ ID NO 64 <211> LENGTH: 1617 <212> TYPE: RNA <2113> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 64	
augeceauca geauceugeu gaucaucace acaaugauca uggeeageea cugeeagaue	60
gacaucacca agcugcagca cgugggcgug cucgugaaca gccccaaggg caugaagauc	120
agecagaacu ucgagacacg cuaccugauc cugagecuga uccecaagau cgaggacage	180
aacagcugcg gegaccagca gaucaagcag uacaagegge ugcuggacag acugaucauc	240
ecccuguacg acggccugcg gcugcagaaa gacgugaucg ugaccaacca ggaaagcaac	300
gagaacaceg acceeeggae egagagauue uueggeggeg ugaueggeae aauegeeeug	360
ggaguggeea caagegeeea gauuacagee geuguggeee ugguggaage caageaggee	420
agaagegaca uegagaageu gaaagaggee aucegggaca eeaacaagge egugeagage	480
gugcagueca gegugggeaa ucugauegug gecaucaagu eegugcagga cuaegugaac	540
aaagaaaucg ugeecucuau egeeeggeug ggeugugaag eugeeggaeu geageuggge	600
auugeeeuga cacageacua cagegageug accaacaucu ueggegacaa caueggeage	660
cugcaggaaa agggcauuaa gcugcaggga aucgccagco uguacogcac caacaucaco	720
gagaucuuca ccaccagcac cguggauaag uacgacaucu acgaccugcu guucaccgag	780
agcaucaaag ugogogugau ogacguggac cugaacgacu acagcaucac cougcaagug	840
eggeugeeee ugeugaeeag acugeugaae acceagaueu acaaggugga cageaueuee	900
uacaacauce agaacegega gugguacaue ceucugeeca gecacauuau gaccaaggge	960
gccuuucugg gcggagccga cgugaaagag ugcaucgagg ccuucagcag cuacaucugc	1020
cccagegaee cuggeuuegu geugaaceae gagauggaaa geugeeugag eggeaacaue	1080
agecagugee ceagaaceae egugaceuee gacaueguge ceagauaege euuegugaau	1140
ggeggegugg uggecaacug caucaceace accuguaccu geaacggeau eggeaacegg	1200
aucaaccage cuccegauca gggegugaag auuaucacee acaaagagug uaacaccauc	1260
ggcaucaacg gcaugcuguu caauaccaac aaagagggca cccuggccuu cuacaccccc	1320
gacgauauca cccugaacaa cuccguggcu cuggacccca ucgacaucuc caucgagcug	1380
aacaaggeea agagegaeeu ggaagaguee aaagagugga ueeggeggag caaceagaag	1440
cuggacucua ucggcagcug gcaccagagc agcaccacca ucaucgugau ccugauuaug	1500
augauuauce uguucaucau caacauuace aucaucacua ucgecauuaa guacuaccgg	1560

auccagaaac ggaaccgg	gu ggaccagaau	gacaageecu	acgugcugac	aaacaag	1617
<210> SEQ ID NO 65 <211> LENGTH: 4062 <212> TYPE: RNA <213> ORGANISM: Mide	dle East resp	iratory syn	drome corona	avirus	
<400> SEQUENCE: 65					
augauacacu caguguuu	cu acugauguuc	uuguuaacac	cuacagaaag	uuacguugau	60
guagggccag auucuguu	aa gucugcuugu	auugagguug	auauacaaca	gaccuucuuu	120
gauaaaacuu ggeeuagg	cc aauugauguu	ucuaaggcug	acgguauuau	auacccucaa	180
ggeeguacau auucuaac	au aacuaucacu	uaucaagguc	uuuuuceeua	ucagggagac	240
cauggugaua uguauguu	ua cucugcagga	caugcuacag	gcacaacucc	acaaaaguug	300
uuuguagcua acuauucu	ca ggacgucaaa	caguuugcua	auggguuugu	cguccguaua	360
ggagcagcug ccaauucc	ac uggcacuguu	auuauuagcc	caucuaccag	cgcuacuaua	420
cgaaaaauuu acccugcu	uu uaugcugggu	ucuucaguug	guaauuucuc	agaugguaaa	480
augggeegeu ueuucaau	ca uacucuaguu	cuuuugeeeg	auggaugugg	cacuuuacuu	540
agagcuuuuu auuguauu	cu agageeuege	ucuggaaauc	auuguccugc	uggcaauucc	600
uauacuucuu uugecacu	ua ucacacuccu	gcaacagauu	guucugaugg	caauuacaau	660
cguaaugcca gucugaac	uc uuuuaaggag	uauuuuaauu	uacguaacug	caccuuuaug	720
uacacuuaua acauuaco	ga agaugagauu	uuagaguggu	uuggcauuac	acaaacugcu	780
caagguguuc accucuuc	ic aucucgguau	guugauuugu	acggcggcaa	uauguuucaa	840
uuugecaccu ugecuguu	ia ugauacuauu	aaguauuauu	cuaucauucc	ucacaguauu	900
cguucuaucc aaagugau	ag aaaagcuugg	gcugccuucu	acguauauaa	acuucaaceg	960
uuaacuuucc uguuggau	uu uucuguugau	gguuauauac	gcagagcuau	agacuguggu	1020
uuuaaugauu ugucacaa	cu ccacugcuca	uaugaauccu	ucgauguuga	aucuggaguu	1080
uauucaguuu cgucuuuc	ga agcaaaaccu	ucuggcucag	uuguggaaca	ggcugaaggu	1140
guugaaugug auuuuuca	cc ucuucugucu	ggcacaccuc	cucagguuua	uaauuucaag	1200
cguuugguuu uuaccaau	ig caauuauaau	cuuaccaaau	ugcuuucacu	uuuuucugug	1260
aaugauuuua cuuguagu	ca aauaucucca	gcagcaauug	cuagcaacug	uuauucuuca	1320
cugauuuugg auuauuuu	uc auacceacuu	aguaugaaau	ccgaucucag	uguuaguucu	1380
geugguecaa uaucceag	uu uaauuauaaa	caguccuuuu	cuaaucccac	auguuugauc	1440
uuagegaeug uuceueau	aa ccuuacuacu	auuacuaagc	cucuuaagua	cagcuauauu	1500
aacaagugcu cucgucuu	cu uucugaugau	cguacugaag	uaccucaguu	agugaacgcu	1560
aaucaauacu cacccugu	gu auccauuguc	ccauccacug	ugugggaaga	cggugauuau	1620
uauaggaaac aacuaucu	cc acuugaaggu	aanaacnaac	uuguugcuag	uggcucaacu	1680
guugccauga cugagcaa	uu acagaugggc	uuugguauua	caguucaaua	ugguacagac	1740
accaauagug uuugcccc	aa gcuugaauuu	gcuaaugaca	caaaaauugc	cucucaauua	1800
ggcaauugcg uggaauau	ic ccucuauggu	guuucgggcc	gugguguuuu	ucagaauugc	1860
acagcuguag guguucga					1920
uauuauucug augaugge					1980
gucaucuaug auaaagaa					2040
yulauluauy auaaayda	Le uaadaeeede	ycuacucuau	aaggaagagu	ugcauguyaa	2010

571

-continued

572

				-contir	nued	
cacauuucuu	cuaccauguc	ucaauacucc	cguucuacgc	gaucaaugcu	uaaacggcga	2100
gauucuacau	auggeeeccu	ucagacaccu	guugguugug	uccuaggacu	uguuaauucc	2160
ucuuuguucg	uagaggacug	caaguugeeu	cucggucaau	cucucuguge	ucuuccugac	2220
acaccuagua	cucucacacc	ucgcagugug	cgcucugugc	caggugaaau	gcgcuuggca	2280
uccauugcuu	uuaaucaucc	cauucagguu	gaucaacuua	auaguaguua	uuuuaaauua	2340
aguauaccca	cuaauuuuuc	cuuuggugug	acucaggagu	acauucagac	aaccauucag	2400
aaaguuacug	uugauuguaa	acaguacguu	ugcaaugguu	uccagaagug	ugagcaauua	2460
cugegegagu	auggecaguu	uuguuccaaa	auaaaccagg	cucuccaugg	ugccaauuua	2520
cgccaggaug	auucuguacg	uaauuuguuu	gcgagcguga	aaagcucuca	aucaucuccu	2580
aucauaccag	guuuuggagg	ugacuuuaau	uugacacuuc	uagaaccugu	uucuauaucu	2640
acuggeague	guagugcacg	uagugcuauu	gaggauuugc	uauuugacaa	agucacuaua	2700
gcugauccug	guuauaugca	agguuacgau	gauuguaugc	agcaaggucc	agcaucagcu	2760
cgugaucuua	uuugugcuca	auauguggcu	gguuauaaag	uauuaccucc	ucuuauggau	2820
guuaauaugg	aageegegua	uacuucaucu	uugcuuggca	gcauagcagg	uguuggcugg	2880
acugcuggcu	uauccuccuu	ugcugcuauu	ccauuugcac	agaguauyuu	uuauagguua	2940
aacgguguug	gcauuacuca	acagguucuu	ucagagaacc	aaaagcuuau	ugccaauaag	3000
uuuaaucagg	cucugggagc	uaugcaaaca	ggcuucacua	caacuaauga	agcuuuucgg	3060
aagguucagg	augcugugaa	caacaaugca	caggcucuau	ccaaauuagc	uagegageua	3120
ucuaauacuu	uuggugcuau	uuccgccucu	auuggagaca	ucauacaacg	ucuugauguu	3180
cucgaacagg	acgcccaaau	agacagacuu	auuaauggee	guuugacaac	acuaaaugcu	3240
uuuguugcac	agcagcuugu	ucguuccgaa	ucageugeue	uuuccgcuca	auuggcuaaa	3300
gauaaaguca	augagugugu	caaggcacaa	uccaageguu	cuggauuuug	cggucaaggc	3360
acacauauag	uguccuuugu	uguaaaugcc	ccuaauggcc	uuuacuuuau	gcaug uugg u	3420
uauuacccua	gcaaccacau	ugagguuguu	ucugcuuaug	gucuuugcga	ugcagcuaac	3480
ccuacuaauu	guauagcccc	uguuaauggc	uacuuuauua	aaacuaauaa	cacuaggauu	3540
guugaugagu	ggucauauac	uggeueguee	uucuaugcac	cugageecau	caccucucuu	3600
aauacuaagu	auguugcacc	acaggugaca	uaccaaaaca	uuucuacuaa	ccucccuccu	3660
ccucuucucg	gcaauuccac	cgggauugac	uuccaagaug	aguuggauga	guuuuucaaa	3720
aauguuagca	ccaguauacc	uaauuuuggu	ucucuaacac	agauuaauac	uacauuacuc	3780
gaucuuaccu	acgagauguu	gucucuucaa	caaguuguua	aagcccuuaa	ugagucuuac	3840
auagaccuua	aagagcuugg	caauuauacu	uauuacaaca	aauggccgug	guacauuugg	3900
cuugguuuca	uugcugggcu	uguugeeuua	gcucuaugcg	ucuucuucau	acugugcugc	3960
acugguugug	gcacaaacug	uaugggaaaa	cuuaagugua	aucguuguug	ugauagauac	4020
gaggaauacg	accucgagcc	gcauaagguu	cauguucacu	aa		4062
<210> SEQ : <211> LENG <212> TYPE <213> ORGAJ <220> FEAT	TH: 4062 : RNA NISM: Artif:	icial Sequer	nce			

<400> SEQUENCE: 66

augauacacu caguguuucu acugauguuc uuguuaacac cuacagaaag uuacguugau 60

<223> OTHER INFORMATION: Synthetic Polynucleotide

573

574

guagggccag	auucuguuaa	gucugcuugu	auugagguug	auauacaaca	gacuuucuuu	120
gauaaaacuu	ggccuaggcc	aauugauguu	ucuaaggcug	acgguauuau	auacccucaa	180
ggccguacau	auucuaacau	aacuaucacu	uaucaagguc	uuuuucccua	ucagggagac	240
cauggugaua	uguauguuua	cucugcagga	caugcuacag	gcacaacucc	acaaaaguug	300
uuuguagcua	acuauucuca	ggacgucaaa	caguuugcua	auggguuugu	cguccguaua	360
ggagcagcug	ccaauuccac	uggcacuguu	auuauuagcc	caucuaccag	cgcuacuaua	420
cgaaaaauuu	acccugcuuu	uaugcugggu	ucuucaguug	guaauuucuc	agaugguaaa	480
augggccgcu	ucuucaauca	uacucuaguu	cuuuugeeeg	auggaugugg	cacuuuacuu	540
agagcuuuuu	auuguauucu	ggagccucgc	ucuggaaauc	auuguccugc	uggcaauucc	600
uauacuucuu	uugccacuua	ucacacuccu	gcaacagauu	guucugaugg	caauuacaau	660
cguaaugeea	gucugaacuc	uuuuaaggag	uauuuuaauu	uacguaacug	caccuuuaug	720
uacacuuaua	acauuaccga	agaugagauu	uuagaguggu	uuggcauuac	acaaacugcu	780
caagguguuc	accucuucuc	aucucgguau	guugauuugu	acggcggcaa	uauguuucaa	840
uuugccaccu	ugecuguuua	ugauacuauu	aaguauuauu	cuaucauucc	ucacaguauu	900
cguucuaucc	aaagugauag	aaaagcuugg	gcugccuucu	acguauauaa	acuucaaceg	960
uuaacuuucc	uguuggauuu	uucuguugau	gguuauauac	gcagagcuau	agacuguggu	1020
uuuaaugauu	ugucacaacu	ccacugcuca	uaugaauccu	ucgauguuga	aucuggaguu	1080
uauucaguuu	cgucuuucga	agcaaaaccu	ucuggcucag	uuguggaaca	ggcugaaggu	1140
guugaaugug	auuuuucacc	ucuucugucu	ggcacaccuc	cucagguuua	uaauuucaag	1200
cguuugguuu	uuaccaauug	caauuauaau	cuuaccaaau	ugcuuucacu	uuuuucugug	1260
aaugauuuua	cuuguaguca	aauaucucca	gcagcaauug	cuagcaacug	uuauucuuca	1320
cugauuuugg	auuacuuuuc	auacccacuu	aguaugaaau	ccgaucucag	uguuaguucu	1380
gcugguccaa	uaucccaguu	uaauuauaaa	caguccuuuu	cuaaucccac	auguuugauu	1440
uuagegaeug	uuccucauaa	ccuuacuacu	auuacuaagc	cucuuaagua	cagcuauauu	1500
aacaagugcu	cucgucuucu	uucugaugau	cguacugaag	uaccucaguu	agugaacgcu	1560
aaucaauacu	cacccugugu	auccauuguc	ccauccacug	ugugggaaga	cggugauuau	1620
uauaggaaac	aacuaucucc	acuugaaggu	gguggcuggc	uuguugcuag	uggeucaacu	1680
guugeeauga	cugagcaauu	acagaugggc	uuugguauua	caguucaaua	ugguacagac	1740
accaauagug	uuugeeecaa	gcuugaauuu	gcuaaugaca	caaaaauugc	cucucaauua	1800
ggcaauugcg	uggaauauuc	ccucuauggu	guuucgggcc	gugguguuuu	ucagaauugc	1860
acagcuguag	guguucgaca	gcagcgcuuu	guuuaugaug	cguaccagaa	uuuaguugge	1920
uauuauucug	augauggcaa	cuacuacugu	uugegugeuu	guguuagugu	uccuguuucu	1980
gucaucuaug	auaaagaaac	uaaaacccac	gcuacucuau	uugguagugu	ugcaugugaa	2040
cacauuucuu	cuaccauguc	ucaauacucc	cguucuacgc	gaucaaugcu	uaaacggcga	2100
gauucuacau	auggeeeeeu	ucagacaccu	guugguugug	uccuaggacu	uguuaauucc	2160
ucuuuguucg	uagaggacug	caaguugccu	cuuggucaau	cucucugugc	ucuuccugac	2220
acaccuagua	cucucacacc	ucgcagugug	cgcucuguuc	caggugaaau	gcgcuuggca	2280
uccauugcuu	uuaaucaucc	uauucagguu	gaucaacuua	auaguaguua	uuuuaaauua	2340
aguauaccca	cuaauuuuuc	cuuuggugug	acucaggagu	acauucagac	aaccauucag	2400

575

576

_

aaaguuacug uugauuguaa acaguacguu ugcaaugguu uccagaagug ugagcaauua	2460
cugegegagu auggeeaguu uuguuceaaa auaaaceagg cucuceaugg ugeeaauuua	2520
cgccaggaug auucuguacg uaauuuguuu gcgagcguga aaagcucuca aucaucuccu	2580
aucauaccag guuuuggagg ugacuuuaau uugacacuuc uggaaccugu uucuauaucu	2640
acuggcaguc guagugcacg uagugcuauu gaggauuugc uauuugacaa agucacuaua	2700
gcugauccug guuauaugca agguuacgau gauugcaugc agcaaggucc agcaucagcu	2760
cgugaucuua uuugugcuca auauguggcu gguuacaaag uauuaccucc ucuuauggau	2820
guuaauaugg aageegegua uacuucaucu uugeuuggea geauageagg uguuggeugg	2880
acugcuggcu uauccuccuu ugcugcuauu ccauuugcac agaguaucuu uuauagguua	2940
aacgguguug gcauuacuca acagguucuu ucagagaacc aaaagcuuau ugccaauaag	3000
uuuaaucagg cucugggagc uaugcaaaca ggcuucacua caacuaauga agcuuuucag	3060
aagguucagg augcugugaa caacaaugca caggcucuau ccaaauuagc uagcgagcua	3120
ucuaauacuu uuggugcuau uuccgccucu auuggagaca ucauacaacg ucuugauguu	3180
cucgaacagg acgeecaaau agacagacuu auuaauggee guuugacaae acuaaaugeu	3240
uuuguugcac agcagcuugu ucguuccgaa ucagcugcuc uuuccgcuca auuggcuaaa	3300
gauaaaguca augagugugu caaggcacaa uccaagcguu cuggauuuug cggucaaggc	3360
acacauauag uguccuuugu uguaaaugee eeuaauggee uuuacuucau geauguuggu	3420
uauuacccua gcaaccacau ugagguuguu ucugcuuaug gucuuugcga ugcagcuaac	3480
ccuacuaauu guauageeee uguuaaugge uacuuuauua aaacuaauaa cacuaggauu	3540
guugaugagu ggucauauac uggcucgucc uucuaugcac cugagcccau uaccucccuu	3600
aauacuaagu auguugcacc acaggugaca uaccaaaaca uuucuacuaa ccucccuccu	3660
ccucuucucg gcaauuccac cgggauugac uuccaagaug aguuggauga guuuuucaaa	3720
aauguuagca ccaguauacc uaauuuuggu ucccuaacac agauuaauac uacauuacuc	3780
gaucuuaccu acgagauguu gucucuucaa caaguuguua aagcccuuaa ugagucuuac	3840
auagaccuua aagagcuugg caauuauacu uauuacaaca aauggeegug guacauuugg	3900
canadanarca andendadea adandeeana denenanded acaneanean sendadeade	3960
acnàànnànà àcacaaacnà nanàààaaaa cunsaànàna ancànnànnà nàanaàanac	4020
gaggaauacg accucgagcc gcauaagguu cauguucacu aa	4062
<210> SEQ ID NO 67 <211> LENGTH: 1845 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 67	
augauccacu coguguuccu ccucauguuc cuguugacoc ccacugaguc agacugcaag	60
cuccegeugg gacagueecu gugugegeug ceugacaeue euageaeueu gaceceaege	120
uccgugcggu cggugccugg cgaaaugcgg cuggccucca ucgccuucaa ucacccaauc	180
caaguggauc agcugaauag cucguauuuc aagcugucca uccccacgaa cuucucguuc	240
ggggucaccc aggaguacau ccagaccaca auucagaagg ucaccgucga uugcaagcaa	300
uacgugugca acggcuucca gaagugcgag cagcugcuga gagaauacgg gcaguuuugc	360
agcaagauca accaggegeu geauggageu aacuugegee aggaegaeue egugegeaac	420

578

cucuuugeeu eugugaague aucceaguee ucceeaauea uccegggauu eggaggggae	480
uucaaccuga cccuccugga gcccgugucg aucagcaccg guagcagauc ggcgcgcuca	540
gccauugaag aucuucuguu cgacaagguc accaucgccg auccgggcua caugcaggga	600
uacgacgacu guaugcagca gggaccagcc uccgcgaggg accucaucug cgcgcaauac	660
guggeegggu acaaagugeu geeueeueug auggauguga acauggagge egeuuauaeu	720
nedneeende neddenenan edeeddedna ddanddaeed eeddeendne eneennedee	780
gcuauccccu uugcacaauc cauuuucuac cggcucaacg gcgugggcau uacucaacaa	840
guccugucgg agaaccagaa guugaucgca aacaaguuca aucaggcccu gggggccaug	900
cagacuggau ucacuacgac uaacgaagcg uuccagaagg uccaggacgc ugugaacaac	960
aacgeecagg egeucucaaa geuggeeuee gaacucagea acaecuuegg ageeaucage	1020
gcaucgaucg gugacauaau ucageggeug gaegugeugg ageaggaege ceagauegae	1080
cgccucauca acggacggcu gaccaccuug aaugccuucg uggcacaaca gcugguccgg	1140
agegaaucag eggeacuuue egeceaacue gecaaggaca aagucaaega augegugaag	1200
geecagueea agaggueegg uuueugeggu caaggaacee auauugugue euueguegug	1260
aacgcgccca acggucugua cuuuaugcac gucggcuacu acccgagcaa ucauaucgaa	1320
guggugueeg eeuaeggeeu gugegaugee geuaaceeea euaacuguau ugeeecugug	1380
aacggauauu uuauuaagac caacaacacc cgcauugugg acgaaugguc auacaccggu	1440
ucguccuucu acgegeeega geecaucaeu ucaeugaaca eeaaauaegu ggeueegeaa	1500
gugaccuace agaacaucue caccaauuug eegeegeege ugeueggaaa cageacegga	1560
auugauuuco aagaugaacu ggacgaauuo uucaagaacg uguccacuuc cauucccaac	1620
uucggaagee ugacacagau caacaceace cuucucgaee ugaceuacga gaugeugage	1680
cuucaacaag uggucaaggc ccugaacgag agcuacaucg accugaagga gcugggcaac	1740
uauaccuacu acaacaagug geeggacaag auugaggaga uucuguegaa aaucuaecae	1800
auugaaaacg agaucgccag aaucaagaag cuuaucggcg aagcc	1845
<210> SEQ ID NO 68 <211> LENGTH: 4071 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 68	
auggaaacce cugeceageu geuguuceug eugeugeugu ggeugeeuga uaceacegge	60
agenandndd acdndddeec cdanadednd aadneedeen dnanedaadn ddacaneead	120
cagaccuuuu ucgacaagac cuggeecaga eecauegaeg ugueeaagge egaeggeaue	180
aucuauccac aaggeeggae cuacageaae aucaeeauua ecuaeeaggg ecuguuccea	240
uaucaaggeg accaeggega uauguaegug uaeueugeeg geeaegeeae	300
ccccagaaac uguucguggc caacuacagc caggacguga agcaguucgc caacggcuuc	360
gucgugcgga uuggcgccgc ugccaauagc accggcacag ugaucaucag ccccagcacc	420
agegeeacea uceggaagau cuaceeegee uucaugeugg geageueegu gggeaauuue	480
agegaeggea agaugggeeg guueuueaae eacaeeeugg ugeugeugee egauggeugu	540
ggcacacugc ugagagccuu cuacugcauc cuggaaccca gaagcggcaa ccacugcccu	600

579

580

				-contir	nued		
gccggcaaua	gcuacaccag	cuucgccacc	uaccacacac	ccgccaccga	uugcuccgac	660	
ggcaacuaca	accggaacgc	cagccugaac	agcuucaaag	aguacuucaa	ccugcggaac	720	
ugcaccuuca	uguacaccua	caauaucacc	gaggacgaga	uccuggaaug	guucggcauc	780	
acccagaccg	cccagggcgu	gcaccuguuc	agcagcagau	acguggaccu	guacggcggc	840	
aacauguucc	aguuugccac	ccugcccgug	uacgacacca	ucaaguacua	cagcaucauc	900	
ccccacagca	uccgguccau	ccagagegae	agaaaagccu	gggccgccuu	cuacguguac	960	
aagcugcagc	cccugaccuu	ccugcuggac	uucagcgugg	acggcuacau	cagacgggcc	1020	
aucgacugcg	gcuucaacga	ccugagecag	cugcacugcu	ccuacgagag	cuucgacgug	1080	
gaaageggeg	uguacagegu	guccageuuc	gaggccaagc	cuageggeag	cgugguggaa	1140	
caggcugagg	gcguggaaug	cgacuucagc	ccucugcuga	gcggcacccc	uccccaggug	1200	
uacaacuuca	agcggcuggu	guucaccaac	ugcaauuaca	accugaccaa	gcugcugagc	1260	
cuguucuccg	ugaacgacuu	caccuguagc	cagaucagee	cugccgccau	ugccagcaac	1320	
ugcuacagca	gccugauccu	ggacuacuuc	agcuacecce	ugagcaugaa	guccgaucug	1380	
agegugueeu	ccgccggacc	caucagecag	uucaacuaca	agcagagcuu	cagcaacccu	1440	
accugccuga	uucuggccac	cgugececae	aaucugacca	ccaucaccaa	gccccugaag	1500	
uacagcuaca	ucaacaagug	cagcagacug	cuguccgacg	accggaccga	agugeceeag	1560	
cucgugaacg	ccaaccagua	cagececuge	guguccaucg	ugeccageae	cgugugggag	1620	
gacggcgacu	acuacagaaa	gcagcugagc	ccccuggaag	gcggcggaug	gcugguggcu	1680	
ucuggaagca	caguggccau	gaccgagcag	cugcagaugg	gcuuuggcau	caccgugcag	1740	
uacggcaccg	acaccaacag	cgugugceec	aagcuggaau	ucgccaauga	caccaagauc	1800	
gccagccagc	ugggaaacug	cguggaauac	ucccuguaug	gcguguccgg	acggggggug	1860	
uuccagaauu	gcacagcagu	gggagugcgg	cagcagagau	ucguguacga	ugccuaccag	1920	
aaccucgugg	gcuacuacag	cgacgacggc	aauuacuacu	gccugcgggc	cugugugucc	1980	
gugecegugu	ccgugaucua	cgacaaagag	acaaagaccc	acgccacacu	guucggeucc	2040	
guggccugcg	agcacaucag	cuccaccaug	agccaguacu	cccgcuccac	ccgguccaug	2100	
cugaagcgga	gagauagcac	cuacggcccc	cugcagacac	cugugggaug	ugugeuggge	2160	
cucgugaaca	geucceuguu	uguggaagau	ugcaagcugc	cccugggcca	gagecugugu	2220	
gcccugccag	auaccccuag	cacccugacc	ccuagaagcg	ugegeueugu	gcccggcgaa	2280	
augeggeugg	ccucuaucgc	cuucaaucac	cccauccagg	uggaccagcu	gaacuccagc	2340	
uacuucaagc	ugagcauccc	caccaacuuc	agcuucggcg	ugacccagga	guacauccag	2400	
accacaaucc	agaaagugac	cguggacugc	aagcaguacg	ugugcaacgg	cuuucagaag	2460	
ugegaacage	ugeugegega	guacggccag	uucugcagca	agaucaacca	ggeccugcac	2520	
ggegecaace	ugagacagga	ugacagcgug	cggaaccugu	ucgecagegu	gaaaagcagc	2580	
caguccagcc	ccaucauccc	uggcuucggc	ggcgacuuua	accugacccu	gcuggaaccu	2640	
guguccauca	gcaccggcuc	cagaagegee	agaucegeea	ucgaggaccu	gcuguucgac	2700	
aaagugacca	uugccgaccc	cggcuacaug	cagggcuacg	acgauugcau	gcagcagggc	2760	
ccagccagcg	ccagggaucu	gaucugugee	caguaugugg	ccggcuacaa	ggugeugeee	2820	
			uacaccucca			2880	
			uuugeegeea			2940	
				_			
uucuaccggc	ugaacggcgu	gggcaucaca	caacaggugc	ugagegagaa	ecagaageug	3000	

581

aucgecaaca aguuuaacea ggeaeuggge geeaugeaga eeggeuueae eaceaceaae

gaggeeuuca gaaaggugea ggaegeegug aacaacaaeg eecaggeueu gageaageug

-continued

3060

3120

gceucegage ugageaauae cuueggegee aucagegeeu ecaueggega caucauceag 3180 eggeuggaeg ugeuggaaca ggaegeeeag auegaeegge ugaucaaegg eagaeugaee 3240 accougaacg councyugge acageagene gugeggageg aanougeege ucugueugen 3300 cagcuggeca aggacaaagu gaacgaguge gugaaggeee aguccaageg gageggeuuu 3360 uguggeeagg geacceacau egugueeuue guegugaaug eeeccaaegg eeuguaeuuu 3420 augcacgugg geuauuacee cagcaaceae auegaggugg ugucegeeua uggeeuguge 3480 gacgeegeea auccuaceaa cuguauegee ceegugaaeg geuacuucau caagaceaae 3540 3600 aacaceegga ueguggaega guggueeuae acaggeagea geuueuaege eeeegageee 3660 aucaccucce uqaacaccaa auacquqqee ceecaaquqa cauaccaqaa caucuccace 3720 aaccugceee cuccacugeu gggaaauuee aceggeaueg acuuccagga egageuggae 3780 gaguucuuca agaacguguc caccuccauc cecaacuucg geagecugac ceagaucaac accaeucuge uggaeeugae cuaegagaug cuqueecuge aacagguegu gaaageeeug 3840 aacgagagcu acaucgaccu gaaagagcug gggaacuaca ccuacuacaa caaguggccu 3900 ugguacauuu ggeugggeuu uaucgeegge eugguggeee uggeeeugug eguguueuue 3960 auccugugeu geaceggeug eggeaceaau ugeaugggea ageugaaaug eaacegguge 4020 ugegacagau acgaggaaua egaceuggaa eeucacaaag ugeaugugea e 4071 <210> SEO ID NO 69 <211> LENGTH: 1864 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEOUENCE: 69 ucaageuuuu ggacccucgu acagaageua auacgacuca cuauagggaa auaagagaga 60 aaagaagagu aagaagaaau auaagagcca ccaugggucu caaggugaac gucucugccg 120 uauucaugge aguacuguua acucuccaaa caccegeegg ucaaauucau uggggeaauc 180 ucucuaagau agggguagua ggaauaggaa gugcaagcua caaaguuaug acucguucca 240 gecaucaauc auuagucaua aaauuaauge ecaauauaac ucuccucaau aacugcacga 300 ggguagagau ugcagaauac aggagacuac uaagaacagu uuuggaacca auuagggaug 360 cacuuaauge aaugaeecag aacauaagge egguucagag eguageuuca aguaggagae 420 480 acaagagauu ugegggagua guceuggeag gugeggeeeu agguguugee acageugeue agauaacago oggcauugca cuucacoggu coaugougaa cucucaggoo auogacaauo 540 600 ugagagegag ceuggaaacu acuaaucagg caauugagge aaucagacaa geagggeagg agaugauauu ggcuguucag gguguccaag acuacaucaa uaaugagcug auaccgucua 660 720 ugaaccageu aucuugugau cuaaucgguc agaagcucgg gcucaaauug cuuagauacu auacagaaau ccugucauua uuuggcccca gccuacggga ccccauaucu gcggagauau 780 cuauccagge uuugaguuau geacuuggag gagauaucaa uaagguguua gaaaageueg 840 gauacagugg aggegauuua cuaggeaucu uagagageag aggaauaaag geueggauaa 900 cucaeguega cacagaguee uacuucauag uccucaguau agecuauceg aegeugueeg 960

583

584

agauuaaggg ggugauuguc caccggcuag agggggucuc guacaacaua ggcucucaag	1020
agugguauac cacugugccc aaguauguug caacccaagg guaccuuauc ucgaauuuug	1080
augagucauc auguacuuuc augccagagg ggacugugug cagccaaaau gccuuguacc	1140
cgaugaguee ucugeueeaa gaaugeeuee gggggueeae caagueeugu geueguaeae	1200
ucguauccgg gucuuuuggg aaccgguuca uuuuaucaca agggaaccua auagccaauu	1260
gugcaucaau ucuuuguaag uguuacacaa cagguacgau uauuaaucaa gacccugaca	1320
agauccuaac auacauugcu gccgaucgcu gcccgguagu cgaggugaac ggcgugacca	1380
uccaagucgg gagcaggagg uauccagacg cuguguacuu gcacagaauu gaccucgguc	1440
cucccauauc auuggagagg uuggacguag ggacaaaucu ggggaaugca auugccaaau	1500
uggaggauge caaggaauug uuggaaucau eggaceagau auugagaagu augaaagguu	1560
uaucgagcac uagcauaguc uacauccuga uugcagugug ucuuggaggg uugauaggga	1620
uccccacuuu aauauguugc ugcagggggc guuguaacaa aaagggagaa caaguuggua	1680
ugucaagacc aggccuaaag ccugaccuua caggaacauc aaaauccuau guaagaucgc	1740
uuugaugaua auaggeugga geeueggugg eeaageuueu ugeeeeuugg geeueeeeee	1800
ageeccuccu ceecuuccug cacceguace ceeguggucu uugaauaaag ucugaguggg	1860
cggc	1864
<211> LENGTH: 1653 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 70	
augggucuca aggugaacgu cucugcegua uucauggeag uacuguuaac ucuccaaaca	60
cccgccgguc aaauucauug gggcaaucuc ucuaagauag ggguaguagg aauaggaagu	120
gcaagcuaca aaguuaugac ucguuccage caucaaucau uagucauaaa auuaaugcee	
	120
gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc	120 180
gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua	120 180 240
gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg	120 180 240 300
gcaagcuaca aaguuaugac ucguuccage caucaaucau uagucauaaa auuaaugeee aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugea cuuaaugeaa ugacceagaa cauaaggeeg guucagageg uagcuucaag uaggagacac aagagauuug egggaguagu ceuggeaggu	120 180 240 300 360
gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu geggeccuag guguugecac ageugcucag auaacageeg geauugcacu ucacegguce	120 180 240 300 360 420
gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu geggeccuag guguugccac agcugcucag auaacagceg gcauugcacu ucaceggucc augcugaacu cucaggecau cgacaaucug agagegagec uggaaacuac uaaucaggca	120 180 240 300 360 420 480
gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu gcggcccuag guguugccac agcugcucag auaacagccg gcauugcacu ucaccggucc augcugaacu cucaggccau cgacaaucug agagcgagcc uggaaacuac uaaucaggca auugaggcaa ucagacaagc agggcaggag augauauugg cuguucaggg uguccaagac	120 180 240 300 360 420 480 540
gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu geggeecuag guguugceac ageugcucag auaacageeg gcauugcacu ucaecgguce augcugaacu cucaggecau cgacaaucug agagegagec uggaaacuac uaaucaggca auugaggcaa ucagacaage agggcaggag augauauugg cuguucaggg uguccaagac uacaucaaua augageugau acegucuaug aaccageuau cuugugaucu aaucggucag	120 180 240 300 360 420 480 540
gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugcoc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggcog guucagagog uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu goggcccuag guguugccac agcugcucag auaacagcog gcauugcacu ucaccgguco augcugaacu cucaggccau cgacaaucug agagcgagcc uggaaacuac uaaucaggca auugaggcaa ucagacaagc agggcaggag augauauugg cuguucaggg uguccaagac uacaucaaua augagcugau accgucuaug aaccagcuau cuugugaucu aaucggucag aagcucgggc ucaaauugcu uagauacuau acagaaaucc ugucauuauu uggccccagc	120 180 240 300 360 420 480 540 600
gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggeeg guucagageg uagcuucaag uaggagacac aagagauuug egggaguagu ecuggeaggu geggeecuag guguugeeac ageugeucag auaacageeg geauugeacu ucaeegguee augeugaacu cucaggeeau egacaaucug agagegagee uggaaacuac uaaucaggea auugaggeaa ucagacaage agggeaggag augauauugg euguucaggg ugueeaagae uacaucaaua augageugau acegueuaug aaceageuau euugugaucu aaueggueag aageueggge ucaaauugeu uagauacuau acagaaauee ugucauuauu uggeeecage cuaegggaee ecauaucuge ggagauaueu auceaggeuu ugaguuauge acuuggagga	120 180 240 300 360 420 480 540 600 660 720
gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu gcggcccuag guguugccac agcugcucag auaacagccg gcauugcacu ucaccggucc augcugaacu cucaggccau cgacaaucug agagcgagcc uggaaacuac uaaucaggca auugaggcaa ucagacaagc agggcaggag augauauugg cuguucaggg uguccaagac uacaucaaua augagcugau accgucuaug aaccagcuau cuugugaucu aaucggucag aagcucgggc ccauaucug ggagauaucu auccaggcuu ugaguuaug acuuggagga gauaucaaua agguguuaga aaagcucgga uacaguggag gcgauuuacu aggcaucuua	120 180 240 300 360 420 480 540 600 660 720 780
gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugcoo aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggcog guucagagog uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu geggeccuag guguugecac ageugeucag auaacageeg geauugeacu ucaecegguee augeugaacu cucaggecau egacaaucug agagegagee uggaaacuac uaaucaggea auugaggeaa ucagacaage agggeaggag augauauugg euguucaggg ugueeaagae uacaucaaua augageugau acegueuaug aaceageuau cuugugaucu aaucaggeag aageueggge ucaaauugeu uagauacuau acagaaauee ugueauuauu uggeeeceage cuaeggggaee ecauaucuge ggagauaucu auceaggeuu ugaguuauge acuuggagga gauaucaaua agguguuaga aaageuegga uacaguggag gegauuuacu aggeaucuua gagageagag gaauaaagge ueggauaacu caeguegaea cagagueeua cuucauague	120 180 240 300 360 420 480 540 600 660 720 780
gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggeeg guucagageg uagcuucaag uaggagacac aagagauuug egggaguagu ecuggeaggu geggeecuag guguugeeac ageugeucag auaacageeg geauugeacu ucaeegguee augeugaacu cucaggeeau egacaaucug agagegagee uggaaacuac uaaucaggea auugaggeaa ucagacaage agggeaggag augauauugg euguucaggg ugueeaagae uacaucaaua augageugau acegueuaug aaceageuau euugugaucu aaueggueag aageueggge ucaaauugeu uagauacuau acegaaauee ugueauuauu uggeeecage cuaegggaee ecauaucuge ggagauaueu auceaggeuu ugaguuauge acuuggagga gauaucaaua agguguuaga aaageuegga uacaguggag gegauuuacu aggeaucuua gagageagag gaauaaagge ueggauaacu caeguegaea cagagueeua euucauague cucaguauag ecuaucegae geugueegag auuaaggggg ugauugueea eeggeuagag	120 180 240 300 360 420 480 540 600 660 720 780 840
gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu gcggcccuag guguugccac agcugcucag auaacagccg gcauugcacu ucaccggucc augcugaacu cucaggccau cgacaaucug agagcgagcc uggaaacuac uaaucaggca auugaggcaa ucagacaagc agggcaggag augauauugg cuguucaggg uguccaagac uacaucaaua augagcugau accgucuaug aaccagcuau cuugugaucu aaucggucag gauaucaaua agguguuaga aaagcucgga uacaguggag gcgauuuacu aggccaucuua gagagcagag gaauaaaggc ucggauaacu cacgucgaca cagaguccua cuucauguc cucaguauag ccuauccgac gcuguccgag auuaaggggg ugauugucca ccggcuagag gagagcagag gaauaaaggc ucggauaacu cacgucgaca cagaguccua cuucauaguc cucaguauag ccuauccgac gcuguccgag auuaaggggg ugauugucca ccggcuagag gagggucucgu acaacauagg cucucaagag ugguauacca cugugcccaa guauguaga	120 180 240 300 360 420 480 540 600 660 720 780 840 900
gcaagcuaca aaguuaugac ucguuccagc caucaaucau uagucauaaa auuaaugccc aauauaacuc uccucaauaa cugcacgagg guagagauug cagaauacag gagacuacua agaacaguuu uggaaccaau uagggaugca cuuaaugcaa ugacccagaa cauaaggccg guucagagcg uagcuucaag uaggagacac aagagauuug cgggaguagu ccuggcaggu gcggcccuag guguugccac agcugcucag auaacagceg gcauugcacu ucaccggucc augcugaacu cucaggccau cgacaaucug agagcgagcc uggaaacuac uaaucaggca auugaggcaa ucagacaage agggcaggag augauauugg cuguucaggg uguccaagac uacaucaaua augagcugau accgucuaug aaccagcuau cuugugaucu aaucggucag aagcucggge ucaaauugeu uagauacuau acagaaauee ugucauuauu uggecccage cuacggggace ccauaucuge ggagauaucu auccaggcuu ugaguuauge acuuggagga gauaucaaua agguguuaga aaagcucgga uacaguggag gcgauuuacu aggcaucuua gagagcagag gaauaaagge ucggauaacu cacgucgaca cagaguccua cuucauaguc cucaguauag ccuaucegae gcugucegag auuaaggggg ugauugucea ceggcuagag gagggucucgu acaacauagg cucucaagag ugguauacea cugugcceaa guauguugea acccaagggu accuuaucue gaauuuugau gagucaucau guacuucau gccagagggg	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020

586

-continued

uuaucacaag	ggaaccuaau	agccaauugu	gcaucaauuc	uuuguaagug	uuacacaaca	1200
gguacgauua	uuaaucaaga	cccugacaag	auccuaacau	acauugcugc	cgaucgeuge	1260
ccgguagucg	aggugaacgg	cgugaccauc	caagucggga	gcaggaggua	uccagacgcu	1320
guguacuugc	acagaauuga	ccucgguccu	cccauaucau	uggagagguu	ggacguaggg	1380
acaaaucugg	ggaaugcaau	ugccaaauug	gaggaugcca	aggaauuguu	ggaaucaucg	1440
gaccagauau	ugagaaguau	gaaagguuua	ucgagcacua	gcauagucua	cauccugauu	1500
gcaguguguc	uuggaggguu	gauagggauc	cccacuuuaa	uauguugcug	caggggggcgu	1560
uguaacaaaa	agggagaaca	aguugguaug	ucaagaccag	gccuaaagcc	ugaccuuaca	1620
ggaacaucaa	aauccuaugu	aagaucgcuu	uga			1653
<210> SEQ :						

LENGTH: 1925
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 71

ggggaaauaa gagagaaaag	aagaguaaga	agaaauauaa	gagecaccau	gggucucaag	60
gugaacgucu cugeeguauu	cauggcagua	cuguuaacuc	uccaaacacc	cgccggucaa	120
auucauuggg gcaaucucuc	uaagauaggg	guaguaggaa	uaggaagugc	aagcuacaaa	180
guuaugacuc guuccagcca	ucaaucauua	gucauaaaau	uaaugeecaa	uauaacucuc	240
cucaauaacu gcacgagggu	agagauugca	gaauacagga	gacuacuaag	aacaguuuug	300
gaaccaauua gggaugcacu	uaaugcaaug	acccagaaca	uaaggeeggu	ucagagegua	360
gcuucaagua ggagacacaa	gagauuugeg	ggaguagucc	uggcaggugc	ggeecuaggu	420
guugecacag cugeucagau	aacagcegge	auugcacuuc	accgguccau	gcugaacucu	480
caggecaucg acaaucugag	agegageeug	gaaacuacua	aucaggcaau	ugaggcaauc	540
agacaagcag ggcaggagau	gauauuggcu	guucagggug	uccaagacua	caucaauaau	600
gagcugauac cgucuaugaa	ccagcuaucu	ugugaucuaa	ucggucagaa	gcucgggcuc	660
aaauugcuua gauacuauac	agaaauccug	ucauuauuug	gccccagccu	acgggacccc	720
auaucugcgg agauaucuau	ccaggcuuug	aguuaugcac	uuggaggaga	uaucaauaag	780
guguuagaaa agcucggaua	caguggaggc	gauuuacuag	gcaucuuaga	gagcagagga	840
auaaaggcuc ggauaacuca	cgucgacaca	gaguccuacu	ucauaguccu	caguauagee	900
uauccgacgc uguccgagau	uaaggggggug	auuguccacc	ggcuagaggg	ggucucguac	960
aacauaggcu cucaagagug	guauaccacu	gugeccaagu	auguugcaac	ccaaggguac	1020
cuuaucucga auuuugauga	gucaucaugu	acuuucaugc	cagaggggac	ugugugcagc	1080
caaaaugeeu uguaceegau	gaguccucug	cuccaagaau	gccuccgggg	guccaccaag	1140
uccugugcuc guacacucgu	auccgggucu	uuugggaacc	gguucauuuu	aucacaaggg	1200
aaccuaauag ccaauugugc	aucaauucuu	uguaaguguu	acacaacagg	uacgauuauu	1260
aaucaagacc cugacaagau	ccuaacauac	auugeugeeg	aucgcugccc	gguagucgag	1320
gugaacggcg ugaccaucca	aguegggage	aggagguauc	cagacgcugu	guacuugcac	1380
agaauugaee ueggueeuee	cauaucauug	gagagguugg	acguagggac	aaaucugggg	1440
aaugcaauug ccaaauugga	ggaugccaag	gaauuguugg	aaucaucgga	ccagauauug	1500

-continu	

	30/					200	
			-contir	nued			
agaaguauga aagguuuauc	gagcacuagc	auagucuaca	uccugauugc	agugugucuu	1560		
gaggguuga uagggauccc	cacuuuaaua	uguugcugca	ggggggguug	uaacaaaaag	1620		
gagaacaag uugguauguc	aagaccaggc	cuaaagccug	accuuacagg	aacaucaaaa	1680		
iccuauguaa gaucgcuuug	augauaauag	gcuggagccu	cgguggccaa	geuueuugee	1740		
ccuugggccu cccccagce					1800		
auaaagucug agugggcggc	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1860		
aaaaaaaaaa aaaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaaa	1920		
ucuag					1925		
<pre><210> SEQ ID NO 72 <211> LENGTH: 1864 <212> TYPE: RNA <213> ORGANISM: Artif. <220> FEATURE: <223> OTHER INFORMATIC <400> SECUENCE: 72</pre>	_		ectide				
<400> SEQUENCE: 72					<u></u>		
ucaagcuuuu ggacccucgu					60		
aaagaagagu aagaagaaau					120		
uauucaugge aguacuguua					180		
ucucuaagau agggggggggaa					240		
gccaucaauc auuagucaua					300		
ggguagggau ugcagaauac					360		
cacuuaaugc aaugacccag					420		
acaagagauu ugegggaguu					480		
aaauaacagc cgguauugca	_		-	-	540		
ugagagegag ceuagaaacu					600		
agaugauauu ggcuguucag				_	660		
ugaaucaacu aucuugugau					720		
auacagaaau ccugucauua					780		
cuauccaggc uuugagcuau					840		
gauacagugg aggugaucua					900		
cucacgucga cacagagucc					960		
agauuaaggg ggugauuguc					1020		
agugguauac cacugugeee					1080		
augagucauc augcacuuuc					1140		
cgaugagucc ucugcuccaa					1200		
ucguauccgg gucuuucggg	aaccgguuca	uuuuaucaca	ggggaaccua	auagccaauu	1260		
gugcaucaau ccuuugcaag	uguuacacaa	caggaacaau	cauuaaucaa	gacccugaca	1320		
		acceaauaau	cgaggugaau	ggcgugacca	1380		
agauccuaac auacauugcu	gccgaucacu	333-35					
agauccuaac auacauugcu uccaagucgg gagcaggagg			gcacaggauu	gaccucgguc	1440		
	uauccggacg	cuguguacuu			1440 1500		
nccaadncdd dadcaddadd	uauccggacg uuggacguag	cuguguacuu ggacaaaucu	ggggaaugca	auugcuaagu			

-	COL	ιt	1	n	u	ed.

uccccgcuuu aauauguugc ugcagggggc guuguaacaa gaagggagaa caaguuggua	1680
ugucaagacc aggccuaaag ccugaucuua caggaacauc aaaauccuau guaaggucac	1740
nendandana anaddendda deeneddndd eesadennen ndeecenndd deeneesees	1800
agecceucen cecenneend caccednace ceednadnen nndaanaaad nendaandda	1860
cggc	1864
<210> SEQ ID NO 73 <211> LENGTH: 1653 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 73	
augggucuca aggugaacgu cucugucaua uucauggcag uacuguuaac ucuucaaaca	60
cccaccgguc aaauccauug gggcaaucuc ucuaagauag gggugguagg gguaggaagu	120
gcaagcuaca aaguuaugac ucguuccage caucaaucau uagucauaaa guuaaugcee	180
aauauaacuc uccucaacaa uugcacgagg guagggauug cagaauacag gagacuacug	240
agaacaguuc uggaaccaau uagagaugca cuuaaugcaa ugacccagaa uauaagaccg	300
guncagagna nadenneaad naddagaeae aadadannna caddaadnnan cenddeaddn	360
geggeeeuag geguugeeae ageugeueaa auaacageeg guauugeaeu ueaceaguee	420
augeugaaeu eucaageeau egacaaueug agagegagee uagaaaeuae uaaueaggea	480
auugaggcaa ucagacaagc agggcaggag augauauugg cuguucaggg uguccaagac	540
uacaucaaua augagcugau accgucuaug aaucaacuau cuugugauuu aaucggccag	600
aagcuaggge ucaaauugeu cagauacuau acagaaauee ugucauuauu uggeeecage	660
uuaegggaee ceauaueuge ggagauaueu auceaggeuu ugageuauge geuuggagga	720
gauaucaaua agguguugga aaagcucgga uacaguggag gugaucuacu gggcaucuua	780
gagagcagag gaauaaagge ceggauaacu caeguegaca cagaguecua cuucauugua	840
cucaguauag ccuaucegac gcuaucegag auuaaggggg ugauugueca eeggeuagag	900
ggggucucgu acaacauagg cucucaagag ugguauacca cugugcccaa guauguugca	960
acccaagggu accuuaucuc gaauuuugau gagucaucau gcacuuucau gccagagggg	1020
acugugugea gecagaauge cuuguaceeg augagueeue ugeueeaaga augeeueegg	1080
ggguccacua aguccuguge ucguacacue guaucegggu cuuucgggaa cegguucauu	1140
uuaucacagg ggaaccuaau agccaauugu gcaucaaucc uuugcaagug uuacacaaca	1200
ggaacaauca uuaaucaaga cccugacaag auccuaacau acauugcuge cgaucacuge	1260
ccddnddarcd addndaandd cdndaccanc caadnoddda dcaddadda nccddacdon	1320
guguacuugo acaggauuga ccucgguccu cccauaucuu uggagagguu ggacguaggg	1380
acaaaucugg ggaaugcaau ugcuaaguug gaggaugcca aggaauuguu ggagucaucg	1440
gaccagauau ugaggaguau gaaagguuua ucgagcacua guauaguuua cauccugauu	1500
geagugugue uuggaggauu gauagggaue eeegeuuuaa uauguugeug cagggggegu	1560
uguaacaaga agggagaaca aguugguaug ucaagaccag gccuaaagcc ugaucuuaca	1620
ggaacaucaa aauccuaugu aaggucacuc uga	1653

<210> SEQ ID NO 74

591

-continued

<211> LENGTH: 1925 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 74 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau gggucucaag 60 gugaacgucu cugucauauu cauggcagua cuguuaacuc uucaaacacc caceggucaa 120 auccauuggg gcaaucucuc uaagauaggg gugguagggg uaggaagugc aagcuacaaa 180 guuaugacuc guuccagcca ucaaucauua gucauaaagu uaaugcecaa uauaacucuc 240 cucaacaauu gcacgagggu agggauugca gaauacagga gacuacugag aacaguucug 300 gaaccaauua gagaugcacu uaaugcaaug acccagaaua uaagaccggu ucagagugua 360 420 geuucaagua ggagacacaa gagauuugeg ggaguuguee uggeagguge ggeeeuagge guugeeacag eugeueaaau aacageeggu auugeaeuue aceagueeau geugaaeueu 480 caagecaueg acaaueugag agegageeua gaaaeuaeua aueaggeaau ugaggeaaue 540 600 agacaagcag ggcaggagau gauauuggcu guucagggug uccaagacua caucaauaau 660 gageugauae equeuaugaa ucaacuaueu uqugauuuaa ucqgeeagaa geuaqqqeue aaauugcuca gauacuauac agaaauccug ucauuauuug geeecagcuu acgggaceec 720 auaucugegg agauaucuau ceaggeuuug ageuaugege uuggaggaga uaucaauaag 780 guguuggaaa agcucggaua caguggaggu gaucuacugg gcaucuuaga gagcagagga 840 900 auaaaqqccc qqauaacuca cqucqacaca qaquccuacu ucauuquacu caquauaqcc uaucegaege uaucegagau uaagggggug auuguceaee ggeuagaggg ggueueguae 960 aacauaggeu cucaagagug guauaceacu gugeecaagu auguugeaac eeaaggguae 1020 cuuaucucga auuuugauga gucaucauge acuuucauge cagaggggae ugugugeage 1080 cagaaugeeu uguaceegau gagueeucug cuccaagaau geeucegggg gueeacuaag 1140 uccugugcuc guacacucgu auccgggucu uucgggaacc gguucauuuu aucacagggg 1200 aaccuaauag ccaauugugc aucaauccuu ugcaaguguu acacaacagg aacaaucauu 1260 1320 aaucaagaee cugacaagau ecuaacauae auugeugeeg aucacugeee ggugguegag 1380 gugaauggeg ugaecaucea aguegggage aggagguaue eggaegeugu guaeuugeae aggauugaee ueggueeuee cauaueuuug gagagguugg aeguagggae aaaueugggg 1440 aaugcaauug cuaaguugga ggaugccaag gaauuguugg agucaucgga ccagauauug 1500 aggaguauga aagguuuauc gagcacuagu auaguuuaca uccugauugc agugugucuu 1560 ggaggauuga uagggauccc cgcuuuaaua uguugcugca gggggcguug uaacaagaag 1620 qqaqaacaaq uuqquauquc aaqaccaqqc cuaaaqccuq aucuuacaqq aacaucaaaa 1680 1740 uccuauguaa ggucacucug augauaauag gcuggagccu cgguggccaa gcuucuugcc ccuugggccu cccccagee ccuccueece uuccugeace eguaceeeeg uggucuuuga 1800 1860 1920 1925 ucuaq

<210> SEQ ID NO 75 <211> LENGTH: 2065 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence

-continued

594

<220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 75 ucaagcuuuu ggacccucgu acagaagcua auacgacuca cuauagggaa auaagagaga 60 aaagaagagu aagaagaaau auaagageea ceaugueaee geaacgagae eggauaaaug 120 ccuucuacaa agauaacccu uaucccaagg gaaguaggau aguuauuaac agagaacauc 180 uuaugauuga cagacecuau guucugeugg cuguucuguu cgucauguuu cugageuuga 240 ucggauugcu ggcaauugca ggcauuagac uucaucgggc agccaucuac accgcggaga 300 uccauaaaag ceucaguaee aaucuggaug ugacuaaeue caucgageau caggucaagg 360 acgugcugac accacucuuu aaaaucaucg gggaugaagu gggccugaga acaccucaga 420 qauucacuqa ccuaquqaaa uucaucucqq acaaqauuaa auuccuuaau ccqqauaqqq 480 540 aquacqacuu caqaqaucuc acuuqquqca ucaacceqee aqaqaqqauc aaacuaqauu augaucaaua cugugcagau guggcugcug aagagcucau gaaugcauug gugaacucaa 600 660 cucuacugga gaccagaaca accacucagu uccuagcugu cucaaaggga aacugcucag ggcccacuac aaucagaggu caauucucaa acaugucgcu guccuuguug gacuuguacu 720 uaqqucqaqq uuacaauquq ucaucuauaq ucacuauqac aucccaqqqa auquauqqqq 780 gaaccuaccu aguugaaaag ccuaaucuga acagcaaagg gucagaguug ucacaacuga 840 900 geauguaceg aguguuugaa guagguguga ucagaaacee ggguuugggg geuceggugu uccauaugac aaacuauuuu gagcaaccag ucaguaaugg ucucggcaac uguauggugg 960 1020 cuuuggggga gcucaaacuc gcagcccuuu gucacgggga cgauucuauc auaauucccu aucagggauc agggaaaggu gucagcuucc agcucgucaa gcuggguguc uggaaauccc 1080 caaccgacau gcaauccugg guccccuuau caacggauga uccaguggua gacaggcuuu 1140 accucucauc ucacagaggu gucaucgeug acaaucaage aaaaugggeu guceegacaa 1200 cacgaacaga ugacaaguug cgaauggaga caugcuucca gcaggcgugu aaagguaaaa 1260 uccaagcacu cugcgagaau cccgaguggg uaccauugaa ggauaacagg auuccuucau 1320 acgggguccu gucuguugau cugagucuga cgguugagcu uaaaaucaaa auugcuucgg 1380 gauucgggee auugaucaca caeggeucag ggauggaeeu auacaaauee aacugeaaca 1440 auguguauug geugaeuauu eegeeaauga gaaaueuage euuaggegua aucaacacau 1500 uggaguggau accgagauuc aagguuaguc ccaaccucuu cacuguceca auuaaggaag 1560 caggegaaga cugecaugee ecaacauaee uaccugegga gguggaeggu gaugucaaae 1620 ucaguuccaa ccuggugauu cuaccugguc aagaucucca auauguuuug gcaaccuacg 1680 1740 auaccuccaq qquuqaqcau qcuquqquuu auuacquuua caqcccaaqc cqcucauuuu cuuacuuuua uccuuuuagg uugccuauaa agggggguccc aaucgaacua caaguggaau 1800 1860 geuucacaug ggaucaaaaa cucuggugee gucacuucug ugugeuugeg gaeucagaau cegguggaeu uaucaeucae ucugggaugg ugggeauggg agucageuge acageuaece 1920 gggaagaugg aaccaaucgc agauaaugau aauaggcugg agccucggug gccaagcuuc 1980 uugeeeeuug ggeeueeeee eageeeeuee ueeeeuueeu geaeeeguae eeeeguggue 2040 uuugaauaaa gucugagugg gegge 2065

<210> SEQ ID NO 76 <211> LENGTH: 1854 <212> TYPE: RNA

<400> SEQUENCE: 77

<210> SEQ ID NO 77 <211> LENGTH: 2126 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide

<220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 76 augucacege aacgagaceg gauaaaugee uucuacaaag auaaceeuua uceeaaggga 60 aguaggauag uuauuaacag agaacaucuu augauugaca gacccuaugu ucugcuggcu 120 guucuguucg ucauguuucu gagcuugauc ggauugcugg caauugcagg cauuagacuu 180 caucgggcag ccaucuacac cgcggagauc cauaaaagcc ucaguaccaa ucuggaugug 240 acuaacucca ucgagcauca ggucaaggac gugcugacac cacucuuuaa aaucaucggg 300 gaugaagugg geeugagaac accucagaga uucacugace uagugaaauu caucucggac 360 aagauuaaau uccuuaauco ggauagggag uacgacuuca gagaucucac uuggugcauc 420 480 aaccegeeag agaggaucaa acuagauuau gaucaauacu gugcagaugu ggeugeugaa 540 gageucauga augeauuggu gaacucaacu cuacuggaga ceagaacaac cacucaguuc cuageugueu caaagggaaa cugeucaggg cecacuacaa ucagagguea auucucaaac 600 auguegeugu eeuuguugga euuguaeuua gguegagguu acaaugugue aucuauague 660 720 acuaugacau cccagggaau guauggggga accuaccuag uugaaaagcc uaaucugaac agcaaagggu cagaguuguc acaacugagc auguaccgag uguuugaagu aggugugauc 780 agaaaccegg guuuggggge ucegguguuc cauaugacaa acuauuuuga gcaaccaguc 840 900 aguaaugguc ucggcaacug uaugguggcu uugggggagc ucaaacucgc agcccuuugu 960 cacggggacg auucuaucau aauucccuau cagggaucag ggaaaggugu cagcuuccag cucgucaago ugggugucug gaaauccoca accgacaugo aauccugggu coccuuauca 1020 acggaugauc cagugguaga caggcuuuac cucucaucuc acagaggugu caucgcugac 1080 aaucaagcaa aaugggcugu ceegacaaca egaacagaug acaaguugeg aauggagaca 1140 ugeunceage aggeguguaa agguaaaane caageacuen gegagaanee egagugggua 1200 ccauugaagg auaacaggau uccuucauac gggguccugu cuguugaucu gagucugacg 1260 guugagcuua aaaucaaaau ugcuucggga uucgggccau ugaucacaca cggcucaggg 1320 auggaccuau acaaauccaa cugcaacaau guguauuggo ugacuauuco gocaaugaga 1380 1440 aaucuageeu uaggeguaau caacacauug gaguggauac egagauucaa gguuagueee aaccucuuca cugucecaau uaaggaagca ggegaagacu gecaugeeee aacauaccua 1500 ccugcggagg uggacgguga ugucaaacuc aguuccaacc uggugauucu accuggucaa 1560 gaucuccaau auguuuugge aaccuacgau accuccaggg uugageauge ugugguuuau 1620 uacguuuaca geecaageeg cucauuuucu uacuuuuaue cuuuuagguu geeuauaaag 1680 ggggucccaa ucgaacuaca aguggaaugc uucacauggg aucaaaaacu cuggugccgu 1740 cacuucuquq uqcuuqcqqa cucaqaaucc qquqqacuua ucacucacuc uqqqauqquq 1800 ggcaugggag ucagcugcac agcuaccogg gaagauggaa ccaaucgcag auaa 1854

595

<213> ORGANISM: Artificial Sequence

-continued

US 10,702,600 B1

596

ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau gucaccgcaa

597

598

-continued

cgagaccgga	uaaaugeeuu	cuacaaagau	aacccuuauc	ccaagggaag	uaggauaguu	120
auuaacagag	aacaucuuau	gauugacaga	cccuauguuc	ugeuggeugu	ucuguucguc	180
auguuucuga	gcuugaucgg	auugeuggea	auugcaggca	uuagacuuca	ucgggcagec	240
aucuacaccg	cggagaucca	uaaaagccuc	aguaccaauc	uggaugugac	uaacuccauc	300
gagcaucagg	ucaaggacgu	gcugacacca	cucuuuaaaa	ucaucgggga	ugaagugggc	360
cugagaacac	cucagagauu	cacugaccua	gugaaauuca	ucucggacaa	gauuaaauuc	420
cuuaauccgg	auagggagua	cgacuucaga	gaucucacuu	ggugcaucaa	cccgccagag	480
aggaucaaac	uagauuauga	ucaauacugu	gcagaugugg	cugcugaaga	gcucaugaau	540
gcauugguga	acucaacucu	acuggagacc	agaacaacca	cucaguuccu	ageugueuca	600
aagggaaacu	gcucagggcc	cacuacaauc	agaggucaau	ucucaaacau	guegeuguee	660
uuguuggacu	uguacuuagg	ucgagguuac	aaugugucau	cuauagucac	uaugacaucc	720
cagggaaugu	augggggaac	cuaccuaguu	gaaaagccua	aucugaacag	caaaggguca	780
gaguugucac	aacugagcau	guaccgagug	uuugaaguag	gugugaucag	aaacccgggu	840
uuggggggcuc	cgguguucca	uaugacaaac	uauuuugagc	aaccagucag	uaauggucuc	900
ggcaacugua	ugguggcuuu	gggggageuc	aaacucgcag	cccuuuguca	cggggacgau	960
ucuaucauaa	uucccuauca	gggaucaggg	aaagguguca	gcuuccagcu	cgucaagcug	1020
ggugucugga	aauccccaac	cgacaugcaa	uccugggucc	ccuuaucaac	ggaugaucca	1080
gugguagaca	ggcuuuaccu	cucaucucac	agagguguca	ucgcugacaa	ucaagcaaaa	1140
ugggcugucc	cgacaacacg	aacagaugac	aaguugegaa	uggagacaug	cuuccagcag	1200
gcguguaaag	guaaaaucca	ageacucuge	gagaaucccg	aguggguacc	auugaaggau	1260
aacaggauuc	cuucauacgg	gguccugucu	guugaucuga	gucugacggu	ugagcuuaaa	1320
aucaaaauug	cuucgggauu	cgggccauug	aucacacacg	gcucagggau	ggaccuauac	1380
aaauccaacu	gcaacaaugu	guauuggcug	acuauuccgc	caaugagaaa	ucuagccuua	1440
ggcguaauca	acacauugga	guggauaccg	agauucaagg	uuagucccaa	ccucuucacu	1500
gucccaauua	aggaagcagg	cgaagacugc	caugececaa	cauaccuacc	ugcggaggug	1560
gacggugaug	ucaaacucag	uuccaaccug	gugauucuac	cuggucaaga	ucuccaauau	1620
guuuuggcaa	ccuacgauac	cuccaggguu	gagcaugcug	ugguuuauua	cguuuacagc	1680
ccaageegeu	cauuuucuua	cuuuuauccu	uuuagguugc	cuauaaaggg	ggueecaaue	1740
gaacuacaag	uggaaugcuu	cacaugggau	caaaaacucu	ggugeeguea	cuucugugug	1800
cuugeggaeu	cagaauccgg	uggacuuauc	acucacucug	ggaugguggg	caugggaguc	1860
agcugcacag	cuacccggga	agauggaacc	aaucgcagau	aaugauaaua	ggeuggagee	1920
ucgguggeca	agcuucuugc	cccuugggcc	uccccccage	cccuccuccc	cuuccugcac	1980
ccguaccccc	guggucuuug	aauaaagucu	gagugggcgg	caaaaaaaaa	aaaaaaaaaa	2040
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2100
aaaaaaaaaa	aaaaaaaaaa	aucuag				2126
<210> SEQ : <211> LENG <212> TYPE	TH: 2065					

<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence

<223> OTHER INFORMATION: Synthetic Polynucleotide

<220> FEATURE:

599

600

-continued

<400> SEQUENCE: 78					
ucaageuuuu ggaceeucgu	acagaagcua	auacgacuca	cuauagggaa	auaagagaga	60
aaagaagagu aagaagaaau	auaagagcca	ccaugucacc	acaacgagac	cggauaaaug	120
ccuucuacaa agacaacccc	cauccuaagg	gaaguaggau	aguuauuaac	agagaacauc	180
uuaugauuga uagaccuuau	guuuugcugg	cuguucuauu	cgucauguuu	cugagcuuga	240
ucggguugcu agccauugca	ggcauuagac	uucaucgggc	agccaucuac	accgcagaga	300
uccauaaaag ccucagcacc	aaucuggaug	uaacuaacuc	aaucgagcau	cagguuaagg	360
acgugeugae accaeucuue	aagaucaucg	gugaugaagu	gggcuugagg	acaccucaga	420
gauucacuga ccuagugaag	uucaucucug	acaagauuaa	auuccuuaau	ccggacaggg	480
aauacgacuu cagagaucuc	acuuggugua	ucaacccgcc	agagagaauc	aaauuggauu	540
augaucaaua cugugcagau	guggeugeug	aagaacucau	gaaugcauug	gugaacucaa	600
cucuacugga gaccagggca	accaaucagu	uccuagcugu	cucaaaggga	aacugcucag	660
ggcccacuac aaucagaggc	caauucucaa	acaugucgcu	gucccuguug	gacuuguauu	720
uaagucgagg uuacaaugug	ucaucuauag	ucacuaugac	aucccaggga	auguacgggg	780
gaacuuaccu aguggaaaag	ccuaaucuga	gcagcaaagg	gucagaguug	ucacaacuga	840
gcaugcaccg aguguuugaa	guagguguua	ucagaaaucc	ggguuugggg	gcuccgguau	900
uccauaugac aaacuaucuu	gagcaaccag	ucaguaauga	uuucagcaac	ugcauggugg	960
cuuuggggga gcucaaguuc	gcageccucu	gucacaggga	agauucuauc	acaauucccu	1020
aucagggauc agggaaaggu	gucagcuucc	agcuugucaa	gcuagguguc	uggaaauccc	1080
caaccgacau gcaauccugg	gucccccuau	caacggauga	uccagugaua	gacaggcuuu	1140
accucucauc ucacagaggo	guuaucgeug	acaaucaagc	aaaaugggcu	gucccgacaa	1200
cacggacaga ugacaaguug	cgaauggaga	caugcuucca	gcaggcgugu	aaggguaaaa	1260
uccaagcacu uugcgagaau	cccgagugga	caccauugaa	ggauaacagg	auuccuucau	1320
acggggucuu gucuguugau	cugagucuga	caguugagcu	uaaaaucaaa	auuguuucag	1380
gauucgggcc auugaucaca	cacgguucag	ggauggaccu	auacaaaucc	aaccacaaca	1440
auauguauug geugaeuaue	ccgccaauga	agaaccuggc	cuuaggugua	aucaacacau	1500
uggaguggau accgagauuc	aagguuaguc	ccaaccucuu	cacuguucca	auuaaggaag	1560
caggcgagga cugccaugec	ccaacauacc	uaccugcgga	gguggauggu	gaugucaaac	1620
ucaguuccaa ucuggugauu	cuaccugguc	aagaucucca	auauguucug	gcaaccuacg	1680
auacuuccag aguugaacau	gcuguaguuu	auuacguuua	cageccaage	cgcucauuuu	1740
cuuacuuuua uccuuuuagg	uugccuguaa	ggggggueee	cauugaauua	caaguggaau	1800
gcuucacaug ggaccaaaaa	cucuggugee	gucacuucug	ugugeuugeg	gacucagaau	1860
cugguggaca uaucacucac	ucugggaugg	ugggcauggg	agucagcugc	acagecacue	1920
gggaagaugg aaccagccgc	agauagugau	aauaggcugg	agccucggug	gecaageuuc	1980
uugeeeeuug ggeeueeeee	cagececuce	uccccuuccu	gcacccguac	ccccgugguc	2040
uuugaauaaa gucugagugg	gegge				2065
<210> SEQ ID NO 79					

<210> SEQ ID NO 79 <211> LENGTH: 1854 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide

601

<400> SEQUENCE: 79	
augucaccac aacgagaccg gauaaaugce uucuacaaag acaaceeeca uccuaaggga	60
aguaggauag uuauuaacag agaacaucuu augauugaua gaccuuaugu uuugcuggcu	120
guucuauucg ucauguuucu gagcuugauc ggguugcuag ccauugcagg cauuagacuu	180
caucgggcag ccaucuacac cgcagagauc cauaaaagcc ucagcaccaa ucuggaugua	240
acuaacucaa ucgagcauca gguuaaggac gugcugacac cacucuucaa gaucaucggu	300
gaugaagugg gcuugaggac accucagaga uucacugacc uagugaaguu caucucugac	360
aagauuaaau uccuuaaucc ggacagggaa uacgacuuca gagaucucac uugguguauc	420
aacccgccag agagaaucaa auuggauuau gaucaauacu gugcagaugu ggcugcugaa	480
gaacucauga augcauuggu gaacucaacu cuacuggaga ccagggcaac caaucaguuc	540
cuageugueu caaagggaaa cugeucaggg eecacuacaa ucagaggeea auucucaaac	600
auguegeugu eecuguugga cuuguauuua aguegagguu acaaugugue aucuauague	660
acuaugacau eecagggaau guacgggggga acuuaccuag uggaaaagee uaaucugage	720
agcaaagggu cagaguuguc acaacugagc augcaccgag uguuugaagu agguguuauc	780
agaaauccgg guuugggggc uccgguauuc cauaugacaa acuaucuuga gcaaccaguc	840
aguaaugauu ucagcaacug caugguggcu uugggggagc ucaaguucgc agcccucugu	900
cacagggaag auucuaucac aauucccuau cagggaucag ggaaaggugu cagcuuccag	960
cuugucaage uaggugucug gaaauceeca acegacauge aauceugggu eeceeuauca	1020
acggaugauc cagugauaga caggcuuuac cucucaucuc acagaggegu uaucgcugac	1080
aaucaagcaa aaugggcugu ceegacaaca eggacagaug acaaguugeg aauggagaca	1140
ugcuuccago aggoguguaa ggguaaaauo caagoacuuu gogagaauoo ogaguggaca	1200
ccauugaagg auaacaggau uccuucauac ggggucuugu cuguugaucu gagucugaca	1260
guugagcuua aaaucaaaau uguuucagga uucgggccau ugaucacaca cgguucaggg	1320
auggaccuau acaaauccaa ccacaacaau auguauugge ugacuaucce gccaaugaag	1380
aaccuggccu uagguguaau caacacauug gaguggauac cgagauucaa gguuaguccc	1440
aaccucuuca cuguuccaau uaaggaagca ggcgaggacu gccaugcccc aacauaccua	1500
ccugcggagg uggaugguga ugucaaacuc aguuccaauc uggugauucu accuggucaa	1560
gaucuccaau auguucuggc aaccuacgau acuuccagag uugaacaugc uguaguuuau	1620
uacguuuaca geecaageeg cucauuuucu uacuuuuaue cuuuuagguu geeuguaagg	1680
ggggucccca uugaauuaca aguggaaugc uucacauggg accaaaaacu cuggugccgu	1740
cacuucugug ugcuugegga cucagaaucu gguggacaua ucacucacuc ugggauggug	1800
ggcaugggag ucagcugcac agccacucgg gaagauggaa ccagccgcag auag	1854
<210> SEQ ID NO 80 <211> LENGTH: 2126 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 80	
ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau gucaccacaa	60

cgagacegga uaaaugeeuu cuacaaagae aaceeecaue cuaagggaag uaggauaguu 120

603

<400> SEQUENCE: 81

ucaagcuuuu ggacccucgu acagaagcua auacgacuca cuauagggaa auaagagaga

604

-continued

-continued	
auuaacagag aacaucuuau gauugauaga ccuuauguuu ugcuggcugu ucuauucguc	180
auguuucuga gcuugaucgg guugcuagee auugcaggea uuagacuuca ucgggeagee	240
aucuacaceg cagagaucea uaaaageeue ageaceaaue uggauguaae uaaeueaaue	300
gagcaucagg uuaaggacgu gcugacacca cucuucaaga ucaucgguga ugaagugggc	360
uugaggacac cucagagauu cacugaccua gugaaguuca ucucugacaa gauuaaauuc	420
cuuaaucegg acagggaaua cgacuucaga gaucucacuu gguguaucaa ceegecagag	480
agaaucaaau uggaunauga ucaanacugu gcagaugugg cugcugaaga acucaugaau	540
gcauugguga acucaacucu acuggagacc agggcaacca aucaguuccu agcugucuca	600
aagggaaacu geucagggee cacuacaauc agaggeeaau ucucaaacau guegeuguee	660
cuguuggacu uguauuuaag ucgagguuac aaugugucau cuauagucac uaugacaucc	720
cagggaaugu acgggggaac uuaccuagug gaaaagccua aucugagcag caaaggguca	780
gaguugucac aacugagcau gcaccgagug uuugaaguag guguuaucag aaauccgggu	840
uugggggcuc cgguauucca uaugacaaac uaucuugagc aaccagucag uaaugauuuc	900
adcaacudca udduddcuuu dddddadcuc aaduucdcad cccucuduca cadddaadau	960
ucuaucacaa uucccuauca gggaucaggg aaagguguca gcuuccagcu ugucaagcua	1020
ggugucugga aauccecaac egacaugeaa ueeuggguee eecuaucaac ggaugaucea	1080
gugauagaca ggcuuuaccu cucaucucac agaggcguua ucgcugacaa ucaagcaaaa	1140
ugggcuguce egacaacaeg gacagaugae aaguugegaa uggagacaug cuuceageag	1200
gcguguaagg guaaaaucca agcacuuugc gagaaucccg aguggacacc auugaaggau	1260
aacaggauuc cuucauacgg ggucuugucu guugaucuga gucugacagu ugagcuuaaa	1320
aucaaaauug uuucaggauu cgggccauug aucacacacg guucagggau ggaccuauac	1380
aaauccaacc acaacaauau guauuggcug acuaucccgc caaugaagaa ccuggccuua	1440
gguguaauca acacauugga guggauaccg agauucaagg uuagucccaa ccucuucacu	1500
guuccaauua aggaagcagg cgaggacugc caugccccaa cauaccuacc ugcggaggug	1560
gauggugaug ucaaacucag uuccaaucug gugauucuac cuggucaaga ucuccaauau	1620
guucuggcaa ccuacgauac uuccagaguu gaacaugcug uaguuuauua cguuuacagc	1680
ccaageegeu cauuuucuua cuuuuauceu uuuagguuge cuguaagggg ggueeecauu	1740
gaauuacaag uggaaugcuu cacaugggac caaaaacucu ggugccguca cuucugugug	1800
cuugeggaeu cagaaucugg uggacauauc acucacucug ggaugguggg caugggague	1860
agcugcacag ccacucggga agauggaacc agccgcagau agugauaaua ggcuggagcc	1920
uegguggeea ageuueuuge eecuugggee ueeceeeage eecueeueee cuuecugeae	1980
ccguaccocc guggucuuug aauaaagucu gagugggcgg caaaaaaaaa aaaaaaaaa	2040
aaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa	2100
aaaaaaaaaa aaaaaaaaaa aucuag	2126
<210> SEQ ID NO 81 <211> LENGTH: 1729 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	

605

606

aaagaagagu	aagaagaaau	auaagagcca	ccauggcaca	agucauuaau	acaaacagcc	120
uguegeuguu	gacccagaau	aaccugaaca	aaucccaguc	cgcacugggc	acugcuaucg	180
ageguuugue	uuccggucug	cguaucaaca	gcgcgaaaga	cgaugeggea	ggacaggcga	240
uugcuaaccg	uuuuaccgcg	aacaucaaag	gucugacuca	ggcuucccgu	aacgcuaacg	300
acgguaucuc	cauugcgcag	accacugaag	gcgcgcugaa	cgaaaucaac	aacaaccugc	360
agcgugugcg	ugaacuggcg	guucagucug	cgaaugguac	uaacucccag	ucugaccucg	420
acuccaucca	ggcugaaauc	acccagegee	ugaacgaaau	cgaccgugua	uccggccaga	480
cucaguucaa	cggcgugaaa	guccuggege	aggacaacac	ccugaccauc	cagguuggug	540
ccaacgacgg	ugaaacuauc	gauauugauu	uaaaagaaau	cagcucuaaa	acacugggac	600
uugauaagcu	uaauguccaa	gaugecuaca	ccccgaaaga	aacugcugua	accguugaua	660
aaacuaccua	uaaaaauggu	acagauccua	uuacageeca	gagcaauacu	gauauccaaa	720
cugcaauugg	cgguggugca	acgggggguua	cugggggcuga	uaucaaauuu	aaagaugguc	780
aauacuauuu	agauguuaaa	ggcggugcuu	cugcuggugu	uuauaaagcc	acuuaugaug	840
aaacuacaaa	gaaaguuaau	auugauacga	cugauaaaac	uccguuggca	acugeggaag	900
cuacagcuau	ucggggaacg	gccacuauaa	cccacaacca	aauugcugaa	guaacaaaag	960
aggguguuga	uacgaccaca	guugeggeue	aacuugcugc	agcagggguu	acuggegeeg	1020
auaaggacaa	uacuagecuu	guaaaacuau	cguuugagga	uaaaaacggu	aagguuauug	1080
augguggcua	ugcagugaaa	augggcgacg	auuucuaugc	cgcuacauau	gaugagaaaa	1140
caggugcaau	uacugcuaaa	accacuacuu	auacagaugg	uacuggcguu	gcucaaacug	1200
gagcugugaa	auuugguggc	gcaaauggua	aaucugaagu	uguuacugcu	accgauggua	1260
agacuuacuu	agcaagcgac	cuugacaaac	auaacuucag	aacaggeggu	gagcuuaaag	1320
agguuaauac	agauaagacu	gaaaacccac	ugcagaaaau	ugaugcugcc	uuggcacagg	1380
uugauacacu	ucguucugac	cugggugegg	uucagaaccg	uuucaacucc	gcuaucacca	1440
accugggcaa	uaccguaaau	aaccugucuu	cugeceguag	ccguaucgaa	gauuccgacu	1500
acgcaaccga	agucuccaac	augucucgcg	cgcagauucu	gcagcaggcc	gguaccuccg	1560
uucuggcgca	ggcgaaccag	guucegeaaa	acguccucuc	uuuacugcgu	ugauaauagg	1620
cuggagccuc	gguggccaug	cuucuugeee	cuugggeeue	cccccagccc	cuccuccccu	1680
uccugcaccc	guacceeegu	ggucuuugaa	uaaagucuga	gnddacdac		1729
<220> FEAT	FH: 1518 : RNA NISM: Artif: JRE: R INFORMATIC	-	nce ic Polynuclé	eotide		
auggcacaag	ucauuaauac	aaacagccug	ucgcuguuga	cccagaauaa	ccugaacaaa	60
ucccaguccg	cacugggcac	ugcuaucgag	cguuugucuu	ccggucugcg	uaucaacage	120
gcgaaagacg	augeggeagg	acaggegauu	gcuaaceguu	uuaccgcgaa	caucaaaggu	180
cugacucagg	cuucceguaa	cgcuaacgac	gguaucucca	uugegeagae	cacugaaggc	240
acaciidaaca						
gogougunog	aaaucaacaa	caaccugcag	egugugegug	aacuggcggu	ucagucugcq	300
			egugugegug uccauccagg			300 360

-cont	inued
-00110	. mueu

aacgaaaucg accguguauc cggccagacu caguucaacg gcgugaaagu ccuggcgcag	420
gacaacaccc ugaccaucca gguuggugcc aacgacggug aaacuaucga uauugauuua	480
aaagaaauca geucuaaaac acugggacuu gauaageuua auguecaaga ugeeuacaee	540
ccgaaagaaa cugcuguaac cguugauaaa acuaccuaua aaaaugguac agauccuauu	600
acageeeaga geaauacuga uauceaaacu geaauuggeg guggugeaac ggggguuacu	660
ggggcugaua ucaaauuuaa agauggucaa uacuauuuag auguuaaagg cggugcuucu	720
gcugguguuu auaaagccac uuaugaugaa acuacaaaga aaguuaauau ugauacgacu	780
gauaaaacuc cguuggcaac ugcggaagcu acagcuauuc ggggaacggc cacuauaacc	840
cacaaccaaa uugcugaagu aacaaaagag gguguugaua cgaccacagu ugcggcucaa	900
cuugcugcag cagggguuac uggcgccgau aaggacaaua cuagccuugu aaaacuaucg	960
uuugaggaua aaaacgguaa gguuauugau gguggcuaug cagugaaaau gggcgacgau	1020
uucuaugeeg cuacauauga ugagaaaaca ggugcaauua cugcuaaaac cacuacuuau	1080
acagauggua cuggcguugc ucaaacugga gcugugaaau uugguggcgc aaaugguaaa	1140
ucugaaguug uuacugcuac cgaugguaag acuuacuuag caagegaccu ugacaaacau	1200
aacuucagaa caggogguga gcuuaaagag guuaauacag auaagacuga aaacccacug	1260
cagaaaauug augcugccuu ggcacagguu gauacacuuc guucugaccu gggugcgguu	1320
cagaaceguu ucaacucege uaucaceaac cugggeaaua eeguaaauaa eeugucuucu	1380
geceguagee guauegaaga uucegacuae geaacegaag ueuecaacau gueuegegeg	1440
cagauucuge ageaggeegg uaccuceguu cuggegeagg egaaceaggu ucegeaaaac	1500
guccucucuu uacugogu	1518
<210> SEQ ID NO 83 <211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
<211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	60
<211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 83	60 120
<211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc	
<pre><211> LENGTH: 1790 <212> TYPE: RNA <211> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca</pre>	
<pre><211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau</pre>	120 180
<pre><211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau geggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu</pre>	120 180 240
<pre><211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau geggcaggac aggcgauugc uaaccguuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcg gcugaacgaa</pre>	120 180 240 300
<pre><211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uuugucuccauu gcgcagacca cugaaggcg gcugaacgaa auuaacaaa accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac</pre>	120 180 240 300 360
<pre><211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcg gcugaacgaa auuaacaa accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagueug accucgacuc cauccaggcu gaaaucacca agcgcugaa cgaaaucgac</pre>	120 180 240 300 360 420
<pre><211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcg gaaagacgau geggcaggac aggcgauugc uaaccguuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uuugucuccauu gegcagacca cugaaggeg gcugaacgaa auuaacaa accugcagcg uuugucuccauu gegcagacca cugaaggeg gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugegaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucacc agcgccugaa cgaaaucgac cuguguauceg gceagacuca guucaacggc gugaaagucc uggcgcagga caacacccug</pre>	120 180 240 300 360 420 480
<pre><211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uuugucuccauu gcgcagacca cugaaggcg gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac ucccagucug accucgacuc cauccaggcu gaaaucaccc agcgccugaa cgaaaucgac cguguauccg gccagacuca guucaacggc gugaaaguc ugcgcagga caacacccug accauccagg uuggugccaa cgacggugaa acuaucgau uugauuuaaa agaaaucagc</pre>	120 180 240 300 360 420 480 540
<pre><211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcge gaaagacgau gcggcaggac aggcgauuge uaaccguuu accgcgaaca ucaaaggucu gacucaggcu uccecguaacg cuaacgacgg uuugucuccauu gcgcagacca cugaaggeg gcugaacgaa aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugegaa ugguacuaac uccecagucug accucgacuc cauccaggcu gaaaucacce agegccugaa cgaaaucgac cuguguauceg gccagacuca guucaacgge gugaaaguce uggegcagga caacacccug accauccagg uuggugccaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc ucuaaaaaca ugggacuuga uaagcuuaau guccaagaug cuaacaccc gaaagacau aucaacaaca accugcagu guucaacgge gugaaaguce uggegcagga caacacccug accauccagg uuggugccaa cgacggugaa acuaucgaua uugauuuaaa agaaaucagc ucuaaaacac ugggacuuga uaagcuuaau guccaagaug ccuacaccce gaaagaacu ucuaaaacac uggacuuga uaagcuuaau guccaagau cugacaacce gaaaacce uccagucug uuggugccaa cgacggugaa acuaucgau uugauuuaaa agaaaucagc ucuaaaacac uggacuuga uaagcuuaau guccaagau cugacacce gaaagaccu ucuaaaacac uggacuuga uaagcuuaau guccaagau cugacacce gaaagaacu</pre>	120 180 240 300 360 420 480 540
<pre><211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaccau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcg gaaagacgau geggcaggac aggcgauuge uaaccguuuu acegcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac aucaacaaca accugcagcg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac cugccagucug accucgacuc cauccaggcu gaaaucacc agcgccugaa cgaaaucgac ucccagucug accucgacuc guucaacggc gugaaaguce uggcgcagga caacacccug accauccagg uuggugccaa cgacggugaa acuaucgau uugauuuaaa agaaaucagc ucuaaaacac ugggacuuga uaagcuuaau guccaagaug ccuacacce gaaagaacu gcuguaaceg uugauaaaac uaccuauaaa aaugguacag auccuauuca agcccagagc</pre>	120 180 240 300 360 420 480 540 600
<pre><211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauaac ugaacaaau ccagucegea cugggcacug cuaucgageg uuugucuuce ggucugegua ucaacagege gaaagaegau geggcaggac aggegauuge uaaceguuu acegegaaca ucaaaggucu gacucaggeu uceeguaaeg cuaacgaegg uuugucuuce ggucugegua ucaacagege geugaaegaa aucaacaaca aceugeageg uuugucuuce ggucugegua agucugegaa ugguacuaae uceeguaaeg cuaacgaegg ugugegugaa cuggegguue agucugegaa ugguacuaae uceeagueug aceuegaecu cauceaggeu gaaaucaece agegeeugaa egaaauegae eguguaueeg geeagacuea guucaaegge gugaaague uggegeagae agaaauegae ucuaaaacae ugggacuuga uaageuuaau guceaagau uugauuuaaa agaaaueage geuguaaeeg uuggugeeaa egaeggugaa acuauegau uugauuuaaa agaaaueage ucuaaaacae ugggacuuga uaageuuaau guceaagau ceuaeaeee gaaagaaacu geuguaaeeg uugauaaaae uaceuauaa aaugguaeag auceuauuae ageeeagaaeu geuguaaeeg uugauaaaae uaceuauaa aaugguaeag auceuauuae ageeeagaee aucaacaae ugggacuuga uaageuuaau guceaagau euugauuuaaa agaaaueage aucuaaaaee uugaaaaae uaceuauaaa aaugguaeag auceuauuae ageeeagaee aauacugaua uceaaeuge auuggeggu ggugeaaegg gguuaeugg ggeugauaue</pre>	120 180 240 300 360 420 480 540 600 660
<pre><211> LENGTH: 1790 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 83 ggggaaauaa gagagaaaag aagaguaaga agaaauauaa gagccaacau ggcacaaguc auuaauacaa acagccuguc gcuguugacc cagaauaacc ugaacaaauc ccaguccgca cugggcacug cuaucgagcg uuugucuucc ggucugcgua ucaacagcgc gaaagacgau gcggcaggac aggcgauugc uaaccguuuu accgcgaaca ucaaaggucu gacucaggcu ucccguaacg cuaacgacgg uaucuccauu gcgcagacca cugaaggcg gcugaacgaa aucaacaaca accugcaggg ugugcgugaa cuggcgguuc agucugcgaa ugguacuaac cuguauceg gccagacuca guucaacggc gugaaaguce uggcgcagga caacacccug accauccagg uuggugccaa cgacggugaa acuaucgaau uugauuuaaa agaaaucagc ucuaaaacac ugggacuuga uaagcuuaau guccaagaug ccuacaccec gaaagaacu gcuguaaceg uuggugccaa cgacggugaa acuaucgaa uugauuuaaa agaaaucagc ucuaaaacac ugggacuuga uaagcuuaau guccaagaug ccuacaccec gaaagaacu gcuguaaceg uuggugccaa cgacggugaa acuaucgaa uucuuuaca agacaucagc ucuaaaacac ugggacuuga uaagcuuaau guccaagaug ccuacaccec gaaagaacu gcuguaaceg uugauaaaac uaccuauaaa aaugguacag auccuauuac agcccagagc aauacugaua uccaaacugc aauuggcgu ggugcaacgg ggguuacugg ggcugauauc aauuuuaaag auggucaaua cuauuuagau guuaaaggcg gugcuucugc ugguguuauu</pre>	120 180 240 300 360 420 480 540 600 660 720 780

609

610

				-cont1	nuea	
gcugaaguaa	caaaagaggg	uguugauac	g accacaguu	g cggcucaacu	ugcugcagca	960
gggguuacug	gegeegauaa	ggacaauac	u agccuugua	a aacuaucguu	. ugaggauaaa	1020
aacgguaagg	uuauugaugg	uggcuaugc	a gugaaaaug	g gegaegauuu	. cuaugeegeu	1080
acauaugaug	agaaaacagg	ugcaauuac	u gcuaaaacc	a cuacuuauac	agaugguacu	1140
ggcguugcuc	aaacuggagc	ugugaaauu	u gguggegea	a augguaaauc	ugaaguuguu	1200
acugcuaccg	augguaagac	uuacuuagc	a agegaceuu	g acaaacauaa	cuucagaaca	1260
ggcggugagc	uuaaagaggu	uaauacaga	u aagacugaa	a acccacugca	gaaaauugau	1320
geugeeuugg	cacagguuga	uacacuucg	u ucugaccug	g gugegguuea	gaaceguuue	1380
aacucegeua	ucaccaaccu	gggcaauac	c guaaauaac	c ugucuucugo	ceguageegu	1440
aucgaagauu	ccgacuacgo	aaccgaagu	c uccaacaug	u cucgcgcgca	. gauucugcag	1500
caggceggua	ccuccguucu	ggcgcaggc	g aaccagguu	c egcaaaacgu	ccucucuuua	1560
cugeguugau	aauaggcugg	agccucggu	g gecaugeuu	c uugeeeeuug	ggeeucceec	1620
cageceeuce	uccccuuccu	gcacccgua	e ecceguggu	c uuugaauaaa	gucugagugg	1680
gcggcaaaaa	aaaaaaaaaa	aaaaaaaaa	a aaaaaaaaa	a aaaaaaaaaa	aaaaaaaaaa	1740
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	a aaaaaaaaa	a aaaaaucuag	ſ	1790
<pre><212> TYPE: <213> ORGAN <400> SEQUE Leu Gln Arg 1 <210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN</pre>	ISM: Salmo NCE: 84 Val Arg G 5 D NO 85 H: 539 PRT	lu Leu Ala	Val Gln Se 10	r Ala Asn		
<220> FEATU <223> OTHER	RE:	_		tide		
<400> SEQUE	NCE: 85					
Met Ser Trp 1	Lys Val V 5	al Ile Ile	Phe Ser Le 10	u Leu Ile Th	r Pro Gln 15	
His Gly Leu	Lys Glu S 20	er Tyr Leu	Glu Glu Se 25	r Cys Ser Th 30		
Glu Gly Tyr 35	Leu Ser V	al Leu Arg 40	Thr Gly Tr	p Tyr Thr As 45	n Val Phe	
Thr Leu Glu 50	Val Gly A	sp Val Glu 55	Asn Leu Th	r Cys Ser As 60	p Gly Pro	
Ser Leu Ile 65	-	lu Leu Asp 0	Leu Thr Ly 75	s Ser Ala Le	u Arg Glu 80	
Leu Lys Thr	Val Ser A 85	la Asp Gln	Leu Ala Ar 90	g Glu Glu Gl	n Ile Glu 95	
Asn Pro Gly	Ser Gly S 100	er Phe Val	Leu Gly Al 105	a Ile Ala Le 11	-	
Ala Ala Ala 115		al Thr Ala 120	Gly Val Al	a Ile Cys Ly 125	s Thr Ile	
Arg Leu Glu 130	Ser Glu V	al Thr Ala 135	Ile Asn As	n Ala Leu Ly 140	s Lys Thr	

-continued

Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Phe 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Leu	Asn	Lys	Asn 180	Lys	Cys	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Азр
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Сув 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	11e 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Сув	Trp	Ile 285	Val	ГАа	Ala
Ala	Pro 290	Ser	Cys	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Cys	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Cys	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	ГЛа	Asp 325	Сув	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Cys 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Сув
Tyr 385	Гуз	Gly	Val	Ser	Сув 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	Сув	Ser	Tyr	11e 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Гуз	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Asn	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu		Ser 470	Gln	Ala	Leu		Asp 4 75	Gln	Ser	Asn	Arg	Ile 480

Glu Asn II Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser

Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn

<210> SEQ ID NO 86 <211> LENGTH: 539 <212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

-continued

<220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 86 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe 35 40 45 Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro 50 55 60 Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu65707580 Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu 85 90 95 Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val 100 105 110 Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Cys Lys Thr Ile 115 120 125 Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Thr Arg Ala Ile Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe Gly Ile Leu Cys Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln 260 265 270 Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala 275 280 285 Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 305 310 315 320 Pro Asn Glu Lys Asp Cys Glu Thr Arg Gly Asp His Val Phe Cys Asp Thr Ala Ala Gly Ile Asn Val Ala Glu Gln Ser Lys Glu Cys Asn Ile Asn Ile Ser Thr Thr Asn Tyr Pro Cys Lys Val Ser Thr Gly Arg His Pro Ile Ser Met Val Ala Leu Ser Pro Leu Gly Ala Leu Val Ala Cys

Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Arg Val Gly Ile Ile

											-	con	tin	ued	
385					390					395					400
Lys	Gln	Leu	Asn	Lys 405	Gly	Сув	Ser	Tyr	11e 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Гла	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
	Lys 450	Phe	Pro	Glu	His	Gln 455	Trp	His	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
	Ser	Ser	Åla	Glu 485		Gly	Asn	Thr	Gly 490		Ile	Ile	Val	Ile 495	
Leu	Ile	Ala	Val 500		Gly	Ser	Ser	Met 505		Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile			Thr	Lys	гуз			Gly	Ala	Pro			Leu	Ser
-		515 Thr	Asn	Asn	Gly		520 Ile	Pro	His	Asn		525			
	530					535									
<211 <212 <213 <220 <223	:> T) :> OF :> FF :> O]	(PE: RGANJ CATUR THER	PRT SM: E: INF(Art: DRMA			-		Poly	pept	ide				
		EQUEN			17-7	710	71.0	Dhe	Cor	T	T en	T 1 o	The se	Dmo	6 1 m
nec 1	Ser	тр	гув	5 5	vai	те	тте	Pne	ser 10	Leu	Leu	IIe	III	Pro 15	GIN
His	Glγ	Leu	Lуя 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Сүз	Ser	Thr 30	Ile	Thr
31u	Gly	T yr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Суз 60	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	ГЛа	Thr	Glu 70	Leu	Asp	Leu	Leu	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Гуз	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115		Ala	Val	Thr	Ala 120		Val	Ala	Ile	Ala 125		Thr	Ile
	Leu 130		Ser	Glu	Val	Thr 135		Ile	Asn	Asn	Ala 140		Lys	Lys	Thr
Asn		Ala	Val	Ser			Gly	Asn	Gly			Val	Leu	Ala	
145 Ala	Val	Arg	Glu		150 Lys	Asp	Phe	Val		155 Lys	Asn	Leu	Thr	Arg	160 Ala
Ile	Asn	Lys	Asn	165 Lys	Cys	Asp	Ile	Pro	170 Asp	Leu	Lys	Met	Ala	175 Val	Ser
		-	180	-	-	-		185	_		-		190		
Phe	aer	GIN 195	riie	ASU	чтд	чтд	200	ьeu	ASU	val	var	Arg 205	GIN	FIIG	ser
Asp	Asn	Ala	Gly	Ile	Thr	Pro	Ala	Ile	Ser	Leu	Asp	Leu	Met	Thr	Asp

											-	con	tin	ued	
	210					215					220				
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Сув	Trp	Ile 285	Val	ГЛа	Ala
Ala	Pro 290	Ser	САа	Ser	Glu	Lys 295	ГАа	Gly	Asn	Tyr	Ala 300	Суз	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Cys	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Cys	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Cys 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	ГЛа	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Сүз	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Суз
Tyr 385	Гла	Gly	Val	Ser	Сув 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
ГЛЗ	Gln	Leu	Asn	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<211 <212 <213 <220)> FI	ENGTI ZPE : RGAN EATUI	H: 5: PRT ISM: RE:	39 Art:			-	ence tic H	oly.	pept:	ide				
<400)> SH	QUE	ICE :	88											
Met 1	Ser	Trp	ГЛа	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Сүз	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr	Leu	Ser	Val	Leu	Arg	Thr	Gly	Trp	Tyr	Thr	Asn	Val	Phe

Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Суз 60	Ser	Asp	Gly	Pro	
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Leu	Lys 75	Ser	Ala	Leu	Arg	Glu 80	
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu	
Asn	Pro	Gly	Ser 100		Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val	
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120		Val	Ala	Ile	Ala 125	Lys	Thr	Ile	
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr	
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160	
Ala	Val	Arg	Glu	Leu 165	Lys	Аар	Phe	Val	Ser 170	ГАЗ	Asn	Leu	Thr	Arg 175	Ala	
Ile	Asn	Lys	Asn 180	ГАЗ	Суз	Asp	Ile	Pro 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser	
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser	
Asp	Asn 210	Ala	Gly	Ile	Thr	P ro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp	
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240	
	-			245			-		250		-	-	-	Gly 255		
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln	
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Суз	Trp	Ile 285	Val	Гүз	Ala	
Ala	Pro 290	Ser	САа	Ser	Glu	Lys 295	гуа	Gly	Asn	Tyr	Ala 300	Суз	Leu	Leu	Arg	
Glu 305	Asp	Gln	Gly	Trp	Tyr 310		Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320	
Pro	Asn	Glu	Lys	Asp 325	Суз	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Cys 335	Asp	
Thr	Ala		-	Ile			Ala				-	Glu	-	Asn	Ile	
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Суз	Гуз	Val	Ser	Thr 365	Gly	Arg	His	
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Сүз	
Tyr 385	Lys	Gly	Val	Ser	Cys 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400	
Lys	Gln	Leu	Asn	Lys 405	Gly	Сув	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp	
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly	
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro	
Ile	Lys 450	Phe	Pro	Glu	Asn	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe	

-continued

Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 89 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 89 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln 1 5 10 15 His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe 35 40 45 Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro Ser Leu Ile Lys Thr Glu Leu Asp Leu Leu Lys Ser Ala Leu Arg Glu 65 70 75 80 Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr 145 150 155 160 Ala Val Arg Glu Leu Lys Asp Phe Val Leu Lys Asn Leu Thr Arg Ala Ile Asn Lys Asn Lys Cys Asp Ile Pro Asp Leu Lys Met Ala Val Ser Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala

-continued

Ala Pro Ser 290	Cys Se	r Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Cys	Leu	Leu	Arg
Glu Asp Gln 305	Gly Tr	p Tyr 310	Cys	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro Asn Glu	Lys As 32		Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сүя 335	Asp
Thr Ala Ala	Gly I1 340	e Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Суя 350	Asn	Ile
Asn Ile Ser 355	Thr Th	r Asn	Tyr	Pro 360	Суз	Гуз	Val	Ser	Thr 365	Gly	Arg	His
Pro Ile Ser 370	Met Va	l Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Суз
Tyr Lys Gly 385	Val Se	r Cys 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys Gln Leu	Asn Ly 40	-	Суя	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr Val Thr	Ile As 420	p Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu Gln His 435	Val Il	e Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile Lys Phe 450	Pro Gl	u Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu Asn Ile 465	Glu As	n Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu Ser Ser	Ala Gl 48	-	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu Ile Ala	Val Le 500	u Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile Ile Lys 515	Lys Th	r Lys	Гла	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly Val Thr 530	Asn As	n Gly	Phe 535	Ile	Pro	His	Asn					
<210> SEQ II	D NO 90											
<211> LENGTH <212> TYPE:												
<213> ORGAN <220> FEATU	ISM: Ar	tific	ial :	Seque	ence							
<223> OTHER		ATION	: Syı	nthe	tic 1	Poly	pept:	ide				
<400> SEQUE	NCE: 90											
Met Ser Trp 1	Lys Va 5	l Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His Gly Leu	Lys Gl 20	u Ser	Tyr	Leu	Glu 25	Glu	Ser	Сув	Ser	Thr 30	Ile	Thr
Glu Gly Tyr 35	Leu Se	r Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr Leu Glu 50	Val Gl	y Asp	Val 55	Glu	Asn	Leu	Thr	Сүв 60	Ser	Asp	Gly	Pro
Ser Leu Ile 65	Lys Th	r Glu 70	Leu	Азр	Leu	Leu	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu Lys Thr	Val Se	r Ala	Asp	Gln	Leu	Ala	Arg	Glu	Glu	Gln	Ile	Glu

Leu Lys Thr Val Ser Ala Asp Gl
n Leu Ala Arg Glu Glu Glu Gln Ile Glu 85 90 95

Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val 100 105 110

Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Leu 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	Суз	Aab	Ile	Pro 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Суз	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Суз	Ser	Glu	Lys 295	ГАа	Gly	Asn	Tyr	Ala 300	Суз	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Сув	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Cys	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Суз
Tyr 385	Lys	Gly	Val	Ser	Cys 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	11e 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	ГЛЗ	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asn	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Гуз	Гуз	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser

Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 91 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 91 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr 20 25 30 Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe 35 40 45 Thr Leu Pro Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro 50 55 60 Ser Leu Ile Lys Thr Glu Leu Asp Leu Leu Lys Ser Ala Leu Arg Glu65707580 Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Thr Arg Ala Ile Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln 260 265 270 Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr Pro Asn Glu Lys Asp Cys Glu Thr Arg Gly Asp His Val Phe Cys Asp Thr Ala Ala Gly Ile Asn Val Ala Glu Gln Ser Lys Glu Cys Asn Ile

Asn															
	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Суз	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Суз
Tyr 385	Lys	Gly	Val	Ser	Суз 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	11e 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Гуз	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<213	3 > OI			Arti	ific	ial S	Seque	ence							
<21: <22) <22: <40)	3> 01 0> FI 3> 01 3> 01	rgan: Eatur Ther Equer	ISM: RE: INFO NCE:	ORMAI 92	rion	: Sүт	nthet	tic I		_					
<21: <220 <222 <400 Met 1	3> 01)> F1 3> 07 3> 57 Ser	RGANI BATUH THER SQUEN Trp	ISM: RE: INFO NCE: Lys	ORMAN 92 Val 5	TION Val	: Syı Ile	Ile	ic I Phe	Ser 10	Leu	Leu			15	
<21: <220 <22: <400 Met 1 His	3> 09 D> F1 3> 07 D> S1 Ser Gly	RGANI SATUR THER SQUER Trp Leu	ISM: RE: INFO NCE: Lys Lys 20	92 Val 5 Glu	Val Ser	: Syr Ile Tyr	Ile Leu	Cic F Phe Glu 25	Ser 10 Glu	Leu Ser	Leu Cys	Ser	Thr 30	15 Ile	Thr
<21: <22: <22: <400 Met 1 His Glu	3> 01 3> 07 3> 07 3> 07 5 5 5 5 6 1 6 1 7 6 1 7 6 1 7 7 7 7 7 7 7 7 7 7 7 7 7	GANI EATUR THER SQUEN Trp Leu Tyr 35	ISM: RE: INFO NCE: Lys Lys 20 Leu	92 Val 5 Glu Ser	Val Ser Val	: Syr Ile Tyr Leu	Ile Leu Arg 40	Phe Glu 25 Thr	Ser 10 Glu Gly	Leu Ser Trp	Leu Cys Tyr	Ser Thr 45	Thr 30 Asn	15 Ile Val	Thr Phe
<21: <220 <222 <400 Met 1 His Glu Thr	3> OF 3> OF 3> O 5 5 5 5 5 5 5 5 5 5 5 5 5	CGAN: EATUR THER SQUEN Trp Leu Tyr 35 Pro	ISM: RE: INFO NCE: Lys 20 Leu Val	92 Val 5 Glu Ser Gly	Val Ser Val Asp	: Syr Ile Tyr Leu Val 55	Ile Leu Arg 40 Glu	Phe Glu 25 Thr Asn	Ser 10 Glu Gly Leu	Leu Ser Trp Thr	Leu Cya Tyr Cys 60	Ser Thr 45 Ser	Thr 30 Asn Asp	15 Ile Val Gly	Thr Phe Pro
<21: <220 <222 <400 Met 1 His Glu Thr	3> OF 3> OF 3> O 5 5 5 5 5 5 5 5 5 5 5 5 5	CGAN: EATUR THER SQUEN Trp Leu Tyr 35 Pro	ISM: RE: INFO NCE: Lys 20 Leu Val	92 Val 5 Glu Ser	Val Ser Val Asp	: Syr Ile Tyr Leu Val 55	Ile Leu Arg 40 Glu	Phe Glu 25 Thr Asn	Ser 10 Glu Gly Leu	Leu Ser Trp Thr	Leu Cya Tyr Cys 60	Ser Thr 45 Ser	Thr 30 Asn Asp	15 Ile Val Gly	Thr Phe Pro
<21: <220 <22: <400 Met 1 His Glu Thr Ser 65	3> OF D> FF 3> O Ser Gly Gly Leu Leu	RGANI EATUR FHER SQUEN Trp Leu Tyr 35 Pro Ile	ISM: RE: INFC VCE: Lys 20 Leu Val Lys	92 Val 5 Glu Ser Gly	Val Ser Val Asp Glu 70	: Syn Ile Tyr Leu Val 55 Leu	Ile Leu Arg 40 Glu Asp	Phe Glu 25 Thr Asn Leu	Ser 10 Glu Gly Leu Leu	Leu Ser Trp Thr Lys 75	Leu Cya Tyr Cya 60 Ser	Ser Thr 45 Ser Ala	Thr 30 Asn Asp Leu	15 Ile Val Gly Arg	Thr Phe Pro Glu 80
<21: <220 <22: <400 Met 1 His Glu Thr Ser 65 Leu	3> 0F 3> 0F 3> 0 5 5 5 6 1 7 6 1 7 5 0 Leu Leu Lys	AGAN: EATUH FHER GQUEN Trp Leu Tyr 35 Pro Ile Thr	ISM: RE: INFC INFC LYS LYS LYS Leu Val LYS Val	92 Val 5 Glu Ser Gly Thr Ser	Val Ser Val Asp Glu 70 Ala	: Syn Ile Tyr Leu Val 55 Leu Asp	Ile Leu Arg 40 Glu Asp Gln	cic I Phe Glu 25 Thr Asn Leu Leu	Ser 10 Glu Gly Leu Leu Ala 90	Leu Ser Trp Thr Lys 75 Arg	Leu Cys Tyr Cys 60 Ser Glu	Ser Thr 45 Ser Ala Glu	Thr 30 Asn Asp Leu Gln	15 Ile Val Gly Arg Ile 95	Thr Phe Pro Glu 80 Glu
<21: <222: <22: <400 Met 1 His Glu Thr Ser 65 Leu Asn	3> OF Ser Gly Leu Lys Pro	AGAN: SATUR THER SQUEN Trp Leu Tyr 35 Pro Ile Thr Gly	ISM: RE: INFC NCE: Lys 20 Leu Val Lys Val Ser 100	92 Val 5 Glu Ser Gly Thr Ser 85	Val Ser Val Asp Glu 70 Ala Ser	: Syr Ile Tyr Leu Val 55 Leu Asp Phe	Ile Leu Arg 40 Glu Asp Gln Val	Lic I Phe Glu 25 Thr Asn Leu Leu Leu	Ser 10 Glu Gly Leu Leu Ala 90 Gly	Leu Ser Trp Thr Lys 75 Arg Ala	Leu Cys Tyr Cys 60 Ser Glu Ile	Ser Thr 45 Ser Ala Glu Ala	Thr 30 Asn Asp Leu Gln Leu 110	15 Ile Val Gly Arg Ile 95 Gly	Thr Phe Pro Glu Glu Val
<21: <222: <222: Met l His Glu Thr Ser 65 Leu Asn Ala	3> OF D> FF 3> O' Ser Gly Gly Leu Leu Lys Pro Ala	AGAN: EATUR CHER SQUEN Trp Leu Tyr 35 Pro Ile Thr Gly Ala 115	ISM: RE: INFC NCE: Lys Lys Leu Val Lys Val Ser 100 Ala	92 Val 5 Glu Ser Gly Thr Ser 85 Gly	Val Ser Val Asp Glu 70 Ala Ser Val	: Syn Ile Tyr Leu Val 55 Leu Asp Phe Thr	Ile Leu Arg 40 Glu Asp Gln Val Ala 120	Field Clu Phe Glu 25 Thr Asn Leu Leu Leu 105 Gly	Ser 10 Glu Gly Leu Leu Ala 90 Gly Val	Leu Ser Trp Thr Lys 75 Arg Ala	Leu Cya Tyr Cys Ser Glu Ile	Ser Thr 45 Ser Ala Glu Ala 125	Thr 30 Asn Asp Leu Gln Leu 110 Lys	15 Ile Val Gly Arg Jle 95 Gly Thr	Thr Phe Pro Glu 80 Glu Val Ile
<21: <222: <222: <400 Met 1 His Glu Thr Ser 65 Leu Asn Ala Arg	3> OF 3> OF FF 3> OF FF 3> OF FF Ser Gly Leu Leu Leu Pro Ala Leu 130	AGAN: EATUU FHER SQUEN Trp Leu Tyr 35 Pro Ile Thr Gly Ala 115 Glu	ISM: RE: INFC NCE: Lys Lys 20 Leu Val Lys Val Ser 100 Ala Ser	92 Val 5 Glu Ser Gly Thr Ser Gly Gly Ala	Val Ser Val Asp Glu 70 Ala Ser Val	: Syn Ile Tyr Leu Val 55 Leu Asp Phe Thr Thr 135	Ile Leu Arg 40 Glu Asp Gln Val Ala 120 Ala	Cic I Phe Glu 25 Thr Asn Leu Leu 105 Gly Ile	Ser 10 Glu Gly Leu Leu Ala 90 Gly Val Asn	Leu Ser Trp Thr Lys 75 Arg Ala Ala Asn	Leu Cys Tyr Cys 60 Ser Glu Ile Ile Ala	Ser Thr 45 Ser Ala Glu Ala 125 Leu	Thr 30 Asn Asp Leu Gln Leu 110 Lys Lys	15 Ile Val Gly Arg Jle 95 Gly Thr Lys	Thr Phe Pro Glu 80 Glu Val Ile Thr
<21: <222: <222: <400 Met 1 His Glu Thr Glu Thr Ser 65 Leu Asn Ala Arg Asn 145	3> OF Ser Gly Gly Leu Lys Pro Ala Leu 130 Glu	XGAN: EATUR CHER SQUEN Trp Leu Tyr 35 Pro Ile Thr Gly Ala 115 Glu Ala	ISM: RE: INFC VCE: Lys Lys Leu Val Leu Val Ser 100 Ala Ser Val	92 Val 5 Glu Ser Gly Thr Ser 85 Gly Ala Glu	TION Val Ser Val Asp Glu 70 Ala Ser Val Val Thr 150	: Syn Ile Tyr Leu Val 55 Leu Asp Phe Thr Thr 135 Leu	Ile Leu Leu Arg 40 Glu Glu Val Ala 120 Ala Gly	Field Clu Phe Glu 25 Thr Asn Leu Leu Leu 105 Gly Ile Asn	Ser 10 Glu Gly Leu Leu Leu Ala 90 Gly Val Asn Gly	Leu Ser Trp Thr Lys 75 Arg Ala Ala Asn Val 155	Leu Cys Tyr Cys 60 Ser Glu Ile Ile Ala 140 Arg	Ser Thr 45 Ser Ala Glu Ala 125 Leu Val	Thr 30 Asn Asp Leu Gln Leu 110 Lys Lys Leu	15 Ile Val Gly Arg Ile 95 Gly Thr Lys Ala	Thr Phe Pro Glu 80 Val Ile Thr Thr 160

-continued

											-	con	tin	ued	
Ile	Asn	Lys	Asn 180	Lys	Суз	Yab	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Cys	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Сүз	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Сув	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Суз	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Суз	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340		Asn	Val	Ala	Glu 345	Gln	Ser	Гүз	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	P ro 360	Сув	Гуз	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Суз
Tyr 385	Lys	Gly	Val	Ser	Суз 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lуз 405	Gly	Суя	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Гλа	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Aab	Pro
Ile	Lys 450	Phe	Pro	Glu	Asn	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<21()> SH	50 II	D NO	93											
	L> LH			39											
	2> TY 3> OF			Art	ific:	ial :	Seque	ence							
)> FI						_								
<223	s> 0:	THER	TNE	ORMA.	TION	: Syi	nthet	:10 I	ютуј	pept	lde				

<400> SEQUENCE: 93

Met 1	Ser	Trp	ГЛа	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Сув	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Сүз 60	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Aab	Leu	Leu	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Гла	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Гуз	ГАа	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Гуа	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Гуз	Asn 180	Гла	Сув	Asp	Ile	Asp 185	Asp	Leu	Гүз	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Гуз	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Гуз	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Суя	Trp	Ile 285	Val	ГЛа	Ala
Ala	Pro 290	Ser	Суз	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Сув	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Сув	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	ГЛа	Asp 325	Суз	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Суа 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Суя 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Суз	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	Lys	Gly	Val	Ser	Сув 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
ГЛа	Gln	Leu	Asn	Lys 405	Gly	Суз	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile	Asp	Asn	Thr	Val	Tyr	Gln	Leu	Ser	Lys	Val	Glu	Gly

												con	C I III	uea	
_	_	_	420	_	_	_	_	425	_	_	_	_	430	_	_
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<211 <212 <213 <220	L> LH 2> TY 3> OH 0> FH	EATUR	H: 5: PRT ISM: RE:	39 Art:		ial : : Syn	-		901уј	pept:	ide				
<400)> SI	EQUER	1CE :	94											
Met 1	Ser	Trp	ГЛа	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Суз	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Leu 55	Glu	Asn	Leu	Thr	60 СУв	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Гла	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Aab	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	-	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Гла	Суз	Aap	Ile	Asp 185	Asp	Leu	Гуз	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225		Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235		Ser	Ala	Gly	Gln 240

Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe

												con	tin	ued	
				245					250					255	
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Суя	Trp	Ile 285	Val	Гла	Ala
Ala	Pro 290	Ser	Сүз	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Сув	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Суз	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	ГАа	Азр 325	Суз	Glu	Thr	Arg	Gly 330	Aap	His	Val	Phe	СУа 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Суя 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Сув	Гуз	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	Lys	Gly	Val	Ser	Cys 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Гуа	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	гуз	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	11e 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Гла	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<213 <213 <213 <223	1 > L) 2 > T 3 > O) 0 > F)	EATU	H: 5: PRT ISM: RE:	39 Art:		ial : : Syn	_		Polyj	pept:	ide				
<40	0 > SI	equei	ICE :	95											
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lуз 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Суз	Ser	Thr 30	Ile	Thr
Glu	Gly	Туг 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Суз 60	Ser	Asp	Gly	Pro
Ser		Ile	Lys	Thr	Glu		Asp	Leu	Thr	Lys	Ser	Ala	Leu	Arg	Glu

639

-continued

													C 111		
65					70					75					80
Leu	Lys	Thr	Val	Ser 85	Ala	Aab	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100		Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120		Val	Ala	Ile	Ala 125	Lуs	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165		Asp	Phe	Val	Leu 170		Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180		Сув	Asp	Ile	Asp 185	Asp	Leu	Lys		Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230		Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Гуз	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Гуа	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Суз	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Сүз	Ser	Glu	Lys 295	ГЛа	Gly	Asn	Tyr	Ala 300	Cys	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310		Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Гуз	Asp 325		Glu	Thr	Arg	Gly 330	Aap	His	Val	Phe	Суз 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Суя 350	Asn	Ile
Asn	Ile	Ser 355	Thr			-	Pro 360	Суз	-				Gly	Arg	His
Pro	Ile 370			_	_		Ser			_	_		_	Ala	Сув
Tyr 385		Gly	Val	Ser	Cys 390		Ile	Gly	Ser	Asn 395		Val	Gly	Ile	Ile 400
	Gln	Leu	Asn	Lys 405		Cys	Ser	Tyr	Ile 410		Asn	Gln	Asp	Ala 415	
Thr	Val	Thr			Asn	Thr	Val	-		Leu	Ser	Lys			Gly
Glu	Gln		420 Val	Ile	Гуз	Gly	Arg	425 Pro	Val	Ser	Ser		430 Phe	Asp	Pro
Ile	Lys	435 Phe	Pro	Glu	Asp	Gln	440 Phe	Gln	Val	Ala	Leu	445 Asp	Gln	Val	Phe
Glu	450 Asn	Ile	Glu	Asn	Ser	455 Gln	Ala	Leu	Val	Aso	460 Gln	Ser	Asn	Ara	Ile
465					470					475				-	480
Leu	Ser	ser	AIa	485	цув	GIÝ	Asn	Inr	490	Pne	тте	ITé	var	11e 495	ITe

640

-continued

Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser515520525 Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 96 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 96 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro 50 55 60 Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu 65 70 75 80 Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val Ala Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Trp Arg Ala Ile Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser 180 185 190 Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr 305 310 315 320

Pro As	n Glu	Lys	Asp 325	Cys	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Cys 335	Asp
Thr Al	a Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn Il	e Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Сүв	Гуз	Val	Ser	Thr 365	Gly	Arg	His
Pro Il 37		Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Сув
Tyr Ly 385	s Gly	Val	Ser	Cys 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys Gl	n Leu	Asn	Lys 405	Gly	Суя	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr Va	l Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Гуз	Val 430	Glu	Gly
Glu Gl	n His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile Ly 45		Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu As 465	n Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu Se	r Ser	Ala	Glu 485	Гла	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu Il	e Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile Il	e Lys 515	Lys	Thr	гла	Гла	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly Va 53		Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<210> <211> <212> <213> <220> <223>	LENGT TYPE : ORGAN FEATU	H: 5 PRT ISM: RE:	39 Art:			_		9 0 1y	pept:	iđe				
<400>	SEQUE	NCE :	97											
Met Se 1	r Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His Gl	y Leu	Lуя 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Сүз	Ser	Thr 30	Ile	Thr
Glu Gl	y Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr Le 50		Val	Gly	Asp	Leu 55	Glu	Asn	Leu	Thr	Cys 60	Ser	Asp	Gly	Pro
Ser Le			m la sa	Glu	Leu	Asp	Leu	Leu	Lys	Ser	Ala	Leu	Arg	
65	u iie	гла	Inr	70		-			75					80
		-		70		-		Ala 90		Glu	Glu	Gln	Ile 95	
65	s Thr	Val	Ser 85	70 Ala	Asp	Gln	Leu	90	Arg				95	Glu
65 Leu Ly	s Thr o Gly	Val Ser 100	Ser 85 Gly	70 Ala Ser	Asp Phe	Gln Val	Leu Leu 105	90 Gly	Arg Ala	Ile	Ala	Leu 110	95 Gly	Glu Val

646

-continued

Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Leu 170	Lys	Asn	Leu	Trp	Arg 175	Ala
Ile	Asn	Гуз	Asn 180	Гүз	Сув	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Сув	Trp	Ile 285	Val	ГЛа	Ala
Ala	Pro 290	Ser	Суз	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Суз	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Сув	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	гүз	Asp 325	Cys	Glu	Thr	Arg	Gly 330	Aab	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Суз	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Сув
Tyr 385	Lys	Gly	Val	Ser	Cys 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
ГЛа	Gln	Leu	Asn	Lys 405	Gly	Сув	Ser	Tyr	11e 410	Thr	Asn	Gln	Asp	Ala 415	Aap
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Гла	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	ГАа	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					

<210> SEQ ID NO 98 <211> LENGTH: 539

647

-continued

<21	2> TY 3> OH 2> FH	RGAN:	ISM:	Art	ific:	ial :	Seque	ence										
				ORMA	TION	: Syı	nthe	tic 1	Poly	pept	ide							
<40)> SI	ZQUEI	ICE :	98														
Met 1	Ser	Trp	ГЛа	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln			
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Сүз	Ser	Thr 30	Ile	Thr			
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe			
Thr	Leu 50	Pro	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Cys 60	Ser	Asp	Gly	Pro			
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80			
Leu	Гув	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu			
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val			
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile			
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr			
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160			
Ala	Val	Arg	Glu	Leu 165	Lys	Asp	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala			
Ile	Asn	Lys	Asn 180	Lys	Cys	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser			
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser			
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp			
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240			
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe			
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln			
Leu	Pro	11e 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Сув	Trp	Ile 285	Val	гуа	Ala			
Ala	Pro 290	Ser	Сүз	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Cys	Leu	Leu	Arg			
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Суа	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320			
Pro	Asn	Glu	Гүз	Asp 325	Сув	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp			
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Гуз	Glu	Cys 350	Asn	Ile			
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His			
Pro	Ile 370		Met	Val	Ala	Leu 375		Pro	Leu	Gly	Ala 380		Val	Ala	Сув			
	570					515					900							

650

Tyr 385	Lys	Gly	Val	Ser	Cys 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Гуз	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	ГЛа	Thr	Lys	Гла	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<211 <212 <213 <220	L> LH 2> T 3> OH 0> FH	CATU	H: 5: PRT ISM: RE:	39 Art:	ific: TION		_		201y	pept:	lde				
<400)> SI	equer	ICE :	99											
Met 1	Ser	Trp	Lys	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lуз 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Сүз	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Суз 60	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Lys	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Гла	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Aab	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	Cys	Asp	Ile	Pro 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser

Asp As 2	3n 10	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala G 225	lu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile Ly	ys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly I	le	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu Pi		11e 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Сув	Trp	Ile 285	Val	Lys	Ala
Ala Pr 29	ro 90	Ser	Cys	Ser	Glu	Lys 295	Lys	Gly	Asn	Tyr	Ala 300	Суз	Leu	Leu	Arg
Glu A: 305	ab	Gln	Gly	Trp	Tyr 310	Cys	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro As	sn	Glu	Lys	Asp 325	Сув	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Авр
Thr A	la	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	ГЛа	Glu	Сув 350	Asn	Ile
Asn II		Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Суз	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro II 3	le 70	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Сув
Tyr Ly 385	γs	Gly	Val	Ser	Сув 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys G	ln	Leu	Asn	Lys 405	Gly	Сув	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	deV
Thr Va	al	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu G		His 435	Val	Ile	Гλа	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile L ₃ 49	78 50	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu As 465	₹n	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu Se	∍r	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu I	le	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile I		Lys 515	Lya	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly Va 5:	al 30	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<210><211><211><212><213><220><223>	LE TY OR FE OT	NGTH PE: GANJ ATUP HER	I: 53 PRT SM: RE: INFO	39 Art: DRMA			-		Poly	pept:	ide				
<400> Met Se				Val	Val	Ile	Ile	Phe		Leu	Leu	Ile	Thr		Gln
1 His G	ly	Leu	-	5 Glu	Ser	Tyr	Leu		10 Glu	Ser	Суз	Ser		15 Ile	Thr
			20					25					30		

-continued

Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Cys 60	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Гλа	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Гуз	Thr	Val	Ser 85	Ala	Asp	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser 100	Gly	Ser	Phe	Val	Leu 105	Gly	Ala	Ile	Ala	Leu 110	Gly	Val
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Lys	Lys	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Lys	Yab	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	Lys	Cys	Pro	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Суя	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Суа	Ser	Glu	Lys 295	ГЛа	Gly	Asn	Tyr	Ala 300	Суз	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Суа	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	T yr 320
Pro	Asn	Glu	Lys	Asp 325	Сув	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Гуз	Glu	Cys 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Суз	Гуз	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	Гла	Gly	Val	Ser	Cys 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	Суя	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420		Asn	Thr	Val	Tyr 425		Leu	Ser	Гуа	Val 430		Gly
Glu	Gln			Ile	Lys	Gly	-		Val	Ser	Ser			Asp	Pro
Ile	Lys	435 Phe	Pro	Glu	Asp	Gln	440 Phe	Gln	Val	Ala	Leu	445 Asp	Gln	Val	Phe

-continued

Glu Asn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile Leu Ser Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn <210> SEQ ID NO 101 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 101 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr 20 25 30 Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr Asn Val Phe Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile Arg Leu Pro Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Thr Arg Ala Ile Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala

657

-continued

											-	con	tin	ued	
		275					280					285			
Ala	Pro 290	Ser	Суз	Ser	Glu	Lys 295	ГЛЗ	Gly	Asn	Tyr	Ala 300	Суз	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Суа	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Гүз	Asp 325	Суз	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340		Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Суз 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Суз	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Суз
Tyr 385	Гла	Gly	Val	Ser	Сув 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
ГЛЗ	Gln	Leu	Asn	Lys 405	Gly	Сув	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420		Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lув 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500		Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Гуз	Гуз	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<21: <21: <21: <22: <22:	<210> SEQ ID NO 102 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide														
<40)> SH	QUE	NCE:	102											
Met 1	Ser	Trp	ГАа	Val 5	Val	Ile	Ile	Phe	Ser 10	Leu	Leu	Ile	Thr	Pro 15	Gln
His	Gly	Leu	Lys 20	Glu	Ser	Tyr	Leu	Glu 25	Glu	Ser	Cys	Ser	Thr 30	Ile	Thr
Glu	Gly	Tyr 35	Leu	Ser	Val	Leu	Arg 40	Thr	Gly	Trp	Tyr	Thr 45	Asn	Val	Phe
Thr	Leu 50	Glu	Val	Gly	Asp	Val 55	Glu	Asn	Leu	Thr	Cys 60	Ser	Asp	Gly	Pro
Ser 65	Leu	Ile	Гүз	Thr	Glu 70	Leu	Asp	Leu	Thr	Lys 75	Ser	Ala	Leu	Arg	Glu 80
Leu	Lys	Thr	Val	Ser 85	Ala	Yab	Gln	Leu	Ala 90	Arg	Glu	Glu	Gln	Ile 95	Glu
Asn	Pro	Gly	Ser	Gly	Ser	Phe	Val	Leu	Gly	Ala	Ile	Ala	Leu	Gly	Val

659

-continued

660

												con	tin	ued	
			100					105					110		
Ala	Ala	Ala 115	Ala	Ala	Val	Thr	Ala 120	Gly	Val	Ala	Ile	Ala 125	Lys	Thr	Ile
Arg	Leu 130	Glu	Ser	Glu	Val	Thr 135	Ala	Ile	Asn	Asn	Ala 140	Leu	Гуз	Гλа	Thr
Asn 145	Glu	Ala	Val	Ser	Thr 150	Leu	Gly	Asn	Gly	Val 155	Arg	Val	Leu	Ala	Thr 160
Ala	Val	Arg	Glu	Leu 165	Гла	Aab	Phe	Val	Ser 170	Lys	Asn	Leu	Thr	Arg 175	Ala
Ile	Asn	Lys	Asn 180	ГЛа	Суз	Yab	Ile	Asp 185	Asp	Leu	ГЛа	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	Gly 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Суз	Trp	Ile 285	Val	Гλа	Ala
Ala	Pro 290	Ser	САа	Ser	Glu	Lys 295	ГÀа	Gly	Asn	Tyr	Ala 300	Суз	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Cys	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	ГЛа	Asp 325	Cys	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Сув 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Суз	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	Гуз	Gly	Val	Ser	Сув 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Гүз	Gln	Leu	Asn	Lys 405	Gly	Суя	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Гла	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Pro	Pro
Ile	Lys 450	Phe	Pro	Glu	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515		Thr	Гуз	Гуз	Pro 520		Gly	Ala	Pro	Pro 525		Leu	Ser
							120					565			

Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn

<210> SEQ ID NO 103 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide <400> SEQUENCE: 103 Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr20 25 30Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr As
n Val Phe $_{35}$ 40 $_{45}$ Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu 65 70 75 80 Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val 100 105 110 Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Thr Arg Ala Ile Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser Phe Ser Gln Phe Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gl
n260 265 270Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr Pro Asn Glu Lys Asp Cys Glu Thr Arg Gly Asp His Val Phe Cys Asp Thr Ala Ala Gly Ile Asn Val Ala Glu Gln Ser Lys Glu Cys Asn Ile

Asn															
	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Cys	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Суз
Tyr 385	Гла	Gly	Val	Ser	Сув 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Lys	Gln	Leu	Asn	Lys 405	Gly	Cys	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	Lys	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Asp	Pro
Ile	Lys 450	Phe	Pro	Glu	Asn	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	Ile 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lуя 515	Гла	Thr	Гла	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<211		INGTI	D NO H: 53												
<213 <220	3> 01)> FI	RGAN: CATUR	ISM: RE:			ial Syr	-		Polyp	pept:	ide				
<213 <220 <223	3> OF D> FF 3> OT	RGANI SATUR THER	ISM: RE:	ORMA:			-		olyp?	pept:	ide				
<213 <220 <223 <400	3> 01 0> FI 3> 01 3> 01	RGANI EATUR THER EQUER	ISM: RE: INFO NCE:	ORMA: 104	rion :		nthet	ic I		-		Ile	Thr	Pro 15	Gln
<213 <220 <223 <400 Met 1	3> 01 D> FI 3> 07 D> SI Ser	RGANI EATUR THER SQUER Trp	ISM: RE: INF(NCE: Lys	DRMA 104 Val 5	rion Val	: Sүт	Ile	ic I Phe	Ser 10	Leu	Leu			15	
<213 <220 <223 <400 Met 1 His	3> OF D> FF 3> O D> SF Ser Gly	GAN: SATUF THER SQUEN Trp Leu	ISM: RE: INF(NCE: Lys Lys 20	DRMA: 104 Val 5 Glu	Val Ser	: Syı Ile	Ile Leu	Phe Glu 25	Ser 10 Glu	Leu Ser	Leu Cys	Ser	Thr 30	15 Ile	Thr
<21: <22: <22: <400 Met 1 His Glu	3> OF D> FI 3> O D> SF Ser Gly Gly	GAN: EATUR THER SQUER Trp Leu Tyr 35	ISM: RE: INFO NCE: Lys 20 Leu	DRMA 104 Val 5 Glu Ser	Val Ser Val	: Syr Ile Tyr	Ile Leu Arg 40	Phe Glu 25 Thr	Ser 10 Glu Gly	Leu Ser Trp	Leu Cys Tyr	Ser Thr 45	Thr 30 Asn	15 Ile Val	Thr Phe
<213 <220 <223 <400 Met 1 His Glu Thr	3> OF 3> OF 3> O 5 5 5 5 5 5 5 5 5 5 5 5 5	GAN: SATUR THER SQUEN Trp Leu Tyr 35 Glu	ISM: RE: INFO NCE: Lys 20 Leu Val	DRMA 104 Val 5 Glu Ser Gly	Val Ser Val Asp	: Syr Ile Tyr Leu Val	Ile Leu Arg 40 Glu	Phe Glu 25 Thr Asn	Ser 10 Glu Gly Leu	Leu Ser Trp Thr	Leu Cys Tyr Cys 60	Ser Thr 45 Ser	Thr 30 Asn Asp	15 Ile Val Gly	Thr Phe Pro
<211 <220 <222 <400 Met 1 His Glu Thr Ser 65	3> OF D> FH 3> O D> SF Ser Gly Gly Leu Leu	RGAN: EATUR THER SQUEN Trp Leu Tyr 35 Glu Ile	ISM: RE: INFC ICE: Lys Lys Lys Leu Val	DRMA: 104 Val 5 Glu Ser Gly Thr	Val Ser Val Asp Glu 70	: Syr Ile Tyr Leu Val 55	Ile Leu Arg 40 Glu Asp	Phe Glu 25 Thr Asn Leu	Ser 10 Glu Gly Leu Thr	Leu Ser Trp Thr Lys 75	Leu Cys Tyr Cys 60 Ser	Ser Thr 45 Ser Ala	Thr 30 Asn Asp Leu	15 Ile Val Gly Arg	Thr Phe Pro Glu 80
<211 <222 <222 <400 Met 1 His Glu Thr Ser 65 Leu	3> OF D> FF 3> O D> SF Ser Gly Gly Leu Leu Lys	RGANI SATUF FHER GQUEN Trp Leu Tyr 35 Glu Ile Thr	ISM:: RE: INFC VCE: Lys 20 Leu Val Lys Val	DRMA: 104 Val 5 Glu Ser Gly Thr Ser 85	Val Ser Val Asp Glu 70 Ala	: Syn Ile Tyr Leu Val 55 Leu	Ile Leu Arg 40 Glu Asp Gln	cic I Phe Glu 25 Thr Asn Leu Leu	Ser 10 Glu Gly Leu Thr Ala 90	Leu Ser Trp Thr Lys 75 Arg	Leu Cys Tyr Cys 60 Ser Glu	Ser Thr 45 Ser Ala Glu	Thr 30 Asn Asp Leu Gln	15 Ile Val Gly Arg Ile 95	Thr Phe Pro Glu 80 Glu
<211 <222 <222 <400 Met 1 His Glu Thr Ser 65 Leu Asn	3> OF D> FF 3> OT Ser Gly Gly Leu Leu Lys Pro	RGAN: EATUR THER SQUEN Trp Leu Tyr 35 Glu Ile Thr Gly	ISM:: RE: INFC NCE: Lys 20 Leu Val Lys Val Ser 100	DRMA: 104 Val 5 Glu Ser Gly Thr Ser 85 Gly	Val Ser Val Asp Glu 70 Ala Ser	: Syn Ile Tyr Leu Val 55 Leu Asp	Ile Leu Arg 40 Glu Asp Gln Val	Lic I Phe Glu 25 Thr Asn Leu Leu Leu	Ser 10 Glu Gly Leu Thr Ala 90 Gly	Leu Ser Trp Thr Lys 75 Arg Ala	Leu Cys Tyr Cys 60 Ser Glu Ile	Ser Thr 45 Ser Ala Glu Ala	Thr 30 Asn Asp Leu Gln Leu 110	15 Ile Val Gly Arg Jle 95 Gly	Thr Phe Pro Glu 80 Glu Val
<211 <222 <222 <400 Met 1 His Glu Thr Glu Thr Ser 65 Leu Asn Ala	3> OF D> FF 3> OT Ser Gly Gly Leu Leu Lys Pro Ala	AGAN: SATUR THER SQUEN Trp Leu Tyr 35 Glu Ile Thr Gly Ala 115	ISM:: RE: INFC VCE: Lys Lys Leu Val Lys Val Ser 100 Ala	DRMA: 104 Val 5 Glu Ser Gly Thr Ser 85 Gly Ala	Val Ser Val Asp Glu 70 Ala Ser Val	: Syn Ile Tyr Leu Val 55 Leu Asp Phe	Ile Leu Arg 40 Glu Asp Gln Val Ala 120	Cic I Phe Glu 25 Thr Leu Leu Leu 105 Gly	Ser 10 Glu Gly Leu Thr Ala 90 Gly Val	Leu Ser Trp Thr Lys 75 Arg Ala	Leu Cys Tyr Cys 60 Ser Glu Ile	Ser Thr 45 Ser Ala Glu Ala Ala 125	Thr 30 Asn Asp Leu Gln Leu 110 Lys	15 Ile Val Gly Arg Jle 95 Gly Thr	Thr Phe Pro Glu 80 Glu Val Ile
<211 <222 <222 <400 Met 1 His Glu Thr Ser 65 Leu Asn Ala Arg	3> OF D> FF 3> OT Ser Gly Gly Leu Lys Pro Ala Leu 130	AGAN: SATUR CHER SQUEN Trp Leu Tyr 35 Glu Ile Thr Gly Ala 115 Glu	ISM: RE: INFC NCE: Lys 20 Leu Val Lys Val Ser 100 Ala Ser	DRMA: 104 Val 5 Glu Ser Gly Thr Ser 85 Gly Ala Glu	Val Ser Val Asp Glu 70 Ala Ser Val Val	: Syn Ile Tyr Leu Val 55 Leu Asp Phe Thr	Ile Leu Arg 40 Glu Asp Gln Val Ala 120 Ala	Cic I Phe Glu 25 Thr Asn Leu Leu 105 Gly Ile	Ser 10 Glu Gly Leu Thr Ala 90 Gly Val Asn	Leu Ser Trp Thr Lys 75 Arg Ala Ala Asn	Leu Cys Tyr Cys 60 Ser Glu Ile Ile Ala	Ser Thr 45 Ser Ala Glu Ala 125 Leu	Thr 30 Asn Asp Leu Gln Leu 110 Lys Lys	15 Ile Val Gly Arg 95 Gly Thr Lys	Thr Phe Pro Glu 80 Glu Val Ile Thr

661	
004	

-continued

Ile	Asn	Lys	Asn 180	Гуз	Суз	Asp	Ile	Asp 185	Asp	Leu	Lys	Met	Ala 190	Val	Ser
Phe	Ser	Gln 195	Phe	Asn	Arg	Arg	Phe 200	Leu	Asn	Val	Val	Arg 205	Gln	Phe	Ser
Asp	Asn 210	Ala	Gly	Ile	Thr	Pro 215	Ala	Ile	Ser	Leu	Asp 220	Leu	Met	Thr	Asp
Ala 225	Glu	Leu	Ala	Arg	Ala 230	Val	Pro	Asn	Met	Pro 235	Thr	Ser	Ala	Gly	Gln 240
Ile	Lys	Leu	Met	Leu 245	Glu	Asn	Arg	Ala	Met 250	Val	Arg	Arg	Lys	G1y 255	Phe
Gly	Ile	Leu	Ile 260	Gly	Val	Tyr	Gly	Ser 265	Ser	Val	Ile	Tyr	Met 270	Val	Gln
Leu	Pro	Ile 275	Phe	Gly	Val	Ile	Asp 280	Thr	Pro	Сув	Trp	Ile 285	Val	Lys	Ala
Ala	Pro 290	Ser	Сүз	Ser	Glu	Lys 295	Гла	Gly	Asn	Tyr	Ala 300	Сув	Leu	Leu	Arg
Glu 305	Asp	Gln	Gly	Trp	Tyr 310	Сув	Gln	Asn	Ala	Gly 315	Ser	Thr	Val	Tyr	Tyr 320
Pro	Asn	Glu	Lys	Asp 325	Cys	Glu	Thr	Arg	Gly 330	Asp	His	Val	Phe	Cys 335	Asp
Thr	Ala	Ala	Gly 340	Ile	Asn	Val	Ala	Glu 345	Gln	Ser	Lys	Glu	Сув 350	Asn	Ile
Asn	Ile	Ser 355	Thr	Thr	Asn	Tyr	Pro 360	Сүз	Lys	Val	Ser	Thr 365	Gly	Arg	His
Pro	Ile 370	Ser	Met	Val	Ala	Leu 375	Ser	Pro	Leu	Gly	Ala 380	Leu	Val	Ala	Cys
Tyr 385	Lys	Gly	Val	Ser	Суя 390	Ser	Ile	Gly	Ser	Asn 395	Arg	Val	Gly	Ile	Ile 400
Гуз	Gln	Leu	Asn	Lys 405	Gly	Сүз	Ser	Tyr	Ile 410	Thr	Asn	Gln	Asp	Ala 415	Asp
Thr	Val	Thr	Ile 420	Asp	Asn	Thr	Val	Tyr 425	Gln	Leu	Ser	гда	Val 430	Glu	Gly
Glu	Gln	His 435	Val	Ile	Lys	Gly	Arg 440	Pro	Val	Ser	Ser	Ser 445	Phe	Aab	Pro
Ile	Lys 450	Phe	Pro	Gln	Asp	Gln 455	Phe	Gln	Val	Ala	Leu 460	Asp	Gln	Val	Phe
Glu 465	Asn	Ile	Glu	Asn	Ser 470	Gln	Ala	Leu	Val	Asp 475	Gln	Ser	Asn	Arg	Ile 480
Leu	Ser	Ser	Ala	Glu 485	Lys	Gly	Asn	Thr	Gly 490	Phe	Ile	Ile	Val	11e 495	Ile
Leu	Ile	Ala	Val 500	Leu	Gly	Ser	Ser	Met 505	Ile	Leu	Val	Ser	Ile 510	Phe	Ile
Ile	Ile	Lys 515	Lys	Thr	Lys	Lys	Pro 520	Thr	Gly	Ala	Pro	Pro 525	Glu	Leu	Ser
Gly	Val 530	Thr	Asn	Asn	Gly	Phe 535	Ile	Pro	His	Asn					
<21 <21 <21 <22	<210> SEQ ID NO 105 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polypeptide														

-continued

Met Ser Trp Lys Val Val Ile Ile Phe Ser Leu Leu Ile Thr Pro Gln His Gly Leu Lys Glu Ser Tyr Leu Glu Glu Ser Cys Ser Thr Ile Thr 20 25 30 Glu Gly Tyr Leu Ser Val Leu Arg Thr Gly Trp Tyr Thr As
n Val Phe $_{35}$ 40 $_{45}$ Thr Leu Glu Val Gly Asp Val Glu Asn Leu Thr Cys Ser Asp Gly Pro Ser Leu Ile Lys Thr Glu Leu Asp Leu Thr Lys Ser Ala Leu Arg Glu 65 70 75 80 Leu Lys Thr Val Ser Ala Asp Gln Leu Ala Arg Glu Glu Gln Ile Glu 85 90 95 Asn Pro Gly Ser Gly Ser Phe Val Leu Gly Ala Ile Ala Leu Gly Val 100 105 110 Ala Ala Ala Ala Val Thr Ala Gly Val Ala Ile Ala Lys Thr Ile Arg Leu Glu Ser Glu Val Thr Ala Ile Asn Asn Ala Leu Lys Lys Thr130135140 Asn Glu Ala Val Ser Thr Leu Gly Asn Gly Val Arg Val Leu Ala Thr Ala Val Arg Glu Leu Lys Asp Phe Val Ser Lys Asn Leu Thr Arg Ala Ile Asn Lys Asn Lys Cys Asp Ile Asp Asp Leu Lys Met Ala Val Ser Phe Ser Gln Trp Asn Arg Arg Phe Leu Asn Val Val Arg Gln Phe Ser Asp Asn Ala Gly Ile Thr Pro Ala Ile Ser Leu Asp Leu Met Thr Asp Ala Glu Leu Ala Arg Ala Val Pro Asn Met Pro Thr Ser Ala Gly Gln Ile Lys Leu Met Leu Glu Asn Arg Ala Met Val Arg Arg Lys Gly Phe Gly Ile Leu Ile Gly Val Tyr Gly Ser Ser Val Ile Tyr Met Val Gln Leu Pro Ile Phe Gly Val Ile Asp Thr Pro Cys Trp Ile Val Lys Ala 275 280 285 Ala Pro Ser Cys Ser Glu Lys Lys Gly Asn Tyr Ala Cys Leu Leu Arg
 Glu Asp Gln Gly Trp Tyr Cys Gln Asn Ala Gly Ser Thr Val Tyr Tyr

 305
 310
 315
 320
 Pro Asn Glu Lys Asp Cys Glu Thr Arg Gly Asp His Val Phe Cys Asp 325 330 335 Thr Ala Ala Gly Ile Asn Val Ala Glu Gln Ser Lys Glu Cys Asn Ile Asn Ile Ser Thr Thr Asn Tyr Pro Cys Lys Val Ser Thr Gly Arg His Pro Ile Ser Met Val Ala Leu Ser Pro Leu Gly Ala Leu Val Ala Cys Tyr Lys Gly Val Ser Cys Ser Ile Gly Ser Asn Arg Val Gly Ile Ile Lys Gln Leu Asn Lys Gly Cys Ser Tyr Ile Thr Asn Gln Asp Ala Asp

gagagetacetegagaggteetgagaggteetgagaggteetgatggegaccggetggtacaccaacgtgttcacactggaagtgggggacgteggaatetgataggetetgatggeeetagetggaaetagetggegagatgggggagateggagaetagagaggggeagettttetgatggeetetgetgggageagatggggegagateggagaetagagaggggeagettttetgetgggageetagetggeeagatgggagaetagetggegagateggagaetagagaggggegtggeeatetgetgggageetagetggeeaetegagaggetagetggeeaetagaagagetagaagagageegtgegegagetgaggeetagetggeeaetegagagaetagagaggetagaagagaetagaagagageegtgegegagetgaggeetegagagageteggeggeaetagaagagaetagaagagaetagaagagageegtgegegagetgaggeetegagagageteggeggeaetagaagagaetagaagagaetagaagagagagtgggacategacgacetgaagatggeegtteedgagaaetagagagaetagaagagaetagaagagaaagtgegacategacgacetgaagaggacaetagacgeegeeggeggeaetagaagagaetagaagagaatcaagetgtegacgacetgeeggagagaetageeggeaetageeggeafeetgaagaetegacgacageeggeggagageeggeggagaagaeedgeafeetgaagaetegacgaegeeggagagageeggeagaetageeggeafeetgaagaegeeggeagategeggeagageeggeagaeageeggeagafeetgaagaegeeggeagageeggeagageeggeagaeageeggeagafeetgaagae </th <th>-continued</th> <th></th>	-continued	
43544044511e Lyg Phe Pro Glu Amp Gln Fhe Gln Val Ala Leu Amp Gln Val Phe 455455Glu Amn Ile Glu Am Ser Gln Ala Leu Val Amp Gln Ser Amn Arg Tle 470475Leu Ser Ser Ala Glu Lyg Gly Am Thr Gly Phe Ile Ile Val Ile Ile 485485Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Fhe Ile 500505Ile Ile Lyg Lyg Thr Lyg Lyp Pro Thr Gly Ala Pro Pro Glu Leu Ser 510525Gly Val Thr Am Am Gly Phe Ile Pro His Am 530525<210> SEQ ID NO 106 <112> THE INNONATION: Synthetic Polynucleotide486<400> SEQUENCE: 106343gagtggad aggtggtcat catcatcage ctgetgatca cacctcagea eggectgaaa accagedegg tacaccaacgt gtcacacca gagaggaga cagtegagaa tetggaaga ggagagtac etggaagagt catgacegag etggaagaga eggecagag etgetgagaa cteaagaceg gtcaccaca cteggeagag tgacegeca cacacaacge ggeagetttt gtgetgagag ettegtytee agaacegag etggaegaa teetggeaga ggeagagaga caaccaacge gtcacacac eteggeagag tgacegeac acacaacage ggeagagaga caacagagge egteagaca eteggeaga ggeagagaga caacagagge egteagaca eteggeagag ggeagagaga caacagagge egteagaaa caacagaege ggeagagaga caacagagge egteagaca eteggeagag tgacegeac acacaacage ggeagagaga caacagagge egteagaca eteggeagaga tageegeact egaegagae tegaagaga caacagagge egteagaca eteggeaga tgacegeac eageetgga geetgaagag caacagagge egteagaac geeggaaa tageetggea effect tagagtegga atgetgaga ttegtytee agaacegag aggeetagag eageetggae tegaagagg aggeetagag atgaggee gtgeedaaca tgeeetggae tegaagagg aggeetagaga taggeegeat geeggaaga aggeetggae tegaaggee aggeeggag aggeegaaga gagaggagae aggeeggaga tegaaggee tgeagace tgeagacea eteggeagag tgeeggeegaa tageeggeegaaga tgeeggeed tgeeggeegaa tegaaggeeggeegaaga tegaeggeegaaga tegaeggeegaaga tegaaggeeggeeggeegaeggeeggaaga tagaegeegaaga tegaaggeeggeeggeeggeeggeegaeggeegg		
450 455 460 Liu Aen Ile Glu Aen Ser Gln Ala Leu Val Aep Gln Ser Aen Arg Ile 470 475 475 Leu Ser Ser Ala Glu Lya Gly Aen Thr Gly Phe Ile Ile Val Ile Ile 485 490 Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile 500 510 Solo 112 Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser 510 Solo 122 TPRE ILENTH: 1617 2212> TPRE IDNA 2213> ORGANISM: Artificial Sequence 2200 FEATURE: 2223> ORHER INFORMATION: Synthetic Polynucleotide 4000> SEQUENCE: 106 4000> SEQ		
Giu Amn Ile Giu Amn Ser Gin Ala Leu Val Amp Gin Ser Amn Arg Ile 465 470 475 475 485 495 485 495 485 495 485 495 495 495 495 495 495 495 495 495 49		
Leu Ser Ser Ala Glu Lya Gly Am Thr Gly Phe Ile Ile Val Ile Ile 485 Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Phe Ile 500 Solo Sec Ile Val Thr Lys Lye Pho Thr Gly Ala Pro Pro Glu Leu Ser 510 Solo Sec Ile No 106 42115 LENGTH: 1617 42125 TPE: DNA 42135 ORGANISM: Artificial Sequence 42005 FEATURE: 42235 OTHER INFORMATION: Synthetic Polynucleotide 44005 SECUENCE: 106 atgaggtgg aggtggtcat catcttcage etgeageae atcacagag gracety etgeageae 44005 SECUENCE: 106 acceggetggt acaceaecyt giteaceety gaagiggge acgtegagae teggaegae 4226 grading acgueres at a segaegae at a segaegae at a segaegae a segaegaegae a segaegaegae a segaegaegae a segaegae a segaegae a segaegae a segaegaegae a segaegaegae a segaegaegae a segaegae a segaegaegae a segaegae a segaegaegae a segaegaegae a segaegaegae a segaegaegae a segaegaegae	sn Ile Glu Asn Ser Gln Ala Leu Val Asp Gln Ser Asn Arg Ile	
Leu Ile Ala Val Leu Gly Ser Ser Met Ile Leu Val Ser Ile Fhe Ile 500 11 E Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser 515 520 520 520 520 520 520 520	er Ser Ala Glu Lys Gly Asn Thr Gly Phe Ile Ile Val Ile Ile	
500505510Ile Ile Lys Lys Thr Lys Lys Pro Thr Gly Ala Pro Pro Glu Leu Ser 515520Gly Val Thr Asn Asn Gly Phe Ile Pro His Asn 530535<210> SEQ ID NO 106 (211> LENGTH: 1617 (212> TYPE: DNA (212> GLY SEQUENCE: 106<220> FEATURE: (222> OTHER INFORMATION: Synthetic Polynucleotide<400> SEQUENCE: 106atgagetgga aggtggtcat catctcage ctgetgatca cacecageag getacetgte tgtgetgagaacceggetggt acaceaacgt gttcacactg gaagtggged acgteggaa tctgacageactdaagaetgg tgtgetggage cattgetctgagagetace tggaagagte ctgeageac atcacagagg getacetgte tgtgetgagactdaagaetgg tgteggeg tacaceaacgt gttcacactg gaagtggged acgtegagaa tcetgeageadetgaagage tgteggeg cattgetctgagagetace tggaagagte ctgeageac atcacagagg tedectgte tgtgetgagadetgaagetgg tgteggegag cattgetctgagagetgge tacaceaacgt gttcacactg gaagtgggeggeegtggeea tctgeagaactetgatggee getgeggage cattgetctgaggeggag t geeggaagt tggeggage cttegtgeaggeegtgegea tegaagagt ggeegaacactgaagaag a caacagagge egteageacactgaagaga geeggaget ggeegaacageegtgegea tegaagagt ggeegaacageegtgegea tegaagagt ggeegacatgeegtgegaa tggeegaet ggeegaagageegtgegaa tggeegaet ggeegaagageegtgaag agaegagag ggeegeted acacageegaga aggeegaageegtgaag agaegagag ggeegeted aggeegaagaagaega agaegagag ggeegeted agaegaega gaegagaa acgeegaageegtgegea tegaagaet ggeegaeageegtgegea tegaagaet ggeegaeageegtgegea tegaagaet ggeegaeageegtgegea tegaegaet ggeegaeagaagaega gaegegage gaeegaeagaagaega ga		
515 520 525 Gly Val Thr Asn Asn Gly Phe 11e Pro His Asn 530 535 <210> SEQ ID NO 106 <211> LENOTH: 1617 <212> TYPE DNA <212> TYPE DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <222> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 106 atgagadgaga aggtggtcat catcttcage etgetgatea caeedgag getegetgaga 12 acceggetggt acaeedaegt gttcaeetg gaagtgggeg acgtegagaa tetgaeatge 16 tetgatggee etageetgat caegaeegg etgegatega egagagaa teetgaeatge ggeggtggee attgeegga etagetggee aggagggaga tgeeggeet etageatge ggeggtggee attgeegge etagetggee agaaggaga tgeeggeet etaeeagaeg geggtggee attgeeagae etegagaee etoggeagag tgeeggeet gaeeagae tegaagaaga eaaaegagge egteageea etoggeaat geeggeet gaeeagae geggtggee attgeeagae etegagee gteegeagae etoggeaga tegegeet 42 etagaagaaga eaaaegagge egteageea etoggeaat geeggeet gaeeagaeg tgeeggeet 42 etgaagaaga eaaaegagge egteageae etoggeaat geeggeet gaeeageeg tgeeggeet 42 etgaagaaga eaaaegagge egteageae etoggeaat geeggeet gaeeageag etgeggeet 42 etgaagaaga eaaaegagge ggteagaee etoggeaat eaeeggeget 42 etgaagaaga eaaaegagge ggteagaee geeggaate aceedgee gaeaagae 54 aagtgeggae tegaegae taggegaea ggeeggaate aceedgee aggeeggee etaett tgeeggeegg etgaaegteg tgeeggeagt tagegaeaa geeggaate aceedgeeg aggeeggee 72 ateaaagteg tgeeggaa tagaegeaa ggeeggaee gteegaeegg aaggeegg eattetgtg 72 ateaaagteg geageaget gateatatg gteegaeega aaggeetgg eattetgt 76 ggeegtgtaeg geageaget gaeeagage gaeeagage eaaacaeg eeggaaae egagaagg eaattaegee 90 tgeetgetag gaagagaeea aggeeggee aaeacaega eageegga aaggeeggee eattettegg eggaeeae 84 ectaaegaag aggaeggea aaggaegg gaeeagae gaeeaegg egaeeae etofgeegeeae 72 ateaaagteg egageagae aggeeggee aaeacaegg egaeeaegge eaacaegag egaeeaegge eaacaega 122 ateaatgtgg eegaeeag gaeeagage gaeeaegge gaeeaegge gaeeaeggae 122 aageagetg eesaeeaggeegg eaaeagage gaeeaegge gaeeaeagag ggeegaeeae egeegeaeae 126 aageagetg eesaeeggeeg eaaeggeeggeegeaea egaeeggaae egaeeggaae egeegeaeae 126 aageagetg eesaeeggeeg eaaeggage gaeeaeggeegaeae egeegeaeae gaeegeegae 126	500 505 510	
530 535 <210> SEQ ID NO 106 <211> LENGTH: 1617 <212> FYPE: DNA <223> FEATURE: <222> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 106 atgagatgga aggtggtcat catcttcage ctgetgatca cacetcagea eggectgaaa 6 acceggetggt acaceaacgt gttcacactg gaagtgggeg acgtegagaa tetggeaga 26 tetgatggee etageegae etageagege aggtggega egtegagaa teetggeaga 36 ggegtggeea tetgeega eattgetet ggagtggg gagtgeggeg tgteacage 36 ggegtggeea tetgeagae eategeteg gaaagtggaga ggegtaggee tgtgeeget 46 ggegtggeg agetgaagge egteagaea deeggeaag gegtggeet eaceagagg gegteggeet 46 ggegtggea tetgeagae taggetgge gteagagea deeggeate gaagaggaac 36 ggegtggea tetgeagae taggetgge gteagaeag deeggeett 46 geegtgegea tetgeagae taggetgge gteagaeag deeggeate aceggegeet 46 ggegtggea tetgeagae taggetgge gtegeaca tegeagaeae gaagaegaaa gaagagaa acaeggege gtegeett 46 ggegtggea tetgeagae taggetggee gtegeacae geeggaate aceggegee gaaaagaga 54 gaagageaga gadgagaa taggegaeae geeggaate aceaggeegae faceagaeae geeggaate aceaggeegae faceagaeae geeggaate aceaggeegae faceagaeae geeggaatea aceaggeegae faceagaeae faceagaeae geeggaatea aceaceagae faceagaeae faceagaeae geeggegaaae agaectgga aaggeegaeae geeggeaeae aceace		
<pre><211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 106 atgagetgga aggtggtcat catettcage etgetgatea caecetcagea eggeetgaaa eggaggetaee tggaagagte etgeageace ateacagagg getaeetgte tgtgetgaga cceggetggt acaeceaget gttcaecetg gaagtgggeg acgtegagaa teetgaeage etgeagaee tggeagge etaegetggee aggagggeg acgtegagaa teetgaeage ggeagetttg tgetggeag teagetggee aggagggaea agategagaa teetggeage ggeagettg tgetgeega teagetggee agaaggggaea agategagaa teetggeage ggeagettg tgetggeag eattgetet ggaaggagaea agategagaa teetggeage ggegtggeea tetgeagae eateagaeega etggatega eaeegagaa teetgeagea etgaagaaga eaaaegagge egteageaea eteggeaga tgaeegeeat eaaeaagee etgaagaaga eaaaegagge egteageaea eteggeagaa teeggegeet tageegaeae eteggeagea egeegaatea eaeeggeeet gaaeaagae etgaagaega atgetgaget gagetagaee geeggaatea eaeeageeet eageetggee etgatgaea atgeeggeag taeggeagee gteegaeaea tgeeegaaa eaeeegeegaa aggettegg eattetgtg etgaagaeg atgetgaga taggeegetee ageeggaaa aggettegg eattetgtg etgaagaeg atgetgaga taggeegetee ageeggaaa aggettegg eattetgtg etgaagaeg atgetgagat aggeegetee ageeggaaa aggettegg eattetgtg etgaagaeg atgetgagat ggetgaege gtgeetaaea tgeeegeea eageetgge etgatgaea tegaeegeeg gaeeaegga aggetgge eattettegg eggetgeege etgatgaeag atgetgagae aggeegetee ageeggaaa aggettegg eattetgtg eggetgtaeg geageaget gaeedeaga tegeegeaga aggetgeg eattetge etgetggtaeg geageagge gaeeaegge gaeeaegga aaggettegg eattetge etgetgget gagaeggaeea aggetggta tgeegaeaeg eegeagaee eggeageae eggeegeae etgeaegaea eggeegaag agaeagagge gaeeaegge gaeeaegge etetgeaeee eggeegaae etegeagaaga aggeegeega agaeagagge aaeateaea teageaeeae eaeetegee ee etgeaagaega ecaeeggeag gaeeceat teataggeegae eaeetegae eigeegaeee eigeegaeeeeeeeeeeeeeeeee</pre>		
gagagstace tggaagagte etgeageace ateacagagg getaeetgte tgtgetgaga 12 aceggetggt acaceaaegt gtteacaetg gaagtgggeg acgtegagaa tetgaeatge 16 tetgatggee etageetgat caagaeegag etggatetga ceaagagege eetgagagaa 24 eteaagaeeg tgtetgeega teagetggee agagagggaae agategagaa teetggeage 36 ggeggggeea tetgeagae eategetet ggagtggetg etgetgeage tgttacagea 36 ggegtggeea tetgeagae eategetet ggagtggetg etgetgeage tgttacagea 36 gegetggeea tetgeagae eategaeeg gaaagegaag tgaeegeeat eaaeaaegee 42 etgaagaaga caaaegagge egteageaea eteggeaat geegtagagt geeggeet gaaeaagaae 54 aagtgegeeg agetgaagga ettegtete agaaeeetga eaegggeeet gaaeaagaae 54 aagtgegaea tegaegaeet gaagatggee gtgteetta geeageeet gaaeaagaae 54 aagtgegaea tegaegaeet gaagatggee gtgteetta geeageet eageeggett 66 etgaaegteg tgeggeagtt tagegaeaae geeggaatea caceageeat eageetggae dteaagetga tgeeggagat gaetaaae geeggaatea caceageeat eageetggae 66 etgatgaeeg ageegaget ggetagagee gtgeetaaea tgeetaeate tgeeggeeag 72 ateaagetga tgeeggaag ataggeeage gteegaegga aaggettegg eatteetgg 76 ggeegtgtaeg geageagegt gatetatatg gtgeagetge etatettegg egtgategae 84 aecaceetget ggattgtgaa ggeegeteet ageetgaee gaagaaggg eaattaegee 90 tgeetgetga gagaggaeea aggeeggtat tgeegaegg agaagaaggg eaattaegee 90 tgeetgetga gagaggaeea aggeeggtat tgeegaegg agaagaaggg eaattaegee 90 tgeetgetga gagaggaeea aggeeggta tgeegaegg eageagaeg eattaeee 106 tgeeaggag geegeagag gaaeaagagge gaeeaegtg teetgeaee caaetaeee 106 tgeeaggag eegageagg gaaeaagagtge aacateaaea teageaeeae caaetaeee 106 tgeaaggtgt eeaeeggeag geaeeetat teetaggg etgeteee teegggagee 114 etggtggett gttataagg egtgteetgt ageateggea geaeaagag ggeeateate 126 aageagetga acaagggetg cagetaeet aceaeeggea geaeaagag ggeeateat 126 aageagetga acaagggetg cagetaeeta aceaeeggea geaeaagag ggeeateate 126 aageagetga acaagggetg cagetaeeta aceaeegga ageeggaae egtageeate 126 aageagetga acaagggetg eagetaeate aceaeegga ageeggaae ageeggaae ageeggaae 126	TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Synthetic Polynucleotide	
accggctggt acaccaacgt gttcacactg gaagtgggeg acgtcgagaa tctgacatgo tctgatggcc ctagcctgat caagaccgag ctggatctga ccaagagcgc cctgagagaa 24 ctcaagaccg tgtctgccga tcagctggcc agagagggaac agatcgagaa tcctggcagc 36 ggcagctttg tgctggogac cattgctctt ggagtggctg ctgctgcagc tgttacagca 36 ggcgtgggcca tctgcaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc 42 ctgaagaaga caaccgagge cgtcagcaca ctoggcaatg gogttagagt gctggcctt 48 gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccct gaacaagaac 44 aagtgcgaca tcgacgacet gaagatggcc gtgtcctta gccagtcaa ccggcggtt 48 gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccct gaacaagaac 44 aagtgcgaca tcgacgacet gaagatggcc gtgtcctta gccagtcaa ccggcggtt 46 ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac 66 ctgatgacag atgctgagct ggctagagce gtgcctaaca tgcctacate tgccggccag 42 accacctgc ggatggaa tagagccatg gtgcgacga aaggettcgg cattctgg 42 ggcgtgtacg gcagcagegt gatctatatg gtgcagctg ctatettcgg cgtgatcgac 42 accacctgct ggatggaa aggccgctcet agctgtagcg agaagaaggg caattacgcc 42 cctaacgaga aggacggaa gacaagaggc gaccacgtgt tctgtgatac cgccgctgga 42 cctaacgaga aggactgcga gaacaagaggc gaccacgtgt tctgtgatac cgccgctgga 42 cctaacgaga aggactgcga gaacaagaggc gaccacgtgt tctgtgatac cgccgctgga 42 cctaacgaga aggactgcga gaacaagaggc gaccacgtgt tctgtgatac cgccgctgga 42 cctaacgaga aggactgcga gaccactat tctatggtgg ctctgtctcc tctgggagcc 42 accacctgct gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 42 cctggtggett gttataaggg cgtgtcctgt agcatcgga gcaacagagt gggcatcatc 42 aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 42 aagcagctga acaagggctg cagctacatc accaaccagg acccgtgat cagggccata 42 agcaacaccg tgtatcagct gagcaggtg gaaggcgaac agccgtgat cagggcgaa 42 accacctg tgtatcagct gagcaggtg gaaggcgaac agcacgtgat caagggcgaa 42 accacctga tgtatcagct gagcaggtg gaaggcgaac agcacgtgat caagggcgaa 42 accacctga tgtatcagct gagcaggtg gaaggcgaac agcacgtgat caagggcgaac 42 accacctga tgtatcagct gagcagggag gaaggcgaac agcacgtgat caagggcgaac 42 accacctga tgtatcagct gagcagaggg gaaggcgaac agcacgtgat caagggcgaac 42 a	etgga aggtggtcat catetteage etgetgatea caceteagea eggeetgaaa	60
totgatggoo otagootgat caagacogag otggatotga coaggagoo ootggagaga ggoogotttg tgotggoga cattgotot ggagoggaa agatogagaa tootggoago ggoogotttg tgotggogago cattgotot ggagoggaa gaacogoo totgaagaa aggogtggooa totgoaagao catoagactg gaaagogaag tgacegooat caacaacegoo digaagaaga caaacgaggo ogtoagooa otoggoaatg googtaagag googgogtt aagtgogaca togacagoo gaagatggoo gtgootta googgooot gaacaagaac sagtgogaca togacgacoo gaagatggoo gtgootta googgooot gaacaagaac aagtgogaca togacgacoo gaagatggoo gtgootta googgooot gaacaagaac otgaacgoo togacgagoo gagaagagoo gtgootta googgooot gaacaagaac aagtgogaca togacgacoo gaagatggoo gtgootta googgooot gaacaagaac otgaacgtog tgooggoagt taggogacac googgaatca caccagooot cagoooggoo togaacgoo googaagoo ggoogaagoo gtgootaaca tgootacato tgooggoo atcaagoog gaacgagoo gaccaagagoo gtgootaaca tgootacato tgooggoo atcaagoog gaacgagoo gaccaagagoo gaacaagago cattotogg ogtgatoga acaccoo gaatggaa tagagcoo googoaatca coocagoo cattotogg ogtgatoga acaccoo gaatggoo gaccaaca googgaaco cattatoo goo googgooga aggacgagoo gaccaagago gaagaaggo caattacgoo gootgooga aggacgaga gacaagagoo gaccaacgoo cattotogg ogtgatoa atcaacgaga aggactgoga gacaagagoo gaccaacgoo cagoo cagoo cattacoo tgoocgooga aggacgaga caagagoo gaccaacgoo cagoo cagoo caactacoo togooggoo caacagago gaacaagagoo gaccaacgoo cagoo caactacoo togaaggoo caacagago gaacaagagoo gaccaacgoo caactacoo 100 tgoaaggoo caacaggoo gaccoo agoo goaccaaga goocaacagoo gooacaagago gaacaagago ga		120
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcetggcagc ggcagettig tgetgggage eattgetett ggagtggetg etgetgeage tgttacagea ageegtggeea tetgeaagae catcagactg gaaagegaag tgacegeeat caacaaegee 42 etgaagaaga caaacgagge egteageaca eteggeaatg gegttagagt getggeetti 42 etgaagaaga caaacgagge egteageaca eteggeaatg gegttagagt getggeetti 48 geegtgegeg agetgaagga ettegtgtee aagaacetga caegggeeet gaacaagaac 44 aagtgegaca tegaegaeet gaagatggee gtgeetta geeagetea eegeeggtti etgaaegteg tgeeggeagti tageegaeae geeggaatea caecageeat eageetggae 44 acaagetga tgetgagaa tagageeag gteegaegga aaggettegg eattetgtg 46 etgatgaeeg geageagegt gatetatatg gtgeagetge etatettegg egtgategae 44 acaecetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg eaattaegee 44 acaecetget gagtagga caaggagge gaccaegtgi tetgtgatae egeegetga 44 acaecetget geageagag gaagaggge gaceaegtgi tetgtgatae egeegetga 44 acaecetget ggattgtga ggeegeteet agetgtageg agaagaaggg caattaegee 44 eetaaegaga aggaetgega gacaagagge gaceaegtgi tetgtgatae egeegetgga 44 etgeaaggtgi eegageagag caaagagtge aacatcaaea teageaecae eaactatee 44 etggtggett gttataaggg egtgteetgt ageateggea geaacagagt gggeateate 44 etggtggett gttataaggg egtgteetgt ageateggea geaacagagt gggeateate 44 44 44 44 44 44 44 44 44 4		180 240
ggcagetttg tgetgggage cattgetett ggagtggetg etgetgeage tgttacaagea 36 ggegtggeea tetgeaagae cateagaetg gaaagegaag tgaeegeeat caacaaegee 42 etgaagaaga caaaegagge egteageaea eteggeaatg gegttagagt getggeett 46 geegtgegeg agetgaagga ettegtgtee aagaaeetga caegggeeet gaacaagaae 54 aagtgegaea tegaegaeet gaagatggee gtgeetta geeagteaa eeggeggtt 60 etgaaegteg tgeggeagtt tagegacaae geeggaatea caecageeat eageetggae etgatgaeag atgetgaget ggetagagee gtgeetaaea tgeetaeate tgeeggeeag 72 ateaagetga tgetegagaa tagageeagg gtgeedaaca tgeetaeate tgeeggeeag 72 ateaagetga tgetegagaa tagageeatg gtgeeggeag aaggeettegg eattetgtg 76 ggeegtgtaeg geageagegt gatetatatg gtgeagetge etatettegg egtgategae 84 acaecetget ggattgtga ggeegeteet agetgaeeg aaagaaggg eaattaegee 90 tgeetgetga aggaggaeea aggeetgetat tgteagaaeg eeggeageae egtgatetae 96 tgeetgetga aggaeggaag caaagagge gaeeaegtg teetgetaee eaetateee 106 tgeeaggag aggaegeagag eaaagagtge aacateaaea teageaeeae eaetateee 106 tgeeaggtg cegageagag gaeeetatt tetatggtgg etetgtetee tetgggagee 114 etggetggett gttataaggg egtgteetgt ageateggea geaacagagt gggeateate 126 aageagetga acaagggetg eagetaeta aceaaeagag eaacagagt gggeateate 126 aageagetga acaagggetg eagetaeta aceaaeagag egeaeagag ggeateate 126 aageagetga acaagggetg eagetaeta aceaaeagag egeaeagag ggeateate 126 gaeaacaeeg tgtateaget gageaaggtg gaaggegaae ageeegaae egeaeagag eggeaeata 126 gaeaacaeeg tgtateaget gageaaggtg gaaggegaae ageeegaae egeaeagag eggeaeata 126		240 300
ggegtggeca tetgeaagae cateagaetg gaaagegaag tgacegeeat caacaacegee 42 etgaagaaga caaacgagge egteageaca eteggeaatg gegttagagt getggeettt 48 geegtgegeg agetgaagga ettegtgtee aagaacetga caegggeeet gaacaagaae 54 aagtgegaca tegaegaeet gaagatggee gtgteettta geeagtteaa eeggeeggtt 60 etgaaegteg tgeggeagtt tagegacaae geeggaatea caecageeat cageetggae etgatgaeag atgetgagget ggetagagee gtgteetaae tegeeggeeag 72 ateaagetga tgetegagaa tagegeatg gtgeetaaea tgeetaeate tgeeggeeag 72 ateaagetga geegeagegt gatetatatg gtgeagetge etatettegg egtgategae 84 acaecetget ggatggaa aggeetgeta ggeegeeteet agetgaegg agaagaaggg caattaegee 90 tgeetgetga gagagggaeea aggeetgeta tgteagaeeg eeggeetgatege 90 tgeetgetga gagaggaeea aggeetgetat tgteagaaeg eeggeegga eegetgatee 90 tgeetgetga gagaggaeea aggeetgetat tgteagaaeg eeggeegee eegetgatee 90 tgeetgetga gagaaggaeea aggeetgetat tgteagaaeg eegeetgatee 90 tgeetgetga gagaegeagag eaaagagge gaeeacegtgt tetgtgatae egeegetga 102 ateaaegaga ggeegeegaga geaeeetatt tetatggtgg etetgtetee tetgggagee 114 etggtggett gttataaggg egtgteetgt ageateggea geaacagagt gggeateate 126 aageeagetga acaagggetg eagetaeeta aceaaceaga geaeeagag gggeateate 126 aageagetga acaagggetg cagetaeeta aceaaceagg aegeegatae egtgaceate 126 gaeaacaeeg tgtateaget gageaaggtg gaageegaa ageegegatae egtgaceate 126 gaeaacaeeg tgtateaget gageaaggtg gaaggegaae ageegegatae egtgaceate 126 gaeaacaeeg tgtateaget gageaaggtg gaaggegaae ageegegatae egtgaceate 126		360
geogtgeogeg agetgaagga ettegtgtee aagaacetga eaegggeeet gaacaagaac 54 aagtgegaca tegaegaeet gaagatggee gtgteettta geoagtteaa eeggeeggttt 60 etgaaegteg tgeoggeagtt tagegacaae geoggaatea eaecageeat eageetggae 66 etgatgaeag atgetgaget ggetagagee gtgeetaaca tgeetaeate tgeoggeeag 72 ateaagetga tgetegagaa tagageeatg gteogaegga aaggettegg eattetgtgt 76 ggeegtgtaeg geageagegt gatetatatg gtgeagetge etatettegg egtgategae 84 acaeeetget ggattgtgaa ggeegeteet agetgtaege gaaagaaggg caattaegee 90 tgeetgetga gagaggaeea aggetggtat tgteagaaeg eeggeageae egtgtaetae 90 tgeetgetga gagaggaeea aggetggtat tgteagaaeg eeggeageae egtgtaetae 96 eetaaegaga aggaetgega gaeaagagge gaeeaegtgt tetgtgatae egeegetgga 102 ateaaggtg eegageagag eaaagagtge aaeateaaea teageaeeae eaaetateee 106 tgeetgetgt gtataaggg egtgteetgt ageateggea geaacagagt gggeateate 126 etggtggett gttataaggg egtgteetgt ageateggea geaacagagt gggeateate 126 aageagetga acaagggetg eagetaett tetatggtgg etetgtetee tetgggagee 114 etggtggett gttataaggg egtgteetgt ageateggea geaacagagt gggeateate 126 aageagetga acaagggetg eagetaeate aceaaeeagg aegeegatae egtgaceate 126 aageagetga acaagggetg eagetaeate aceaaeeagg aegeegatae egtgaceate 126 gacaaeeee tgtateaget gageaaggtg gaaggegaae ageeegatae egtgaceate 126 gacaaeeee tgtateaget gageaaggtg gaaggegaae ageeegatae egtgaceate 126		420
aagtgegaca tegaegaeet gaagatggee gtgteettta geeagtteaa eeggeggttt 60 etgaaegteg tgeggeagtt tagegaeaae geeggaatea caecageeat cageetggae 66 etgatgaeag atgetgaget ggetagagee gtgeetaaea tgeetaeate tgeeggeeag 72 ateaagetga tgetegagaa tagageeatg gteegaegga aaggettegg eattetgtgt 76 ggegtgtaeg geageagegt gatetatatg gtgeagetge etatettegg egtgategae 84 acaecetget ggattgtgaa ggeegeteet agetgtageg agaagaagagg eaattaegee 90 tgeetgetga gagaggaeea aggetggtat tgteagaaeg eeggeageae egtgtaetae 96 eetaaegaga aggaetgega gaeaaagagge gaeeaegtgt tetgtgatae egeegetgga 102 ateaatgtgg eegageagag eaaagagtge aacateaaea teageaeeae eaaetateee 106 tgeaaggtgt eeaeeggeag geaeeetatt tetatggtgg etetgtetee tetgggagee 114 etggtggett gttataaggg egtgteetgt ageateggea geaacagagt gggeateate 126 aageagetga acaagggetg eagetaete aceaaeeagg aegeegatae egtgaeeate 126 aageagetga acaagggetg eagetaete aceaaeeagg aegeegatae egtgaeeate 126 aageagetga acaagggetg eagetaeete aceaaeeagg aegeegatae egtgaeeate 126 aageagetga acaagggetg eagetaeete aceaaeeagg aegeegatae egtgaeeate 126 aageagetga acaagggetg eagetaeeteg ageateggea gaeaeagagt gggeateate 126 gaeaaeeeeg tgtateaget gageaaggtg gaaggegaae ageeegatae egtgaeeate 126 gaeaaeeeeg tgtateaget gageaaggtg gaaggegaae ageeegatae egtgaeeate 126	gaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccttt	480
ctgaacgteg tgeggeagtt tagegacaac geeggaatea caccagecat cageetggac 66 ctgatgacag atgetgaget ggetagagee gtgeetaaca tgeetacate tgeeggeeag 72 atcaagetga tgetegagaa tagageeatg gteegaegga aaggettegg cattetgtgt 76 ggegtgtaeg geageagegt gatetatatg gtgeagetge etatettegg egtgategae 84 acaeceetget ggattgtgaa ggeegeteet agetgtageg agaagaagggg caattaegee 90 tgeetgetga gagaggaeea aggeegeteet agetgtagee eeggeageae egtgtaetae 96 eetaacgaga aggaetgega gacaagagge gaceaegtgt tetgtgatae egeegetgga 102 atcaaaggtg eegageagag eaaagagge aacateaaea teageaeeae eaactateee 106 tgeeaggtgt eeaeeggeag gaeeeetat tetatggtgg etetgtetee tetgggagee 114 etggtggett gttataaggg egtgteetgt ageateggea geaacaagagt gggeateate 126 aageagetga acaagggetg eagetaeate aceaaceagg aegeegatae egtgaeeate 126 gaeaaeeeeg tgtateaget gageaaggtg gaaggegaae ageeegatae egtgaeeate 126 aageagetga acaagggetg eagetaeate aceaaceagg aegeegatae egtgaeeate 126 gaeaaeeeeg tgtateaget gageaaggtg gaaggegaae ageeegatae egtgaeeate 126	gcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccct gaacaagaac	540
ctgatgacag atgetgaget ggetagagee gtgeetaaca tgeetacate tgeeggeeag 72 atcaagetga tgetegagaa tagageeatg gteegaegga aaggettegg eattetgtgt 76 ggegtgtaeg geageagegt gatetatatg gtgeagetge etatettegg egtgategae 84 acaecetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg eaattaegee 90 tgeetgetga gagaggaeea aggetggtat tgteagaaeg eeggeageae egtgtaetae 96 eetaaegaga aggaetgega gaeaagagge gaeeaegtgt tetgtgatae egeegetgga 102 ateaatgtgg eegageagag eaaagagtge aacateaaea teageaeeae eaaetateee 106 tgeaaggtgt eeaeeggeag ggaeeetatt tetatggtgg etetgtetee tetgggagee 114 etggtggett gttataaggg egtgteetgt ageateggea geaeaagagt gggeateate 126 aageaggtga acaagggetg eagetaete aceaeeggeag eageegatae egtgaeeae 126 gaeaaeeeg tgtateaget gageaaggtg gaaggegaae ageaeggat eaagggeaga 132	cgaca tegaegaeet gaagatggee gtgteettta geeagtteaa eeggeggttt	600
atcaagetga tgetegagaa tagageeatg gteegaegga aaggettegg eattetgtgt 76 ggegtgtaeg geageagegt gatetatatg gtgeagetge etatettegg egtgategae 84 acaecetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg eaattaegee 90 tgeetgetga gagaggaeea aggetggtat tgteagaaeg eeggeageae egtgtaetae 96 eetaaegaga aggaetgega gacaagagge gaceaegtgt tetgtgatae egeegetgga 102 ateaatgtgg eegageagag eaaagagtge aacateaaea teageaeeae eaaetateee 106 tgeaaggtgt eeaeeggeag gaeeeetatt tetatggtgg etetgtetee tetgggagee 114 etggtggett gttataaggg egtgteetgt ageateggea geaaeagagt gggeateate 126 aageagetga acaagggetg eagetaeate aceaaeeagg aegeegatae egtgaeeate 126 gaeaaeeeeg tgtateaget gageaaggtg gaaggegaae ageeegatae egtgaeeate 126	cgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ggegtgtaeg geageagegt gatetatatg gtgeagetge etatettegg egtgategae 84 acaecetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee 90 tgeetgetga gagaggaeca aggetggtat tgteagaaeg eeggeageae egtgtaetae 96 eetaaegaga aggaetgega gaeaagagge gaecaegtgt tetgtgatae egeegetgga 102 ateaatgtgg eegageagag eaaagagtge aacateaaea teageaeeae eaaetateee 106 tgeaaggtgt eeaeeggeag geaeeetatt tetatggtgg etetgtetee tetgggagee 114 etggtggett gttataaggg egtgteetgt ageateggea geaaeagagt gggeateate 126 aageagetga acaagggetg eagetaeate aceaaeeagg aegeegatae egtgaeeae 126 gaeaaeeeg tgtateaget gageaaggtg gaaggegaae ageeegatae egtgaeeae 132	gacag atgetgaget ggetagagee gtgeetaaca tgeetacate tgeeggeeag	720
acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee 90 tgeetgetga gagaggaeca aggetggtat tgteagaaeg eeggeageae egtgtaetae 96 eetaaegaga aggaetgega gacaagagge gaceaegtgt tetgtgatae egeegetgga 102 ateaatgtgg eegageagag eaaagagtge aacateaaca teageaecae eaaetateee 106 tgeaaggtgt eeaeeggeag geaeeetatt tetatggtgg etetgtetee tetgggagee 114 etggtggett gttataaggg egtgteetgt ageateggea geaeaeagagt gggeateate 126 aageagetga acaagggetg eagetaeate aceaaeeagg aegeegatae egtgaeete 126 gacaaeeeeg tgtateaget gageaaggtg gaaggegaae ageeegtat eaagggeaga 132	getga tgetegagaa tagageeatg gteegaegga aaggettegg eattetgtgt	780
tgeetgetga gagaggacea aggetggtat tgteagaaeg eeggeageae egtgtaetae 96 eetaaegaga aggaetgega gacaagagge gaceaegtgt tetgtgatae egeegetgga 102 ateaatgtgg eegageagag eaaagagtge aacateaaea teageaeeae eaaetateee 106 tgeaaggtgt eeaeeggeag geaeeetatt tetatggtgg etetgtetee tetgggagee 114 etggtggett gttataaggg egtgteetgt ageateggea geaaeagagt gggeateate 126 aageagetga acaagggetg eagetaeate aceaaeeagg aegeegatae egtgaeeate 126 gacaaeeeeg tgtateaget gageaaggtg gaaggegaae ageaegtgat eaagggeaga 132	gtacg geageagegt gatetatatg gtgeagetge etatettegg egtgategae	840
cotaacgaga aggactgoga gacaagaggo gaccacgtgt totgtgatac ogoogotgga 102 atcaatgtgg oogagoagag caaagagtgo aacatcaaca toagcaccac caactatooo 108 tgoaaggtgt coacoggoag geacoctatt totatggtgg ototgtotoo totgggagoo 114 otggtggott gitataaggg ogigtootgt agoatoggoa geaacagagi gggcatcato 120 aagcagotga acaagggotg cagotacato accaaccagg acgoogatac ogigaccato 126 gacaacacog igiatcagot gagcaaggig gaaggogaac agoacgigat caagggoaga 132		900
atcaatgtgg cogagcagag caaagagtge aacatcaaca teagcaceae caactateee 106 tgeaaggtgt eeaeeggeag geaeeetatt tetatggtgg etetgtetee tetgggagee 114 etggtggett gttataaggg egtgteetgt ageateggea geaacagagt gggeateate 120 aageagetga acaagggetg eagetacate aceaaceagg aegeegatae egtgaceate 126 gacaacaeeg tgtateaget gagcaaggtg gaaggegaae ageaegtgat eaagggeaga 132	getga gagaggaeca aggetggtat tgteagaaeg eeggeageae egtgtaetae	960
tgcaaggtgt ccaccggcag gcaccctatt totatggtgg ototgtotoo totgggagoo 114 otggtggott gttataaggg ogtgtootgt agcatoggca gcaacagagt gggcatcato 120 aagcagotga acaagggotg cagotacato accaaccagg acgoogatac ogtgaccato 126 gacaacacog tgtatcagot gagcaaggtg gaaggogaac agcacgtgat caagggoaga 132	cgaga aggactgoga gacaagaggo gaccaogtgt totgtgatad ogoogotgga – 1	1020
ctggtgggtt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc 120 aagcagctga acaagggctg cagctacatc accaaccagg acgccgatac cgtgaccatc 126 gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga 132	tgtgg cogagoagag caaagagtgo aacatoaaca toagoacoad caactatooo 1	1080
aagcagetga acaagggetg cagetacate aceaaceagg aegeegatae egtgaeeate 126 gaeaacaeeg tgtateaget gageaaggtg gaaggegaae ageaegtgat eaagggeaga 132	ggtgt ccaceggeag geacectatt tetatggtgg etetgtetee tetgggagee - 1	1140
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga 132	ggett gitataaggg egigteeigt agealeggea geaacagagi gggealeale - 1	1200
	getga acaagggetg cagetacate aceaaceagg acgeegatae egtgaecate - 1	1260
	caccy tytatcayct gagcaaggty gaagycgaac agcacytyat caagyycaga 1	1320
cctgtgtoca gcagettega cectateaag tteeetgagg ateagtteaa egtggeeetg 138	gtoca gragettega rectatraag tteeetgagg ateagttraa rgtggeretg - 1	1380

~	_	1
n	1	
v		

gaccaggtgt tcgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440
ctgtctagcg ccgagaaggg	aaacaccggc	tteateateg	tgatcatcct	gategeegtg	1500
ctgggcaget ccatgateet	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc ctccagaact	gageggagtg	accaacaatg	getteateee	tcacaac	1617
<210> SEQ ID NO 107 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artifi <220> FEATURE: <223> OTHER INFORMATIO	-		eotide		

<400> SEQUENCE: 107

60	cggcctgaaa	cacctcagca	ctgctgatca	catetteage	aggtggtcat	atgagetgga
120	tgtgctgaga	gctacctgtc	atcacagagg	ctgcagcacc	tggaagagtc	gagagetacc
180	tctgacatgc	acgtcgagaa	gaagtgggcg	gttcacactg	acaccaacgt	accggctggt
240	cctgagagaa	ccaagagcgc	ctggatctga	caagaccgag	ctagectgat	tctgatggcc
300	tcctggcage	agatcgagaa	agagaggaac	tcagctggcc	tgtctgccga	ctcaagaccg
360	tgttacagca	ctgctgcagc	ggagtggctg	cattgctctt	tgetgggage	ggcagetttg
420	caacaacgcc	tgaccgccat	gaaagcgaag	catcagactg	tetgeaagae	ggcgtggcca
480	getggeeaca	gcgttagagt	ctcggcaatg	cgtcagcaca	caaacgaggc	ctgaagaaga
540	taacaagaac	cacgggccat	aagaacctga	cttcgtgtcc	agetgaagga	gccgtgcgcg
600	ccggcggttt	gccagttcaa	gtgtccttta	gaagatggcc	tcgacgacct	aagtgegaca
660	cageetggae	caccagccat	gccggaatca	tagcgacaac	tgeggeagtt	ctgaacgtcg
720	tgeeggeeag	tgeetacate	gtgcctaaca	ggetagagee	atgetgaget	ctgatgacag
780	cattetgtgt	aaggettegg	gteegaegga	tagagccatg	tgetegagaa	atcaagetga
840	cgtgatcgac	ctatettegg	gtgcagetgc	gatctatatg	gcagcagcgt	ggcgtgtacg
900	caattacgcc	agaagaaggg	agetgtageg	ggccgctcct	ggattgtgaa	acaccetget
960	cgtgtactac	ccggcagcac	tgtcagaacg	aggetggtat	gagaggacca	tgeetgetga
1020	cgccgctgga	tctgtgatac	gaccacgtgt	gacaagaggc	aggactgcga	cctaacgaga
1080	caactateee	tcagcaccac	aacatcaaca	caaagagtgc	ccgagcagag	atcaatgtgg
1140	tetgggagee	ctctgtctcc	tctatggtgg	gcaccctatt	ccaccggcag	tgcaaggtgt
1200	gggcatcatc	gcaacagagt	agcatcggca	cgtgtcctgt	gttataaggg	ctggtggctt
1260	cgtgaccatc	acgeegatae	accaaccagg	cagctacatc	acaagggctg	aagcagctga
1320	caagggcaga	agcacgtgat	gaaggcgaac	gagcaaggtg	tgtatcagct	gacaacaccg
1380	tgtggccctg	accagtggca	tteeetgage	ccctatcaag	gcagettega	cctgtgtcca
1440	caacagaatc	tggaccagtc	caggetetgg	cgagaattcc	tcgagaacat	gaccaggtgt
1500	gategeegtg	tgatcatcct	ttcatcatcg	aaacaccggc	ccgagaaggg	ctgtctagcg
1560	caagaagccc	tcaagaagac	ttcatcatta	ggtgtccatc	ccatgateet	ctgggcaget
1617	tcacaac	getteateee	accaacaatg	gageggagtg	ctccagaact	accggcgctc

<210> SEQ ID NO 108 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 108

atgagetgga aggtggteat catetteage etgetgatea caeeteagea eggeetgaaa	60						
gagagetaee tggaagagte etgeageaee ateaeagagg getaeetgte tgtgetgaga	120						
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180						
tetgatggee etageetgat caagacegag etggatetge teaagagege eetgagagaa	240						
ctcaagaceg tgtetgeega teagetggee agagaggaae agategagaa teetggeage	300						
ggcagetttg tgetgggage cattgetett ggagtggetg etgetgeage tgttaeagea	360						
ggegtggeea tegetaagae cateagaetg gaaagegaag tgaeegeeat caacaaegee	420						
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480						
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac	540						
aagtgegaea teeetgaeet gaagatggee gtgteettta geeagtteaa eeggeggttt	600						
ctgaacgteg tgeggeagtt tagegacaae geeggaatea caceageeat cageetggae	660						
ctgatgacag atgetgaget ggetagagee gtgeetaaca tgeetacate tgeeggeeag	720						
atcaagetga tgetegagaa tagageeatg gteegaegga aaggettegg cattetgatt	780						
ggegtgtaeg geageagegt gatetatatg gtgeagetge etatettegg egtgategae	840						
acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc	900						
tgeetgetga gagaggaeea aggetggtat tgteagaaeg eeggeageae egtgtaetae	960						
cctaacgaga aggactgoga gacaagaggo gaccacgtgt tetgtgatac cgccgctgga	1020						
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080						
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140						
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200						
aagcagetga acaagggetg eagetacate aceaaceagg acgeegatae egtgaceate	1260						
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320						
cetgtgteea geagettega ecetateaag tteeetgagg ateagtteea ggtggeeetg	1380						
gaccaggtgt tegagaacat egagaattee caggetetgg tggaccagte caacagaate	1440						
ctgtctageg cegagaaggg aaacacegge tteateateg tgateateet gategeegtg	1500						
ctgggcagct ccatgatect ggtgtccate tteateatta teaagaagae caagaageee	1560						
aceggegete etecagaaet gageggagtg aceaacaatg getteateee teacaae	1617						
<210> SEQ ID NO 109 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FBATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 109							
atgagetgga aggtggteat catetteage etgetgatea caeeteagea eggeetgaaa	60						
gagagetaee tggaagagte etgeageaee ateacagagg getaeetgte tgtgetgaga	120						
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180						
tetgatggee etageetgat caagaeegag etggatetge teaagagege eetgagagaa	240						
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300						
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca	360						
	-						

675

676

ggcgtggcca	tcgctaagac	catcagactg	gaaagcgaag	tgaccgecat	caacaacgcc	420
ctgaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	getggeeaea	480
geegtgegeg	agetgaagga	cttcgtgtcc	aagaacctga	cacgggccat	taacaagaac	540
aagtgcgaca	tccctgacct	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
ctgaacgtcg	tgcggcagtt	tagcgacaac	gccggaatca	caccagccat	cageetggae	660
ctgatgacag	atgctgagct	ggetagagee	gtgcctaaca	tgcctacatc	tgeeggeeag	720
atcaagctga	tgetegagaa	tagagecatg	gteegaegga	aaggettegg	cattetgatt	780
ggegtgtaeg	gcagcagcgt	gatetatatg	gtgeagetge	ctatettegg	cgtgatcgac	840
acaccetget	ggattgtgaa	ggeegeteet	agetgtageg	agaagaaggg	caattacgcc	900
tgeetgetga	gagaggacca	aggetggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960
cctaacgaga	aggactgcga	gacaagaggc	gaccacgtgt	tctgtgatac	cgccgctgga	1020
atcaatgtgg	ccgagcagag	caaagagtgc	aacatcaaca	teageaceac	caactatccc	1080
tgcaaggtgt	ccaccggcag	geaccetatt	tetatggtgg	etetgtetee	tetgggagee	1140
ctggtggett	gttataaggg	cgtgtcctgt	agcatoggca	gcaacagagt	gggcatcatc	1200
aagcagctga	acaagggetg	cagetacate	accaaccagg	acgeegatae	cgtgaccatc	1260
gacaacaccg	tgtatcaget	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cetgtgteea	gcagettega	ccctatcaag	tteeetgaga	accagttcca	ggtggccctg	1380
gaccaggtgt	tcgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gategeegtg	1500
ataggagagt						
crgggcager	ccatgateet	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
	ctecagaact					1560 1617
accggcgctc <210> SEQ : <211> LENG <212> TYPE <213> ORGAI <220> FEAT	ctccagaact ID NO 110 IH: 1617 : DNA NISM: Artif:	gagcggagtg icial Seque	accaacaatg nce	gcttcatccc		
accggcgctc <210> SEQ : <211> LENG <212> TYPE <213> ORGAI <220> FEAT	ctccagaact ID NO 110 IH: 1617 : DNA NISM: Artif: URE: R INFORMATI(gagcggagtg icial Seque	accaacaatg nce	gcttcatccc		
accggcgctc <210> SEQ : <211> LENG <212> TYPE <213> ORGAI <220> FEAT <223> OTHEI <400> SEQUI	ctccagaact ID NO 110 IH: 1617 : DNA NISM: Artif: URE: R INFORMATI(gagcggagtg icial Sequen DN: Synthet:	accaacaatg nce ic Polynucle	gcttcatccc eotide	tcacaac	
accggcgctc <210> SEQ <211> LENG <212> TYPE <213> ORGAI <220> FEAT <223> OTHEI <400> SEQU atgagctgga	Ctccagaact ID NO 110 TH: 1617 : DNA NISM: Artif: URE: R INFORMATIC ENCE: 110	gagoggagtg icial Sequen DN: Synthet: catottcago	accaacaatg nce ic Polynucle ctgctgatca	getteatece eotide caceteagea	tcacaac	1617
accggcgctc <210> SEQ : <211> LENG <212> TYPE <213> ORGAN <220> FEAT <223> OTHEN <400> SEQU atgagctgga gagagctacc	ctccagaact ID NO 110 IH: 1617 : DNA NISM: Artif: URE: R INFORMATI(ENCE: 110 aggtggtcat	gageggagtg icial Sequen DN: Synthet: catetteage etgeageace	accaacaatg nce ic Polynucle ctgctgatca atcacagagg	gcttcatccc eotide cacctcagca gctacctgtc	tcacaac cggcctgaaa tgtgctgaga	60
accggcgctc <210> SEQ 3 <211> LENG <212> TYPE <213> ORGAI <220> FEAT <223> OTHEI <400> SEQU atgagctgga gagagctacc accggctggt	ctccagaact ID NO 110 IH: 1617 : DNA NISM: Artif: URE: R INFORMATIC ENCE: 110 aggtggtcat tggaagagtc	gageggagtg icial Sequer DN: Synthet: catetteage etgeageace gtteacaetg	accaacaatg nce ic Polynucle ctgctgatca atcacagagg gaagtgggcg	getteatece eotide caceteagea getacetgte aegtegagaa	tcacaac cggcctgaaa tgtgctgaga tctgacatgc	1617 60 120
accggcgctc <210> SEQ <211> LENG <212> TYPE <213> ORGA <220> FEAT <223> OTHE <400> SEQU atgagctgga gagagctacc accggctggt tctgatggcc	ctccagaact ID NO 110 IH: 1617 : DNA NISM: Artif: URE: R INFORMATIC ENCE: 110 aggtggtcat tggaagagtc acaccaacgt	gageggagtg icial Sequen DN: Synthet: catetteage etgeageace gtteacaetg caagaeegag	accaacaatg nce ic Polynucle ctgctgatca atcacagagg gaagtgggcg ctggatctgc	getteatece eotide caceteagea getacetgte aegtegagaa teaagagege	tcacaac cggcctgaaa tgtgctgaga tctgacatgc cctgagagaa	1617 60 120 180
accggcgctc <210> SEQ 3 <211> LENG <212> TYPE <213> ORGA <220> FEAT <223> OTHE <400> SEQU atgagctgga gagagctacc accggctggt tctgatggcc ctcaagaccg	ctccagaact ID NO 110 IH: 1617 : DNA NISM: Artif: URE: R INFORMATIC ENCE: 110 aggtggtcat tggaagagtc acaccaacgt ctagcctgat	gageggagtg icial Sequen DN: Synthet: catetteage etgeageace gtteacaetg caagaeegag teagetggee	accaacaatg nce ic Polynucle ctgctgatca atcacagagg gaagtgggeg ctggatetgc agagaggagc	getteatece eotide caceteagea getacetgte aegtegagaa teaagagege agategagaa	tcacaac cggcctgaaa tgtgctgaga tctgacatgc cctgagagaa tcctggcagc	1617 60 120 180 240
accggcgctc <210> SEQ : <211> LENG' <212> TYPE <213> ORGAI <220> FEAT <223> OTHEI <400> SEQU atgagctgga gagagctacc accggctggt tctgatggcc ctcaagaccg ggcagctttg	ctccagaact ID NO 110 IH: 1617 : DNA NISM: Artif: DRE: R INFORMATIO ENCE: 110 aggtggtcat tggaagagtc acaccaacgt ctagcctgat tgtctgccga	gageggagtg icial Sequen DN: Synthet: catetteage etgeageace gtteacaetg caagaeegag teagetggee cattgetett	accaacaatg nce ic Polynucle ctgctgatca atcacagagg gaagtgggcg ctggatctgc agagaggaac ggagtggctg	getteatece eotide caceteagea getacetgte acgtegagaa teaagagege agategagaa etgetgeage	tcacaac cggcctgaaa tgtgctgaga tctgacatgc cctgagagaa tcctggcagc tgttacagca	1617 60 120 180 240 300
accggcgctc <210> SEQ : <211> LENG <212> TYPE <213> ORGA <220> FEAT <223> OTHE <400> SEQU atgagctgga gagagctacc accggctggt tctgatggcc ctcaagaccg ggcagctttg ggcgtggcca	ctccagaact ID NO 110 IH: 1617 : DNA NISM: Artif: URE: R INFORMATIC ENCE: 110 aggtggtcat tggaagagtc acaccaacgt ctagcctgat tgtctgccga tgctgggagc	gageggagtg icial Sequen DN: Synthet: catetteage ctgeageace gtteacaetg caagaeegag teagetggee cattgetett cateagaetg	accaacaatg nce ic Polynucle ctgctgatca atcacagagg gaagtgggcg ctggatctgc agagagggaac ggagtggctg gaaagcgaag	getteatece botide caceteagea getacetgte acgtegagaa teaagagege agategagaa etgetgeage tgacegeeat	tcacaac cggcctgaaa tgtgctgaga tctgacatgc cctgagagaa tcctggcagc tgttacagca caacaacgcc	1617 60 120 180 240 300 360
accggcgctc <210> SEQ : <211> LENG <212> TYPE <213> ORGAI <220> FEAT <223> OTHEI <400> SEQU atgagctgga gagagctacc accggctggt tctgatggcc ctcaagaccg ggcagcttg ggcgtggcca ctgaagaaga	ctccagaact ID NO 110 TH: 1617 : DNA NISM: Artif: URE: R INFORMATIO ENCE: 110 aggtggtgatcat tggaagagtc acaccaacgt ctagcctgat tgtctgccga tgctgggagc tcgctaagac	gageggagtg icial Sequen DN: Synthet: catetteage ctgeageace gtteacaetg caagaeegag teagetggee cattgetett cateagaetg cgteageaca	accaacaatg nce ic Polynucle ctgctgatca atcacagagg gaagtgggcg ctggatctgc agagagggaac ggagtggctg gaaagcgaag ctcggcaatg	getteatece eotide caceteagea getacetgte aegtegagaa teaagagege agategagaa etgetgeage tgacegeeat gegttagagt	tcacaac cggcctgaaa tgtgctgaga tctgacatgc cctgagagaa tcctggcagc tgttacagca caacaacgcc gctggccaca	60 120 180 240 300 360 420
accggcgctc <210> SEQ <211> LENG <212> TYPE <213> ORGAI <220> FEAT <223> OTHEI <400> SEQU atgagctgga gagagctacc accggctggt tctgatggcc ctcaagaccg ggcagctttg ggcgtggcca ctgaagaaga gccgtgcgcg	ctccagaact ID NO 110 IH: 1617 : DNA NISM: Artif: URE: R INFORMATIC ENCE: 110 aggtggtcat tggaagagtc acaccaacgt ctagcctgat tgctggcgagc tcgctaggagc tcgctaagac caaacgaggc	gageggagtg icial Sequen DN: Synthet: catetteage etgeageace gtteacaetg caagaeegag teagetggee cattgetett cateagaetg egteageaca ettegtgett	accaacaatg hee ic Polynucle ctgctgatca atcacagagg gaagtgggcg ctggatctgc agagagggaac ggagtggctg gaaagcgaag ctcggcaatg aagaaacctga	getteatece eotide caceteagea getacetgte acgtegagaa teaagagege agategagaa etgetgeage tgacegeeat gegttagagt caegggeeat	tcacaac cggcctgaaa tgtgctgaga tctgacatgc cctgagagaa tcctggcagc tgttacagca caacaacgcc gctggccaca taacaagaac	1617 60 120 180 240 300 360 420 480
accggcgctc <210> SEQ 3 <211> LENG <212> TYPE <213> ORGA <220> FEAT <223> OTHE <400> SEQU atgagctgga gagagctacc accggctggt tctgatggcc ctcaagaccg ggcagctttg ggcgtggcca ctgaagaaga gccgtgcgcg aagtgcgaca	ctccagaact ID NO 110 IH: 1617 : DNA NISM: Artif: URE: R INFORMATI(ENCE: 110 aggtggtcat tggaagagtc acaccaacgt ctagcctgat tgtctgccga tgctgggagc tcgctaagac caaacgaggc agctgaagga	gageggagtg icial Sequen DN: Synthet: catetteage etgeageace gtteacaetg caagaeegag teagetggee cattgetett cateagaetg egteageaca ettegtgett gaagatggee	accaacaatg nce ic Polynucle ctgctgatca atcacagagg gaagtgggcg ctggatctgc agagagggagc ggagtggctg gaaagcgaag ctcggcaatg aagaacctga gtgtccttta	getteatece botide caceteagea getacetgte aegtegagaa teaagagege agategagaa etgetgeage tgacegeeat gegttagagt caegggeeat gecagtteaa	tcacaac cggcctgaaa tgtgctgaga tctgacatgc cctgagagaa tcctggcagc tgttacagca gacaacgcc gctggccaca taacaagaac ccggcggttt	1617 60 120 180 240 300 360 420 480 540
accggcgctc <210> SEQ : <211> LENG <212> TYPE <213> ORGA <220> FEAT <223> OTHEJ <400> SEQU atgagctgga gagagctacc accggctggt tctgatggcc ctcaagaccg ggcagcttgg ggcagcttg ggcgtggcca ctgaagaaga gccgtgcgcg aagtgcgaca ctgaacgtcg	ctccagaact ID NO 110 TH: 1617 : DNA NISM: Artif: URE: R INFORMATIO aggtggtcat tggaagagtc acaccaacgt ctagcctgat tgctggcaga tcgctaagac caaacgaggc agctgaagga tccctgacct	gageggagtg icial Sequen DN: Synthet: catetteage etgeageace gtteacaetg caagaeegag teagetggee cattgetett cateagaetg egteageaea ettegtgett gaagatggee tagegaeaae	accaacaatg hee ic Polynucle ctgctgatca atcacagagg gaagtgggcg ctggatctgc agagagggaac ggagtggctg gaaagcgaag ctcggcaatg aagaacctga gtgtccttta gccggaatca	getteatece actide caceteagea getacetgte aegtegagaa teaagagege agategagaa etgetgeage tgacegeeat gegttagagt caegggeeat gecagtteaa caceageeat	tcacaac cggcctgaaa tgtgctgaga tctgacatgc cctgagagaa tcctggcagc tgttacagca gctggccaca taacaagaac ccggcggttt cagcctggac	1617 60 120 180 240 300 360 420 480 540 600
accggcgctc <210> SEQ : <211> LENG <212> TYPE <213> ORGA <220> FEAT <223> OTHE <400> SEQU atgagctgga gagagctacc accggctggt tctgatggcc ctcaagaccg ggcagctttg ggcgtggcca ctgaagaaga gccgtgcgcg aagtgcgaca ctgaacgtcg ctgatgacag	ctccagaact ID NO 110 IH: 1617 : DNA NISM: Artif: URE: R INFORMATIC ENCE: 110 aggtggtcat tggaagagtc acaccaacgt ctagcctgat tgctggcaga tcgctaggagc tcgctaagac caaacgaggc agctgaagga tccctgacct tgcggcagtt	gageggagtg icial Sequen DN: Synthet: catetteage etgeageace gtteacaetg caagaeegag teagetggee cattgetett cateagaetg egteageaca ettegtgett gaagatggee tagegaeaae ggetagagee	accaacaatg hee ic Polynucle ctgctgatca atcacagagg gaagtgggcg ctggatctgc agagaggagaac ggagtggctg gaaagcgaag ctcggcaatg aagaacctga gtgtccttta gccggaatca gtgcctaaca	getteatece botide caceteagea getacetgte acgtegagaa teaagagege agategagaa etgetgeage tgacegeeat gegttagagt caegggeeat gecagtteaa caceageeat tgectacate	tcacaac cggcctgaaa tgtgctgaga tctgacatgc cctgagagaa tcctggcagc tgttacagca gctggccaca taacaagaac ccggcggttt cagcctggac tgccggccag	1617 60 120 180 240 300 360 420 480 540 600 660

677

-continued	
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc	900
tgeetgetga gagaggaeea aggetggtat tgteagaaeg eeggeageae egtgtaetae	960
cctaacgaga aggactgoga gacaagaggo gaccaogtgt totgtgatac ogoogotgga	1020
atcaatgtgg cogagcagag caaagagtgc aacatcaaca tcagcaccac caactatocc	1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc	1140
ctggtggctt gttataaggg cgtgtcctgt agcatcggca gcaacagagt gggcatcatc	1200
aagcagetga acaagggetg cagetacate aceaaceagg acgeegatae egtgaceate	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggogaac agcacgtgat caagggcaga	1320
cctgtgteca gcagettega cectateaag tteeetgagg ateagtteea ggtggeeetg	1380
gaccaggtgt tegagaacat egagaattee eaggetetgg tggaccagte caacagaate	1440
ctgtctageg cegagaaggg aaacacegge tteateateg tgateateet gategeegtg	1500
ctgggcaget ceatgateet ggtgteeate tteateatta teaagaagae caagaageee	1560
aceggegete etecagaaet gageggagtg aceaacaatg getteateee teacaae	1617
<210> SEQ ID NO 111 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 111	
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	60
gagagetaee tggaagagte etgeageaee ateaeagagg getaeetgte tgtgetgaga	120
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180
tetgatggee etageetgat caagacegag etggatetge teaagagege eetgagagaa	240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
ggcagetttg tgetgggage cattgetett ggagtggetg etgetgeage tgttaeagea	360
ggegtggeea tegetaagae cateagaetg gaaagegaag tgaeegeeat caacaaegee	420
ctgaagaaga caaacgagge egteageaea eteggeaatg gegttagagt getggeeaea	480
geegtgegeg agetgaagga ettegtgett aagaaeetga eaegggeeat taacaagaae	540
aagtgegaca teeetgaeet gaagatggee gtgteettta geeagtteaa eeggeggttt	600
ctgaacgteg tgeggeagtt tagegacaac geeggaatea caecageeat cageetggae	660
ctgatgacag atgetgaget ggetagagee gtgeetaaca tgeetaeate tgeeggeeag	720
atcaagetga tgetegagaa tagageeatg gteegaegga aaggettegg eattetgatt	780
ggegtgtaeg geageagegt gatetatatg gtgeagetge etatettegg egtgategae	840
acaccotgot ggattgtgaa ggoogotoot agotgtagog agaagaaggg caattaogoo	900
tgeetgetga gagaggaeea aggetggtat tgteagaaeg eeggeageae egtgtaetae	960
cctaacgaga aggactgcga gacaagaggc gaccacgtgt tctgtgatac cgccgctgga	1020
atcaatgtgg cogagoagag caaagagtgo aacatcaaca toagoaccao caactatooo	1080
tgeaaggtgt ceaeeggeag geaeeetatt tetatggtgg etetgtetee tetgggagee	1140
ctggtggett gttataaggg egtgteetgt ageateggea geaacagagt gggeateate	1200
aagcagetga acaagggetg cagetacate aceaaceagg acgeegatae egtgaceate	1260

				d.	

			-contin			
gacaacaccg tgtatcagct g	Jagcaaggtg	gaaggegaae	agcacgtgat	caagggcaga	1320	
cctgtgteca gcagettega e	cctatcaag	tteeetgaga	accagttcca	ggtggccctg	1380	
gaccaggtgt tcgagaacat c	gagaattee	caggetetgg	tggaccagtc	caacagaatc	1440	
ctgtctagcg ccgagaaggg a	laacacegge	ttcatcatcg	tgatcatcct	gategeegtg	1500	
ctgggcagct ccatgatect g	gtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560	
accggegete etecagaact g	Jagcggagtg	accaacaatg	getteateee	tcacaac	1617	
<210> SEQ ID NO 112 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artific <220> FEATURE: <223> OTHER INFORMATION	-		ectide			
<400> SEQUENCE: 112						
atgagetgga aggtggteat e					60	
gagagetace tggaagagte e					120	
accggctggt acaccaacgt g					180	
tetgatggee etageetgat e					240	
ctcaagaccg tgtctgccga t					300	
ggcagctttg tgctgggagc c					360	
ggegtggeea tegetaagae e					420	
ctgaagaaga caaacgagge c					480	
geegtgegeg agetgaagga e					540	
aagtgegaea tegaegaeet g					600	
ctgaacgtcg tgcggcagtt t			-		660 720	
ctgatgacag atgetgaget g					720	
atcaagetga tgetegagaa t					840	
ggegtgtaeg geageagegt g acaecetget ggattgtgaa g					900	
tgeetgetga gagaggacca a					960	
cotaacgaga aggactgoga g					1020	
atcaatgtgg cogagcagag d					1020	
tgcaaggtgt ccaccggcag g					1140	
ctggtggctt gttataaggg c					1200	
aagcagetga acaagggetg c					1260	
gacaacaccg tgtatcaget g					1320	
cetgtgteca geagettega o					1380	
gaccaggtgt tcgagaacat c					1440	
ctgtctagcg ccgagaaggg a					1500	
					1560	
ctgggcaget ccatgateet g						
accggegete etecagaact g	Jageggagtg	accaacaatg	gerreatede	Leacaae	1617	

<210> SEQ ID NO 113

681

-continued

<211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 113 atgagetgga aggtggteat catetteage etgetgatea caeeteagea eggeetgaaa 60 gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga 120 accggetggt acaccaacgt gttcacactg cetgtgggeg acgtegagaa tetgacatge 180 tetgatggee etageetgat caagacegag etggatetge teaagagege eetgagagaa 240 ctcaagaceg tgtetgeega teagetggee agagaggaae agategagaa teetggeage 300 ggcagetttg tgetgggage cattgetett ggagtggetg etgetgeage tgttacagea 360 420 ggegtggeea tegetaagae cateagaetg gaaagegaag tgaeegeeat caacaaegee 480 ctgaagaaga caaacgagge egteageaca eteggeaatg gegttagagt getggeeaca geogtgegeg agetgaagga ettegtgtee aagaacetga eaegggeeat taacaagaac 540 600 aagtgegaca tegacgaeet gaagatggee gtgteettta geeagtteaa eeggeggttt 660 ctgaacgtcg tgeggcagtt tagegacaac geeggaatea caecagecat cageetggae etgatgacag atgetgaget ggetagagee gtgeetaaca tgeetacate tgeeggeeag 720 atcaagetga tgetegagaa tagageeatg gteegaegga aaggettegg cattetgatt 780 ggegtgtaeg geageagegt gatetatatg gtgeagetge etatettegg egtgategae 840 900 acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee tgeetgetga gagaggacea aggetggtat tgteagaaeg eeggeageae egtgtaetae 960 eetaacgaga aggaetgega gacaagagge gaccaegtgt tetgtgatae egeegetgga 1020 atcaatgtgg cegageagag caaagagtge aacatcaaca teageaceae caactateee 1080 tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 etggtggett gttataaggg egtgteetgt ageateggea geaacagagt gggeateate 1200 aagcagetga acaagggetg cagetacate aceaaceagg acgeegatae egtgaceate 1260 1320 gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga cetgtgteca geagettega ecetateaag tteeetgaga accagtteea ggtggeeetg 1380 gaccaggtgt tegagaacat egagaattee caggetetgg tggaccagte caacagaate 1440 etgtetageg cegagaaggg aaacacegge tteateateg tgateateet gategeegtg 1500 ctgggcaget ceatgateet ggtgteeate tteateatta teaagaagae caagaageee 1560 accegegete etecagaact gagegegagte accaacaate getteateee teacaac 1617 <210> SEQ ID NO 114 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 114 atgagetgga aggtggteat catetteage etgetgatea caeeteagea eggeetgaaa 60 qaqaqctacc tqqaaqaqtc ctqcaqcacc atcacaqaqq qctacctqtc tqtqctqaqa 120 accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc 180

tetgatggee etageetgat caagacegag etggatetge teaagagege eetgagagaa

683

684

ctcaagaccg	tgtctgccga	tcagetggee	agagaggaac	agatcgagaa	teetggeage	300
ggcagetttg	tgctgggagc	cattgetett	ggagtggctg	ctgctgcagc	tgttacagca	360
ggcgtggcca	tcgctaagac	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	getggeeaca	480
gccgtgcgcg	agctgaagga	cttcgtgtcc	aagaacctga	cacgggccat	taacaagaac	540
aagtgcgaca	tcgacgacct	gaagatggcc	gtgtccttta	gccagttcaa	ceggeggttt	600
ctgaacgtcg	tgcggcagtt	tagcgacaac	gccggaatca	caccagecat	cagcetggae	660
ctgatgacag	atgetgaget	ggetagagee	gtgcctaaca	tgeetacate	tgccggccag	720
atcaagctga	tgctcgagaa	tagagccatg	gteegaegga	aaggettegg	cattetgatt	780
ggcgtgtacg	gcagcagcgt	gatctatatg	gtgcagetge	ctatettegg	cgtgatcgac	840
acaccctgct	ggattgtgaa	ggccgctcct	agetgtageg	agaagaaggg	caattacgcc	900
tgeetgetga	gagaggacca	aggetggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960
cctaacgaga	aggactgcga	gacaagaggc	gaccacgtgt	tetgtgatae	cgccgctgga	1020
atcaatgtgg	ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080
tgcaaggtgt	ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tctgggagcc	1140
ctggtggctt	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagetga	acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg	tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca	gcagettega	ccctatcaag	ttccctgagg	atcagttcca	ggtggccctg	1380
gaccaggtgt	tcgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gategeegtg	1500
ctgggcagct	ccatgateet	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc	ctccagaact	gagcggagtg	accaacaatg	getteateee	tcacaac	1617
<220> FEAT	TH: 1617 : DNA NISM: Artif:	_		ectide		
<400> SEQU	ENCE: 115					
atgagetgga	aggtggtcat	catetteage	ctgctgatca	cacctcagca	cggcctgaaa	60
gagagetace	tggaagagtc	ctgcagcacc	atcacagagg	getacetgte	tgtgctgaga	120
accggctggt	acaccaacgt	gttcacactg	gaagtgggcg	acetegagaa	tetgacatge	180
tctgatggcc	ctagcctgat	caagaccgag	ctggatctga	ccaagagege	cctgagagaa	240
ctcaagaccg	tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tcetggeage	300
ggcagetttg	tgctgggagc	cattgctctt	ggagtggetg	ctgctgcagc	tgttacagca	360
ggegtggeea	tcgctaagac	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga	caaacgaggc	cgtcagcaca	ctcggcaatg	gcgttagagt	getggeeaca	480
geegtgegeg	agetgaagga	cttcgtgtcc	aagaacctga	cacgggccat	taacaagaac	540
aagtgcgaca	tegaegaeet	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
ctgaacgtcg	tgeggeagtt	tagcgacaac	gccggaatca	caccagccat	cageetggae	660

-cont	inued
COILC	THUCU.

				-contir	nued		
ctgatgacag a	tgctgagct	ggetagagee	gtgcctaaca	tgcctacatc	tgeeggeeag	720	
atcaagctga t	gctcgagaa	tagagccatg	gtccgacgga	aaggettegg	cattetgatt	780	
ggegtgtaeg g	cagcagcgt	gatetatatg	gtgcagetge	ctatcttcgg	cgtgatcgac	840	
acaccctgct g	gattgtgaa	ggeegeteet	agetgtageg	agaagaaggg	caattacgcc	900	
tgeetgetga g	agaggacca	aggetggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960	
cctaacgaga a	ggactgcga	gacaagaggc	gaccacgtgt	tctgtgatac	cgccgctgga	1020	
atcaatgtgg c	cgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080	
tgcaaggtgt c	caccggcag	gcaccctatt	tetatggtgg	ctctgtctcc	tctgggagcc	1140	
ctggtggctt g	ttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200	
aagcagctga a	caagggetg	cagetacate	accaaccagg	acgeegatae	cgtgaccatc	1260	
gacaacaccg t	gtatcaget	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320	
eetgtgteea g	cagettega	ccctatcaag	tteeetgagg	atcagttcca	ggtggccctg	1380	
gaccaggtgt t	cgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440	
ctgtctagcg c	cgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gategeegtg	1500	
ctgggcaget c	catgateet	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560	
accggcgctc c	tccagaact	gagcggagtg	accaacaatg	getteateee	tcacaac	1617	
<211> LENGTH <212> TYPE: <213> ORGANI <220> FEATUR <223> OTHER	DNA SM: Artifi E:			eotide			
<400> SEQUEN	CE: 116						
atgagetgga a	ggtggtcat	catcttcagc	ctgctgatca	cacctcagca	cggcctgaaa	60	
gagagetaee t	ggaagagtc	ctgcagcacc	atcacagagg	gctacctgtc	tgtgctgaga	120	
accggctggt a	caccaacgt	gttcacactg	gaagtgggcg	acgtcgagaa	tetgacatge	180	
tetgatggee e	tageetgat	caagaccgag	ctggatetga	ccaagagege	cctgagagaa	240	
ctcaagaccg t	gtetgeega	tcagetggee	agagaggaac	agategagaa	tcetggeage	300	
ggcagetttg t	getgggage	cattgetett	ggagtggetg	ctgetgeage	tgttacagca	360	
ggegtggeea t	egetaagae	cateagaetg	gaaagcgaag	tgaccgccat	caacaacgcc	420	
ctgaagaaga c	aaacgaggc	cgtcagcaca	ctcggcaatg	gegttagagt	getggeeaca	480	
geegtgegeg a	gctgaagga	ettegtgett	aagaacctga	cacgggccat	taacaagaac	540	
aagtgcgaca t	cgacgacct	gaagatggcc	gtgtccttta	gecagtteaa	ccggcggttt	600	
ctgaacgteg t						660	
ctgatgacag a						720	
atcaagetga t	gctcgagaa	tagagecatg	gtccgacgga	aaggettegg	cattetgatt	780	
ggcgtgtacg g	cagcagcgt	gatctatatg	gtgcagetgc	ctatcttcgg	cgtgatcgac	840	
						000	
acaccctgct g	gattgtgaa	ggeegeteet	agetgtageg	agaagaaggg	caattacgee	900	
acaccctgct g tgcctgctga g						960	
	agaggacca	aggetggtat	tgtcagaacg	ccggcagcac	cgtgtactac		
tgeetgetga g	agaggacca ggactgcga	aggetggtat gacaagagge	tgtcagaacg gaccacgtgt	ccggcagcac tctgtgatac	cgtgtactac cgccgctgga	960	
tgcctgctga g cctaacgaga a	agaggacca ggactgcga cgagcagag	aggctggtat gacaagaggc caaagagtgc	tgtcagaacg gaccacgtgt aacatcaaca	ccggcagcac tctgtgatac tcagcaccac	cgtgtactac cgccgctgga caactatccc	960 1020	

687

688

-continued

ctggtggctt	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagetga	acaagggetg	cagetacate	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg	tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca	gcagcttcga	ccctatcaag	tteeetgagg	atcagttcca	ggtggccctg	1380
gaccaggtgt	tcgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gategeegtg	1500
ctgggcagct	ccatgatect	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc	ctccagaact	gageggagtg	accaacaatg	getteateee	tcacaac	1617

<210> SEQ ID NO 117 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 117

atgagetgga aggtggteat catetteage etgetgatea caeeteagea eggeetgaaa 60 qaqaqctacc tqqaaqaqtc ctqcaqcacc atcacaqaqq qctacctqtc tqtqctqaqa 120 accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc 180 240 tetgatggee etageetgat caagacegag etggatetga eeaagagege eetgagagaa ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc 300 ggcagetttg tgetgggage cattgetett ggagtggetg etgetgeage tgttacagea 360 ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc 420 ctgaagaaga caaacgagge cgtcagcaca cteggeaatg gegttagagt getggeeaca 480 geogtgegeg agetgaagga ettegtgtee aagaacetgt ggegggeeat taacaagaac 540 aagtgegaca tegaegaeet gaagatggee gtgteettta geeagtteaa eeggeggttt 600 etgaacgteg tgeggeagtt tagegacaac geeggaatea caccageeat cageetggae 660 etgatgacag atgetgaget ggetagagee gtgeetaaca tgeetacate tgeeggeeag 720 atcaagetga tgetegagaa tagageeatg gteegaegga aaggettegg eattetgatt 780 ggegtgtaeg geageagegt gatetatatg gtgeagetge etatettegg egtgategae 840 acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee 900 tgeetgetga gagaggacca aggetggtat tgteagaaeg eeggeageae egtgtaetae 960 cctaacgaga aggactgcga gacaagaggc gaccacgtgt tetgtgatac egeegetgga 1020 1080 atcaatgtgg cogagoagag caaagagtgo aacatcaaca toagoaccao caactateee tgcaaggtgt ccaceggeag gcacectatt tetatggtgg etetgtetee tetgggagee 1140 1200 ctggtggett gttataaggg cgtgteetgt ageateggea geaacagagt gggeateate aagcagetga acaagggetg cagetacate aceaaceagg acgeegatae egtgaceate 1260 1320 gacaacaccg tgtatcaget gagcaaggtg gaaggegaac agcacgtgat caagggeaga cctgtgtcca gcagettcga ccctatcaag ttccctgagg atcagttcca ggtggccctg 1380 gaccaggtgt tegagaacat egagaattee caggetetgg tggaccagte caacagaate 1440 etgtetageg eegagaaggg aaacaeegge tteateateg tgateateet gategeegtg 1500 etgggeaget ceatgateet ggtgteeate tteateatta teaagaagae caagaageee 1560

accggegete etecagaact gageggagtg accaacaatg getteateee teacaac	1617
<210> SEQ ID NO 118 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 118	
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	60
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga	120
accggctggt acaccaacgt gttcacactg gaagtgggcg acctcgagaa tctgacatgc	190
totgatggoo otagootgat caagacogag otggatotgo toaagagogo ootgagagaa	240
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300
ggcagetttg tgetgggage cattgetett ggagtggetg etgetgeage tgttacagea	360
ggegtggeea tegetaagae cateagaetg gaaagegaag tgaeegeeat caacaaegee	420
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
gccgtgcgcg agctgaagga cttcgtgctt aagaacctgt ggcgggccat taacaagaac	540
aagtgegaca tegaegaeet gaagatggee gtgteettta geeagtteaa eeggeggttt	600
ctgaacgtcg tgcggcagtt tagcgacaac gccggaatca caccagccat cagcctggac	660
ctgatgacag atgetgaget ggetagagee gtgeetaaca tgeetacate tgeeggeeag	720
atcaagetga tgetegagaa tagageeatg gteegaegga aaggettegg eattetgatt	780
ggogtgtaog goagoagogt gatotatatg gtgoagotgo otatottogg ogtgatogao	840
acaccctgct ggattgtgaa ggccgctcct agctgtagcg agaagaaggg caattacgcc	900
tgeetgetga gagaggaeca aggetggtat tgteagaaeg eeggeageae egtgtaetae	960
cctaacgaga aggactgega gacaagagge gaccaegtgt tetgtgatae egeegetgga	1020
atcaatgtgg cogagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080
tgcaaggtgt ccaceggeag geacectatt tetatggtgg etetgtetee tetgggagee	1140
ctggtggett gttataaggg egtgteetgt ageateggea geaacagagt gggeateate	1200
aagcagetga acaagggetg cagetacate aceaaceagg acgeegatae egtgaceate	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
cetgtgteca geagettega ecctateaag tteeetgagg ateagtteea ggtggeeetg	1380
gaccaggtgt tegagaacat egagaattee caggetetgg tggaccagte caacagaate	1440
ctgtctageg cogagaaggg aaacacogge tteateateg tgateateet gategeegtg	1500
ctgggcaget ceatgateet ggtgteeate tteateatta teaagaagae eaagaageee	1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac	1617
<210> SEQ ID NO 119 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 119	
	50
atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	60
gagagetace tggaagagte etgeageace ateaeagagg getaeetgte tgtgetgaga	120

691

accggctggt acaccaacgt gttcacactg cctgtgggcg acgtcgagaa tctgacatgc

692

180

totgatggoo otagootgat caagacogag otggatotga ocaagagogo ootgagagaa 240)
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcage 300)
ggcagctttg tgctgggagc cattgctctt ggagtggctg ctgctgcagc tgttacagca 360)
ggegtggeea tegetaagae cateagaetg gaaagegaag tgaeegeeat caacaaegee 420)
ctgaagaaga caaacgagge egteageaca eteggeaatg gegttagagt getggeeaca 480)
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac 540)
aagtgegaea tegaegaeet gaagatggee gtgteettta geeagtteaa eeggeggttt 600)
ctgaacgtog tgoggoagtt tagogacaac googgaatca caccagocat cagootggac 660)
ctgatgacag atgetgaget ggetagagee gtgeetaaca tgeetacate tgeeggeeag 720)
atcaagetga tgetegagaa tagageeatg gteegaegga aaggettegg eattetgatt 780)
ggegtgtaeg geageagegt gatetatatg gtgeagetge etatettegg egtgategae 840)
acaceetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee 900)
tgeetgetga gagaggaeca aggetggtat tgteagaaeg eeggeageae egtgtaetae 960)
cctaacgaga aggactgoga gacaagaggo gaccacgtgt totgtgatac ogoogotgga 1020)
atcaatgtgg cegageagag caaagagtge aacatcaaca teageaceae caactateee 1080)
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagce 1140)
ctggtggett gttataaggg cgtgteetgt ageateggea geaacagagt gggeateate 1200)
aagcagetga acaagggetg cagetacate aceaaceagg aegeegatae egtgaceate 1260)
gacaacaccg tgtatcaget gagcaaggtg gaaggegaac agcaegtgat caagggeaga 1320)
cctgtgtcca gcagcttcga ccctatcaag ttccctgagg atcagttcca ggtggccctg 1380)
gaccaggtgt tegagaacat egagaattee caggetetgg tggaccagte caacagaate 1440)
ctgtctageg cegagaaggg aaacacegge tteateateg tgateateet gategeegtg 1500)
ctgggcaget ceatgateet ggtgteeate tteateatta teaagaagae caagaageee 1560)
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac 1617	7
<210> SEQ ID NO 120 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 120	
atgagetgga aggtggteat catetteage etgetgatea eaceteagea eggeetgaaa 60)
gagagetace tggaagagte etgeageace ateaeagagg getaeetgte tgtgetgaga 120)
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc 180)
tetgatggee etageetgat caagacegag etggatetga ecaagagege eetgagagaa 240)
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcage 300)
ggcagetttg tgetgggage cattgetett ggagtggetg etgetgeage tgttacagea 360)
ggogtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc 420)
ctgaagaaga caaacgagge egteageaca eteggeaatg gegttagagt getggeeaca 480)
geegtgegeg agetgaagga ettegtgtee aagaaeetga eaegggeeat taacaagaae 540)

693

694

				CONCIN	1404		
aagtgcgaca	teeetgaeet	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600	
ctgaacgtcg	tgcggcagtt	tagcgacaac	gccggaatca	caccagecat	cagcctggac	660	
ctgatgacag	atgetgaget	ggetagagee	gtgcctaaca	tgeetacate	tgeeggeeag	720	
atcaagctga	tgetegagaa	tagagccatg	gteegaegga	aaggettegg	cattetgatt	780	
ggcgtgtacg	gcagcagcgt	gatctatatg	gtgcagetgc	ctatcttcgg	cgtgatcgac	840	
acaccetget	ggattgtgaa	ggeegeteet	agetgtageg	agaagaaggg	caattacgcc	900	
tgeetgetga	gagaggacca	aggetggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960	
cctaacgaga	aggactgcga	gacaagaggc	gaccacgtgt	tetgtgatae	cgccgctgga	1020	
atcaatgtgg	ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080	
tgcaaggtgt	ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tetgggagee	1140	
ctggtggctt	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200	
aagcagetga	acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260	
gacaacaccg	tgtatcagct	gagcaaggtg	gaaggegaae	agcacgtgat	caagggcaga	1320	
cctgtgtcca	gcagettega	ccctatcaag	tteeetgagg	atcagttcca	ggtggccctg	1380	
gaccaggtgt	tcgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440	
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gategeegtg	1500	
ctgggcaget	ccatgateet	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560	
accggcgctc	ctccagaact	gagcggagtg	accaacaatg	getteateee	tcacaac	1617	
<220> FEATU <223> OTHER	TH: 1617 : DNA NISM: Artif: JRE: R INFORMATIC	icial Seque ON: Synthet:		eotide			
<400> SEQUE	ENCE: 121						
atgagetgga	aggtggtcat	catcttcage	ctgctgatca	cacctcagca	cggcctgaaa	60	
gagagetace	tggaagagtc	ctgcageace	atcacagagg	getacetgte	tgtgctgaga	120	
accggctggt	acaccaacgt	gttcacactg	gaagtgggcg	acgtegagaa	tetgaeatge	180	
tetgatggee	ctageetgat	caagaccgag	ctggatctga	ccaagagege	cctgagagaa	240	
		tcagetggee				300	
ggcagetttg	tgetgggage	cattgetett	ggagtggetg	ctgctgcagc	tgttacagca	360	
ggcgtggcca	tegetaagae	catcagactg	gaaagcgaag	tgacegecat	caacaacgcc	420	
		cgtcagcaca				480	
		cttegtgtee			-	540	
aagtgcccta	tcgacgacct	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600	
ctgaacgtcg	tgcggcagtt	tagcgacaac	gccggaatca	caccagecat	cageetggae	660	
ctgatgacag	atgetgaget	ggetagagee	gtgeetaaca	tgeetacate	tgeeggeeag	720	
atcaagctga	tgetegagaa	tagagecatg	gteegaegga	aaggettegg	cattetgatt	780	
ggcgtgtacg	gcagcagcgt	gatctatatg	gtgcagetge	ctatettegg	cgtgatcgac	840	
acaccctgct	ggattgtgaa	ggeegeteet	agetgtageg	agaagaaggg	caattacgcc	900	
tgeetgetga	gagaggacca	aggetggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960	
cctaacgaga	aggactgcga	gacaagaggc	gaccacgtgt	tetgtgatae	cgccgctgga	1020	

695

696

-continued

atcaatgtgg	ccgagcagag	caaagagtgc	aacatcaaca	teageaceac	caactateee	1080
tgcaaggtgt	ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tetgggagee	1140
ctggtggett	gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagetga	acaagggctg	cagctacatc	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg	tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cctgtgtcca	gcagettega	ccctatcaag	ttccctgagg	atcagttcca	ggtggccctg	1380
gaccaggtgt	tcgagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440
ctgtctagcg	ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gategeegtg	1500
ctgggcagct	ccatgateet	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc	ctccagaact	gagcggagtg	accaacaatg	getteateee	tcacaac	1617
<210> SEO :	ID NO 122					

<210> SEQ ID NO 122
<211> LENGTH: 1617
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 122

atgagetgga aggtggteat catetteage etgetgatea caeeteagea eggeetgaaa 60 gagagetace tggaagagte etgeageace ateacagagg getacetyte tgtgetgaga 120 accggetggt acaccaacgt gttcacactg gaagtgggeg acgtegagaa tetgacatge 180 tetgatggee etageetgat caagacegag etggatetga ceaagagege eetgagagaa 240 ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc 300 ggcagetttg tgetgggage cattgetett ggagtggetg etgetgeage tgttacagea 360 ggcgtggcca tcgctaagac catcagactg cctagcgaag tgaccgccat caacaacgcc 420 etgaagaaga caaacgagge egteageaca eteggeaatg gegttagagt getggeeaca 480 gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac 540 600 aagtgegaca tegacgacet gaagatggee gtgteettta geeagtteaa eeggeggttt 660 etgaacgteg tgeggeagtt tagegacaac geeggaatea caecageeat cageetggae etgatgacag atgetgaget ggetagagee gtgeetaaca tgeetacate tgeeggeeag 720 atcaagetga tgetegagaa tagageeatg gteegaegga aaggettegg eattetgatt 780 ggegtgtaeg geageagegt gatetatatg gtgeagetge etatettegg egtgategae 840 acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee 900 960 tgeetgetga gagaggacea aggetggtat tgteagaaeg eeggeageae egtgtaetae cetaacgaga aggaetgega gacaagagge gaceacgtgt tetgtgatae egeegetgga 1020 1080 atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140 1200 ctggtggett gttataaggg cgtgteetgt ageateggea geaacagagt gggeateate aagcagetga acaagggetg cagetacate aceaaceagg acgeegatae egtgaceate 1260 1320 gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga cetytyteea geagettega ceetateaag tteeetgagg ateagtteea gytygeeetg 1380 gaccaggtgt tegagaacat egagaattee caggetetgg tggaccagte caacagaate 1440

-continued

698

-continued							
etgtctageg eegagaaggg aaacacegge tteateateg tgateateet gategeegtg	1500						
etgggeaget ceatgateet ggtgteeate tteateatta teaagaagae eaagaageee	1560						
accggcgctc ctocagaact gagcggagtg accaacaatg gcttcatcoc tcacaac	1617						
<210> SEQ ID NO 123 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide							
<400> SEQUENCE: 123							
atgagetgga aggtggteat catetteage etgetgatea caeeteagea eggeetgaaa	60						
gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga	120						
accggctggt acaccaacgt gttcacactg gaagtgggcg acgtcgagaa tctgacatgc	180						
tetgatggee etageetgat caagacegag etggatetga ceaagagege eetgagagaa	240						
ctcaagaccg tgtctgccga tcagctggcc agagaggaac agatcgagaa tcctggcagc	300						
ggcagetttg tgetgggage cattgetett ggagtggetg etgetgeage tgttaeagea	360						
ggcgtggcca tcgctaagac catcagactg gaaagcgaag tgaccgccat caacaacgcc	420						
ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480						
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac	540						
aagtgegaca tegacgacet gaagatggee gtgteettta geeagtteaa eeggeggttt	600						
ctgaacgtog tgoggeagtt tagogacaac googgaatca caccagocat cagootggac	660						
ctgatgacag atgetgaget ggetagagee gtgeetaaca tgeetacate tgeeggeeag	720						
atcaagetga tgetegagaa tagageeatg gteegaegga aaggettegg cattetgatt	780						
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840						
acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee	900						
tgeetgetga gagaggacea aggetggtat tgteagaaeg eeggeageae egtgtaetae	960						
cctaacgaga aggactgcga gacaagaggc gaccacgtgt totgtgatac cgccgctgga	1020						
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc	1080						
tgeaaggtgt ceaceggeag geacectatt tetatggtgg etetgtetee tetgggagee	1140						
etggtggett gttataaggg egtgteetgt ageateggea geaacagagt gggeateate	1200						
aagcagetga acaagggetg cagetacate accaaceagg acgeegatae egtgaceate	1260						
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320						
cetgtgteca geagettece acctateaag tteeetgagg ateagtteea ggtggeeetg	1380						
gaccaggtgt tegagaacat egagaattee eaggetetgg tggaccagte eaacagaate	1440						
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg	1500						
ctgggcagct ccatgatect ggtgtecate tteateatta teaagaagae caagaageee	1560						
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac	1617						
2210> SEQ ID NO 124 2211> LENGTH: 1617 2212> TYPE: DNA 2213> ORGANISM: Artificial Sequence 2220> FEATURE: 2223> OTHER INFORMATION: Synthetic Polynucleotide							

<400> SEQUENCE: 124

699

atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa

60

700

gagagetaee tggaagagte	ctgcagcacc	atcacagagg	gctacctgtc	tgtgctgaga	120
accggctggt acaccaacgt	gttcacactg	gaagtgggcg	acgtcgagaa	tetgacatge	180
tetgatggee ctageetgat	caagaccgag	ctggatctga	ccaagagcgc	cctgagagaa	240
ctcaagaccg tgtctgccga	tcagctggcc	agagaggaac	agatcgagaa	tcctggcagc	300
ggcagetttg tgetgggage	cattgetett	ggagtggetg	ctgctgcagc	tgttacagca	360
ggegtggeea tegetaagae	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420
ctgaagaaga caaacgaggo	cgtcagcaca	ctcggcaatg	gcgttagagt	getggeeaca	480
geegtgegeg agetgaagga	cttcgtgtcc	aagaacctga	cacgggccat	taacaagaac	540
aagtgegaca tegaegaeet	gaagatggcc	gtgtccttta	gccagttcaa	ccggcggttt	600
ctgaacgtcg tgcggcagtt	tagegacaac	gccggaatca	caccagccat	cageetggae	660
ctgatgacag atgetgaget	ggetagagee	gtgcctaaca	tgeetacate	tgeeggeeag	720
atcaagetga tgetegagaa	tagagecatg	gtccgacgga	aaggettegg	cattetgatt	780
ggcgtgtacg gcagcagcgt	gatetatatg	gtgcagetge	ctatettegg	cgtgatcgac	840
acaccctgct ggattgtgaa	ggeegeteet	agetgtageg	agaagaaggg	caattacgcc	900
tgeetgetga gagaggaeea	aggetggtat	tgtcagaacg	ccggcagcac	cgtgtactac	960
cctaacgaga aggactgcga	gacaagaggc	gaccacgtgt	tctgtgatac	cgccgctgga	1020
atcaatgtgg ccgagcagag	caaagagtgc	aacatcaaca	tcagcaccac	caactatccc	1080
tgcaaggtgt ccaccggcag	gcaccctatt	tctatggtgg	ctctgtctcc	tetgggagee	1140
ctggtggctt gttataaggg	cgtgtcctgt	agcatcggca	gcaacagagt	gggcatcatc	1200
aagcagetga acaagggetg	cagetacate	accaaccagg	acgccgatac	cgtgaccatc	1260
gacaacaccg tgtatcagct	gagcaaggtg	gaaggcgaac	agcacgtgat	caagggcaga	1320
cetgtgteea geagettega	ccctatcaag	ttccctgaga	accagttcca	ggtggccctg	1380
gaccaggtgt tegagaacat	cgagaattcc	caggetetgg	tggaccagtc	caacagaatc	1440
ctgtctagcg ccgagaaggg	aaacaccggc	ttcatcatcg	tgatcatcct	gategeegtg	1500
ctgggcaget ccatgateet	ggtgtccatc	ttcatcatta	tcaagaagac	caagaagccc	1560
accggcgctc ctccagaact	gageggagtg	accaacaatg	getteateee	tcacaac	1617
<210> SEQ ID NO 125 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide					
<400> SEQUENCE: 125					
atgagetgga aggtggteat	catetteage	ctgctgatca	caceteagea	cggcctgaaa	60
gagagetace tggaagagte	ctgcagcacc	atcacagagg	getacetgte	tgtgctgaga	120
accggctggt acaccaacgt	gttcacactg	gaagtgggcg	acgtegagaa	tetgacatge	180
tetgatggee ctageetgat	caagaccgag	ctggatetga	ccaagagcgc	cctgagagaa	240
ctcaagaccg tgtctgccga	tcagetggee	agagaggaac	agatogagaa	tcctggcagc	300
ggcagetttg tgetgggage	cattgetett	ggagtggetg	ctgctgcagc	tgttacagca	360
ggegtggeea tegetaagae	catcagactg	gaaagcgaag	tgaccgccat	caacaacgcc	420

701

ctgaagaaga caaacgaggc cgtcagcaca ctcggcaatg gcgttagagt gctggccaca	480
gccgtgcgcg agctgaagga cttcgtgtcc aagaacctga cacgggccat taacaagaac	540
aagtgegaea tegaegaeet gaagatggee gtgteettta geeagtteaa eeggeggttt	600
ctgaacgtog tgoggoagtt tagogacaac googgaatca caccagocat cagootggac	660
ctgatgacag atgetgaget ggetagagee gtgeetaaca tgeetacate tgeeggeeag	720
atcaagetga tgetegagaa tagageeatg gteegaegga aaggettegg cattetgatt	780
ggcgtgtacg gcagcagcgt gatctatatg gtgcagctgc ctatcttcgg cgtgatcgac	840
acaccetget ggattgtgaa ggeegeteet agetgtageg agaagaaggg caattaegee	900
tgeetgetga gagaggaeca aggetggtat tgteagaaeg eeggeageae egtgtaetae	960
cctaacgaga aggactgoga gacaagaggo gaccacgtgt totgtgatac ogoogotgga	1020
atcaatgtgg cegagcagag caaagagtgc aacatcaaca tcagcaccac caactateee	1080
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagec	1140
ctggtggett gttataaggg egtgteetgt ageateggea geaacagagt gggeateate	1200
aagcagetga acaagggetg cagetacate aceaaceagg acgeegatae egtgaceate	1260
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga	1320
cetgtgteca geagettega ecetateaag tteeeteagg ateagtteea ggtggeeetg	1380
gaccaggtgt tegagaacat egagaattee caggetetgg tggaccagte caacagaate	1440
ctgtctageg eegagaaggg aaacaeegge tteateateg tgateateet gategeegtg	1500
ctgggcaget ceatgateet ggtgteeate tteateatta teaagaagae caagaageee	1560
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac	1617
<210> SEQ ID NO 126 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
<211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	60
<211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 126	60 120
<211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 126 atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa	
<pre><211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 126 atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getaeetgte tgtgetgaga</pre>	120
<211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 126 atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getaeetgte tgtgetgaga aceggetggt acaecaacgt gtteacaetg gaagtgggeg acgtegagaa tetgaeatge	120 180
<pre><211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 126 atgagetgga aggtggtcat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getaectgte tgtgetgaga aceggetggt acaecaaegt gtteacaetg gaagtgggeg acgtegagaa tetgaeatge tetgatggee etageetgat caagaeegag etggatetga ceaagagege eetgagagaa</pre>	120 180 240
<pre><211> LENGTH: 1617 <212> TYPE: DNA <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATORE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 126 atgagetgga aggtggteat catetteage etgetgatea caeeteagea eggeetgaaa gagagetace tggaagagte etgeageace ateaeagagg getaeetgte tgtgetgaga aceggetggt acaecaaegt gtteaeaetg gaagtgggeg acgtegagaa tetgaeatge tetgatggee etageetgat eaagaeegag etggatetga ceaagagege eetgagagaa cteaagaeeg tgtetgeega teagetggee aggaggaae agategagaa teetggeage</pre>	120 180 240 300
<pre><211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 126 atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getaectgte tgtgetgaga aceggetggt acaecaaegt gtteacaetg gaagtgggeg acgtegagaa tetgaeatge tetgatggee etageetgat eaagaeegag etggatetga ceaagagege eetgagagaa etcaagaeeg tgtetgeega teagetggee agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttaeagea</pre>	120 180 240 300 360
<pre><211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATORE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 126 atgagetgga aggtggteat catetteage etgetgatea caeeteageag eggeetggt acaeceaegg gtteacetgte tgtgetgaga aceggetggt acaeceaegt gtteacaetg gaagtgggeeg acgtegagaa tetgaeatge tetgatggee etageetgat eaagaeegag etggatetga ecaagaegee eetgagagaa cteaagaeeg tgtetgeega teagetggee agagaggaae agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeeage tgtaeagea ggegtggeea tegetaagae eateagaetg gaaagegaag tgaeegeeat eaaeaaegee </pre>	120 180 240 300 360 420
<pre><211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 126 atgagetgga aggtggtcat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getacetgte tgtgetgaga acceggetggt acaecaaegt gtteacaetg gaagtgggeg acgtegagaa tetgaeatge tetgatggee etageetgat caagaeegag etggatetga ecaagagege eetgagagaa etcaagaeeg tgtetgeega teagetggee aggtegagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttaeagea ggegtggeea tegetaagae eateagaetg gaaagegaag tgaeegeeat caacaaegee etgaagaaga caaaegagge egteageaea eteggeaatg gegttagagt getggeeaea etgaagaaga caaaegagge egteageaea eteggeaatg gegttagagt getggeeaea</pre>	120 180 240 300 360 420 480
<pre><211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 126 atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetace tggaagagte etgeageace ateacagagg getaectgte tgtgetgaga aceggetggt acaecaaegt gtteacaetg gaagtgggeg aegtegagaa tetgaeatge tetgatggee etageetgat eaagaeegag etggatetga ceaagagege eetgagagaa eteaagaeeg tgtetgeega teagetggee aggagggaae agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttaeagea ggegtggeea tegetaagae cateagaetg gaaagegaag tgaeegeeat eaaeaaegee etgaagaaga caaaegagge egteageaea eteggeaatg gegttagagt getggeeaea geegtgeeg agetgaagga ettegtgtee aagaaeetga eaegggeeat taacaagaee geegtgeeg agetgaagga ettegtgtee aagaaeetga eaeggeeat taacaagaee geegtgeeg agetgaagga ettegtgtee aagaaeetga eaeggeeat taacaagaee geegtgegeg agetgaagga ettegtgtee aagaaeetga eaeggeeat taacaagaee geegtgegeg agetgaagga ettegtgtee aagaaeetga eaeggeeat taacaagaee geegtgegeeg agetgaagga ettegtgtee aagaaeetga eaeggeeat taacaagaee geegtgegee agetgaagga ettegtgtee aagaaeetga eaeggeeat taacaagaee geegtgegeeg agetgaagga ettegtgtee aagaaeetga eaeggeeat taacaagaee geegtgegeeg agetgaagga ettegtgtee aagaaeetga eaeggeeettaaeetgee geegtgegee agetgaagga ettegtgtee aagaaeetga eaeggeeettaaeaegaeae geegtgeege agetgaagga ettegtgtee aagaaeetga eaeggeettaaeaegaeae geegtgeegeg agetgaagga ettegtgtee aagaaeetga eaeggeeettaaeaegaeae geegtgeegeg agetgaagga ettegtgtee aagaaeetga eaeggeeettaaeaegaeae geegtgeegegega getgaagga ettegtgtee aagaaeetga eaegeetaagae taacaagaee geegtgeegega agetgaagga ettegtgtee aagaaeetga eaegeetaaeaegaeae geegtgeetgeegegaegeetaaeaegaegeettaaeaegaeetgaeaegeetaaeaegaeae geegtgeegeetgeegegeege</pre>	120 180 240 300 360 420 480 540
<pre><211> LENGTH: 1617 <212> TYPE: DNA <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 126 atgagetgga aggtggteat catetteage etgetgatea caceteagea eggeetgaaa gagagetaee tggaagagte etgeageaee ateacagagg getaeetgte tgtgetgaga aceggetggt acaecaaegt gtteacaetg gaagtgggeg acgtegagaa tetgaeatge tetgatggee etageetgat eaagaeegag etggatetga ecaagagege eetgagagaa eteaagaeeg tgtetgeega teagetggee aggagggaae agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttaeagea ggegtggeea tegetaagae cateagaetg gaaagegaag tgaeegeeat eaaeaaegee etgaagaaga caaaegagge egteageaea eteggeaag gegttagagt getggeeaat aggegtgeeg agetgaagga ettegtgtee aagaaeetga eaegggeeat taacaagaae aagtgegaea tegacgaeet gaagatggee gtgteetta geeagtggaa ceggeggttt aagaagaa eaaeegage egteagee ategetaga eaegegaetta eaegaaga aggegtggeea tegetaagae egteggeea etegeeatg eaegeetta aagaaega agatgaagga ettegtgtee aagaaeetga eaegggeeat taacaagaae aagtgegaea tegacgaeet gaagatggee gtgteetta geeagtggaa eeggeggttt aagaagaaga eaegegaeet gaagatggee gtgteetta geeagtggaa eeggeggttt aagtgegaea tegacgaeet gaagatggee gtgteetta geeagtggaa eeggeggttt aagtgegaea tegacgaeet gaagatggee gtgteetta geeagtggaa eeggeggttt aagtgegaea tegacgaeet gaagatggee gtgteetta geeagtggaa eeggeggttt</pre>	120 180 240 300 360 420 480 540
<pre><211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 126 atgagetgga aggtggtcat catetteage etgetgatea caceteagea eggeetgaa aceggetggt acaecaaegt gtteacaetg gaagtgggeg acgtegagaa tetgaeatge tetgatggee etageetgat eaagaeegg etggatetga ecaagagege eetgagagaa etcaagaeeg tgtetgeega teagetggee aggtegagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttaeagea ggegtggeea tegetaagae eateagaetg gaaagegaag tgaeegeeat eaaeaaegee etgaagaaga caaaegagge egteageae eteggeaag gegttagagt getggeeat ageegtgegeg agetgaagga ettegtgtee aagaaeetga eaeggegett etgaagaega tegaegae egteggee gtgteetta geeggeeat taaeaagaee aggegtgeea tegeeagae egteggeeaga eeteggeaate eaegeeggeett etgaagaaga caaaegagge egteageae eteggeaatg eetggeeat taaeaagaee aagtgegaea tegaegaeet gaagatggee gtgteetta geeagtggaa eeggeggttt etgaaegteg tgeggeagtt tagegaeaae geeggaatea caceageeat caaeeagaee etgaaegteg tgeggeagtt tagegaeae geeggaatea caceageeat cageetggae etgaaegteg tgeggeagt tagegaeae geeggaatea caceageegae cageetgae etgaaegteggaeae tegaegaeae geeggaatea caceageegeeggae etgaaeggegaeaegeeggaegaegaegaeggaegaeaegaeaegaeaegeegae etgaaeggeaeaegeegaegaegaegaeaegeegaegaeaeaegeegaeaeaegaeaeg</pre>	120 180 240 300 360 420 480 540 600
<pre><211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 126 atgagetgga aggtggtcat catetteage etgetgatea caeeetgaga gagagetace tggaagagte etgeageace ateaeagagg getacetgte tgtgetgaga aceggetggt acaeeaaegt gtteaeaetg gaagtgggeg aegtegagaa teetgaeatge teegatggee etageeega eaggeeggaa teetggeaga etcaagaeeg tgteegeega teageeggee aggaeggaa teetggeaga ggeagetttg tgeeggage eategeetg gaaageegaa teetggeage ggeegtggeea tegeetaagae eategeegg gaaageegaa tgeegeegaga etgaagaaga eaaaegagge egteageea eeegaaggae tgaeeaae geegtgeegg ageegaagga ettegee agaaaeeaga tgaeegeeat eaaeaaegee etgaagaaga caaaegagge egteageea eeegaae taaeaaegee etgaagaaga caaaegagge egteageea eeegaae taaeaaegee etgaagaaga caeaeegage egteageea eagaaeeega eaegggeeat taaeaagaee aagtgeegaea tegaegaeet gaagatggee gtgeeetta geegeeat taaeaagaee aagtgeegaea tegaegaeet gaagatggee gtgeeetta geegeeat taaeaagaee aagtgeegaea tegaegaeet gaagatggee gtgeeetta geeageeat eageeggettt etgaaegteg tgeegeagtt tagegaeaae geeggaatea eaecageeat eageetggae etgatgaeag atgetgaget ggetagagee gtgeetaaea tgeetaeate tgeeggeeag etgatgaeag atgetgaeget ggetagagee gtgeetaaea tgeetaeate tgeeggeeag etgatgaeageagae atgetgaegetgaegeeggeeggeeggeegaeageeggeeg</pre>	120 180 240 300 360 420 480 540 600 660
<pre><211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 126 atgagetgga aggtggtcat catetteage etgetgatea caeetgaga eggeetggt acceeded etgeagage etgeagagg getacetgte tgtgetgaga acceggetggt acaeeaacgt gtteacaetg gaagtgggeg acgtegagaa tetgaeatge tetgatggee etageetgat eaagaeegag etggatetga ecaagagege eetggagaa etcaagaeeg tgtetgeega teagetggee agagaggaae agategagaa teetggeage ggeagetttg tgetgggage eattgetett ggagtggetg etgetgeage tgttaeagea geegtggeea tegetaagae eategetg gaaagegaag tgaeegeeat eaaeaaegee etgaagaaga eaaaegagge egteageaea eteggeaatg gegttagagt getggeeat aagtgegaea tegaeagag ettegtee agaaaeetga eaegggeeat taaeaaagee etgaagaaga eaaaegagge egteageaea eteggeaatg eegtagaga eegeggeeat aagtgegaea tegaegaeet gaagatggee gtgeetta geeagtggaa eegeeggttt etgaaegteg tgeggeagtt tagegaeaae geeggaatea eaeeageeat eageetggae aagtgegaea tegaegaeet gaagatggee gtgeetaaea tgeetaeate tgeeegge etgaaagaag atgetgaget ggetagagee gtgeetaaea tgeetaeate tgeeegee etgaaegteg tgeggeagtt tagegaeaae gtgeetaaea tgeetaeate tgeeegeeg ateaagetga tgetegagaa tagageeatg gteegaega aaggettegg eattetgate etgaaegteg tgeegeagat tagegaeaa gtgeegaaa tgeetgaeae eageetggae etgatgaeag atgetgaget ggetagagee gtgeetaaea tgeetaeate tgeeegeeaga ateaagetga tgetegagaa tagageeatg gteegaegaa aaggettegg eattetgatt</pre>	120 180 240 300 360 420 480 540 600 660 720

703

704

- tgeetgetga gagaggaeea aggetggtat tgteagaaeg eeggeageae egtgtaetae 960						
cctaacgaga aggactgoga gacaagaggo gaccaogtgt totgtgatao ogoogotgga 1020						
atcaatgtgg ccgagcagag caaagagtgc aacatcaaca tcagcaccac caactatccc 1080						
tgcaaggtgt ccaccggcag gcaccctatt tctatggtgg ctctgtctcc tctgggagcc 1140						
ctggtggett gttataaggg egtgteetgt ageateggea geaacagagt gggeateate 1200						
aagcagetga acaagggetg cagetacate aceaaceagg acgeegatae egtgaceate 1260						
gacaacaccg tgtatcagct gagcaaggtg gaaggcgaac agcacgtgat caagggcaga 1320						
cctgtgtcca gcagettega eestateaag tteeetgagg ateagtteea ggtggeeetg 1380						
gaccaggtgt tegagaacat egagaattee eaggetetgg tggaccagte caacagaate 1440						
ctgtctagcg ccgagaaggg aaacaccggc ttcatcatcg tgatcatcct gatcgccgtg 1500						
ctgggcaget ceatgateet ggtgteeate tteateatta teaagaagae caagaageee 1560						
accggcgctc ctccagaact gagcggagtg accaacaatg gcttcatccc tcacaac 1617						
<210> SEQ ID NO 127 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide						
<400> SEQUENCE: 127						
augageugga agguggucau caucuucage eugeugauca caceucagea eggeeugaaa 60						
gagageuace uggaagague eugeageace aucacagagg geuaceugue ugugeugaga 120						
aceggeuggu acaeeaaegu guucaeaeug gaagugggeg aeguegagaa ueugaeauge 180						
ucugauggee cuagecugau caagaeegag cuggaucuga eeaagagege eeugagagaa 240						
cucaagaceg ugueugeega ucageuggee agagaggaae agauegagaa uceuggeage 300						
ggcageuuug ugeugggage cauugeueuu ggaguggeug eugeugeage uguuacagea 360						
ggcguggcca ucugcaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc 420						
cugaagaaga caaacgagge egucageaca cueggeaaug geguuagagu geuggeeuuu 480						
gcegugegeg ageugaagga cuucguguee aagaaceuga caegggeeeu gaacaagaae 540						
aagugegaea uegaegaeeu gaagauggee gugueeuuua geeaguueaa eeggegguuu 600						
cugaacgucg ugcggcaguu uagcgacaac gccggaauca caccagccau cagccuggac 660						
cugaugacag augeugageu ggeuagagee gugeeuaaca ugeeuacaue ugeeggeeag 720						
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugugu 780						
ggeguguaeg geageagegu gaucuauaug gugeageuge cuaucuuegg egugauegae 840						
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc 900						
ugeeugeuga gagaggaeea aggeugguau ugueagaaeg eeggeageae eguguaeuae 960						
ccuaacgaga aggacugoga gacaagaggo gaccacgugu ucugugauac ogoogougga 1020						
aucaaugugg cegageagag caaagaguge aacaucaaca ucageaceae caacuaucee 1080						
ugcaaggugu ccaceggeag geacecuauu ucuauggugg cucugueuee ucugggagee 1140						
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc 1200						
aagcagcuga acaagggcug cagcuacauc accaaccagg acgecgauac cgugaccauc 1260						

705

continued

706

-continued	
ccugugueca geageuuega eccuaueaag uueccugagg aucaguueaa eguggeeeug	1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440
cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucaueeu gauegeegug	1500
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagccc	1560
aceggegeue euceagaacu gageggagug aceaacaaug geuucaueee ucacaac	1617
<210> SEQ ID NO 128 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 128	
andagendda addngancan canenneade endendanea caeencadea eddeendaaa	60
gagageuace uggaagague eugeageace aucaeagagg geuaceugue ugugeugaga	120
accggcuggu acaccaacgu guucacacug gaaguggggg acgucgagaa ucugacaugc	180
ucugauggee cuagecugau caagaeegag cuggaucuga ceaagagege ceugagagaa	240
cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc	300
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360
ggeguggeea ucugeaagae caucagaeug gaaagegaag ugaeegeeau caacaaegee	420
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca	480
gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac	540
aagugcgaca ucgacgaccu gaagauggcc guguccuuua gccaguucaa ccggcgguuu	600
cugaacgueg ugeggeaguu uagegaeaae geeggaauea eaceageeau eageeuggae	660
cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag	720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugugu	780
ggeguguaeg geageagegu gaucuauaug gugeageuge cuaucuuegg egugauegae	840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc	900
ugecugcuga gagaggacca aggeugguau ugucagaacg eeggeageac eguguacuac	960
ccuaacgaga aggacugcga gacaagaggo gaccacgugu ucugugauac cgccgcugga	1020
aucaaugugg cogagcagag caaagagugo aacaucaaca ucagcaccac caacuaucco	1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260
dacaacacca nanancadon dadcaaddna daaddodaac adcacandan caadddcada	1320
ccugugueca geageuuega eccuaueaag uueccugage accaguggea uguggeecug	1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440
cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucaueeu gauegeegug	1500
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagcc	1560
accegegoue cuccagaacu gageggagug accaacaaug geuucaucee ucacaac	1617
<210> SEQ ID NO 129	

<210> SEQ ID NO 129 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence

707	
-----	--

-continued

708

<220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 129 augageugga agguggueau caucuucage cugeugauea caecueagea eggeeugaaa 60 gagageuace uggaagague eugeageace aucacagagg geuaceugue ugugeugaga 120 accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc 180 ucugauggee cuagecugau caagacegag cuggaucuge ucaagagege ceugagagaa 240 cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc 300 ggcagcuuug ugcugggage cauugcucuu ggaguggcug cugcugcage uguuacagca 360 ggeguggeea uegeuaagae caucagaeug gaaagegaag ugaeegeeau caacaaegee 420 480 cuqaaqaaqa caaacqaqqc cqucaqcaca cucqqcaauq qcquuaqaqu qcuqqccaca 540 gecqugegeg ageugaagga cuucquguee aagaaceuga caegggeeau uaacaagaac aagugegaca ucccugaccu gaagauggee guguecuuua geeaguucaa eeggegguuu 600 cugaacgucg ugcggcaguu uagcgacaac geeggaauca caccagecau cagecuggac 660 720 cuqauqacaq auqcuqaqcu qqcuaqaqcc quqccuaaca uqccuacauc uqccqqccaq aucaaqcuqa uqcucqaqaa uaqaqccauq quccqacqqa aaqqcuucqq cauucuqauu 780 ggeguguaeg geageagegu gaucuauaug gugeageuge cuaucuuegg egugauegae 840 900 acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc ugecugeuga gagaggacea aggeugguau ugucagaaeg eeggeageae eguguaeuae 960 1020 ccuaacgaga aggacugega gacaagagge gaccaegugu ucugugauac egeegeugga aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc 1080 ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc 1140 cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc 1200 aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc 1260 gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga 1320 ecugugueca geageuuega eccuaueaag uueceugagg aueaguueea gguggeeeug 1380 gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc 1440 cugueuageg cegagaaggg aaacacegge uucaucaueg ugaucaueeu gauegeegug 1500 cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaageee 1560 accggegeue cuccagaacu gageggagug accaacaaug geuucaueee ucacaac 1617 <210> SEQ ID NO 130 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 130 augageugga agguggueau caucuucage cugeugauea caecueagea eggeeugaaa 60 gagageuace uggaagague eugeageace aucacagagg geuaceugue ugugeugaga 120 aceggeuggu acaecaaegu guucaeaeug gaagugggeg acguegagaa ueugaeauge 180 ucugauggee cuageeugau caagaeegag cuggaueuge ucaagagege eeugagagaa 240 cucaagaccg ugucugcega ucageuggee agagaggaac agauegagaa uccuggeage 300

709

ggcageuuug ugcugggage cauugeucuu ggaguggeug cugcugeage uguuacagea

ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc

-continued

cugaagaaga caaacgagge cgucagcaca cucggcaaug geguuagagu geuggecaca 480 geegugegeg ageugaagga euueguguee aagaaeeuga eaegggeeau uaaeaagaae 540 aagugegaca ucccugaccu gaagauggee guguecuuua geeaguucaa eeggegguuu 600 cugaacgueg ugeggeaguu uagegacaac geeggaauca caceageeau cageeuggae 660 cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag 720 aucaageuga ugeuegagaa uagageeaug gueegaegga aaggeuuegg eauueugauu 780 ggeguguaeg geageagegu gaucuauaug gugeageuge cuaucuuegg egugauegae 840 acacccugeu ggauugugaa ggeegeueeu ageuguageg agaagaaggg caauuaegee 900 ugecugeuga gagaggacea aggeugguau ugucagaaeg eeggeageae eguguaeuae 960 1020 ccuaacgaga aggacugega gacaagagge gaccaegugu ucugugauac egeegeugga 1080 aucaaugugg cegageagag caaagaguge aacaucaaca ucageaceac caacuaucee uqcaagququ ccaccqqcag gcacccuauu ucuauqquqg cucuqucucc ucuqqgagcc 1140 1200 cugguggeuu guuauaaggg cguguccugu agcaucggea geaacagagu gggeaucauc aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc 1260 1320 gacaacaccg uguaucagcu gagcaaggug gaaggegaac agcacgugau caagggeaga ccugugueca gcageuucga cccuaucaag uucecugaga accaguucca gguggeecug 1380 gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc 1440 cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucaueeu gauegeegug 1500 cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagcee 1560 1617 augageugga agguggueau caucuucage eugeugauea caecucagea eggeeugaaa 60 gagageuaee uggaagague eugeageaee aucaeagagg geuaeeugue ugugeugaga 120 accegeuggu acaccaaceu guucacacue gaaguegee aceuceagaa ucueacaue 180 ucugauggee cuagecugau caagacegag cuggaucuge ucaagagege ceugagagaa 240

<211> LENGTH: 1617 <212> TYPE: RNA <220> FEATURE:

<400> SEQUENCE: 131

aceggegeue euceagaaeu gageggagug aceaacaaug geuucaueee ucacaae <210> SEQ ID NO 131 <213> ORGANISM: Artificial Sequence <223> OTHER INFORMATION: Synthetic Polynucleotide

cucaagaceg ugueugeega ucageuggee agagaggaae agauegagaa uceuggeage

qqcaqcuuuq uqcuqqqaqc cauuqcucuu qqaquqqcuq cuqcuqcaqc uquuacaqca

ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc

cugaagaaga caaacgagge egucageaca cueggeaaug geguuagagu geuggeeaca

geegugegeg ageugaagga euuegugeuu aagaaceuga caegggeeau uaacaagaac

aagugegaca ucccugaccu gaagauggee guguecuuua geeaguucaa eeggegguuu

cuqaacqueq uqeqqcaquu uaqeqacaac qeeqqaauca caceaqecau caqecuqqae

cugaugacag augcugagcu ggcuagagco gugccuaaca ugccuacauc ugcoggcoag

aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu

710

360

420

300

360

420

480

540

600

660

711

712

ggcguguacg	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840
acacccugcu	ggauugugaa	ggeegeueeu	ageuguageg	agaagaaggg	caauuacgee	900
ugecugeuga	gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960
ccuaacgaga	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080
ugcaaggugu	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140
cugguggcuu	guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200
aagcagcuga	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320
ccugugucca	gcagcuucga	cccuaucaag	uucccugagg	aucaguucca	gguggeeeug	1380
gaccaggugu	ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440
cugucuageg	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500
cugggcagcu	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560
accggcgcuc	cuccagaacu	gageggagug	accaacaaug	gcuucaucce	ucacaac	1617
<220> FEAT	TH: 1617 : RNA NISM: Artif.	_		eotide		
<400> SEQU	ENCE: 132					
augagcugga	agguggucau	caucuucage	cugcugauca	caccucagca	cggccugaaa	60
gagageuace	uggaagaguc	cugcagcacc	aucacagagg	gcuaccuguc	ugugcugaga	120
accggcuggu	acaccaacgu	guucacacug	gaagugggcg	acgucgagaa	ucugacaugc	180
ucugauggee	cuagccugau	caagaccgag	cuggaucugc	ucaagagcgc	ccugagagaa	240
cucaagaccg	ugucugccga	ucagcuggcc	agagaggaac	agaucgagaa	uccuggcagc	300
ggcageuuug	ugcugggagc	cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360
ggeguggeea	ucgcuaagac	caucagacug	gaaagcgaag	ugacegecau	caacaacgcc	420
cugaagaaga	caaacgaggc	cgucagcaca	cucggcaaug	gcguuagagu	gcuggccaca	480
geegugegeg	agcugaagga	cuucgugcuu	aagaaccuga	cacgggccau	uaacaagaac	540
aagugcgaca	ucccugaccu	gaagauggcc	guguccuuua	gccaguucaa	ccggcgguuu	600
cugaacgucg	ugeggeaguu	uagcgacaac	gccggaauca	caccagecau	cagccuggac	660
cugaugacag	augcugagcu	ggcuagagcc	gugccuaaca	ugccuacauc	ugeeggeeag	720
aucaagcuga	ugcucgagaa	uagagccaug	guccgacgga	aaggcuucgg	cauucugauu	780
ggcguguacg	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840
acacccugcu	ggauugugaa	ggccgcuccu	agcuguagcg	agaagaaggg	caauuacgcc	900
ugccugcuga	gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960
ccuaacgaga	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080
ugcaaggugu	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140
	guuauaaggg					1200
55-555 Au	5	J J	5	J		

~	1	
1	J	. Э

-continued				
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260			
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320			
ccugugueca gcageuuega eccuaucaag uueceugaga accaguueca gguggeecug	1380			
gaccaggugu ucgagaacau cgagaauucc caggoucugg uggaccaguc caacagaauc	1440			
cugucuageg eegagaaggg aaacaeegge uucaucaueg ugaucaueeu gauegeegug	1500			
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagccc	1560			
aceggegeue cuccagaacu gageggagug aceaacaaug geuucaucee ucacaac	1617			
<210> SEQ ID NO 133 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide				
<400> SEQUENCE: 133				
augagcugga agguggucau caucuucage cugcugauca caccucagea eggecugaaa	60			
gagagcuace uggaagague cugeageace aucaeagagg geuaeeugue ugugeugaga	120			
accggcuggu acaccaacgu guucacacug ccugugggcg acgucgagaa ucugacaugc	180			
ucugauggee cuagecugau caagaeegag cuggaucuge ucaagagege ceugagagaa	240			
cucaagaceg ugueugeega ucageuggee agagaggaae agauegagaa uceuggeage	300			
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360			
ggeguggeea uegeuaagae caucagaeug gaaagegaag ugaeegeeau caacaaegee	420			
cugaagaaga caaacgagge egucageaca cueggeaaug geguuagagu geuggeeaca	480			
geegugegeg ageugaagga cuucguguee aagaaceuga caegggeeau uaacaagaac	540			
aagugegaca uegaegaecu gaagauggee gugueeuuua geeaguueaa eeggegguuu	600			
cugaacgucg ugeggeaguu uagegacaac geeggaauca caceageeau cageeuggae	660			
cugaugacag augeugageu ggeuagagee gugeeuaaca ugeeuacaue ugeeggeeag	720			
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu	780			
ggeguguaeg geageagegu gaucuauaug gugeageuge cuaucuuegg egugauegae	840			
acacecugeu ggauugugaa ggeegeueeu ageuguageg agaagaaggg caauuaegee	900			
ugecugcuga gagaggacca aggcugguau ugucagaacg ceggcageac eguguacuac	960			
ccuaacgaga aggacugega gacaagagge gaccacgugu ucugugauac egeegeugga	1020			
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc	1080			
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140			
cugguggeuu guuauaaggg cguguccugu agcaucggea geaacagagu gggeaucauc	1200			
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260			
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320			
ccugugueca geageuuega cecuaucaag uucceugagg aucaguueca gguggeeeug	1380			
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440			
cugucuageg eegagaaggg aaacaeegge uucaucaueg ugaucaueeu gauegeegug	1500			
cugggcageu ceaugaueeu ggugueeaue uueaueauua ueaagaagae caagaageee	1560			
aceggegeue cuccagaacu gageggagug aceaacaaug geuucaucee ucacaac	1617			

715

-continued

<210> SEQ ID NO 134 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 134 augageugga agguggueau caucuucage eugeugauea caecucagea eggeeugaaa 60 gagageuace uggaagague eugeageace aucaeagagg geuaceugue ugugeugaga 120 accegeuggu acaccaacgu guucacacug ceugugggeg acguegagaa ueugacauge 180 ucugauggee cuagecugau caagaeegag cuggaucuge ucaagagege ceugagagaa 240 cucaagaeeg ugucugeega ucageuggee agagaggaae agauegagaa uceuggeage 300 ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca 360 420 qqcquqqcca ucqcuaaqac caucaqacuq qaaaqcqaaq uqaccqccau caacaacqcc cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca 480 540 geegugegeg ageugaagga euueguguee aagaaceuga eaegggeeau uaacaagaac aagugegaca uegaegaeeu gaagauggee gugueeuuua geeaguueaa eeggegguuu 600 cuqaacqueq uqeqqcaquu uaqeqacaac qeeqqaauca caceaqecau caqecuqqae 660 cuqaugacag augeugageu ggeuagagee gugeeuaaca ugeeuacaue ugeeggeeag 720 780 aucaageuga ugeuegagaa uagageeaug gueegaegga aaggeuuegg cauueugauu ggeguguaeg geageagegu gaucuauaug gugeageuge cuaucuuegg egugauegae 840 acacceugeu ggauugugaa ggeegeueeu ageuguageg agaagaaggg caauuaegee 900 ugecugeuga gagaggacea aggeugguau ugucagaaeg eeggeageae eguguaeuae 960 ccuaacgaga aggacugega gacaagagge gaceaegugu ucugugauae egeegeugga 1020 aucaaugugg cegageagag caaagaguge aacaucaaca ucageaceae caacuaucee 1080 ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc 1140 cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc 1200 aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc 1260 gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga 1320 ccugugueca geageuuega eccuaucaag uucceugaga accaguueca gguggeecug 1380 gaccaggugu ucgagaacau cgagaauucc caggeucugg uggaccaguc caacagaauc 1440 cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucaueeu gauegeegug 1500 cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagccc 1560 1617 accopeque succapaesu pageopaquo accaacaauo qeuucauese ucacaas <210> SEQ ID NO 135 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 135 augageugga agguggueau caucuucage cugeugauea caecueagea eggeeugaaa 60 gagageuace uggaagague eugeageace aucaeagagg geuaceugue ugugeugaga 120 accegeuggu acaccaacgu guucacacug gaagugggeg acguegagaa ucugacauge 180

717

718

ncndanddoc cnadcondan caadacodad cnddanondo ncaadadodo condadadaa	240				
cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc	300				
ggcagcuuug ugcugggage cauugcucuu ggaguggcug cugcugcage uguuacagca	360				
ggeguggeea uegeuaagae caucagaeug gaaagegaag ugaeegeeau caacaaegee	420				
cugaagaaga caaacgagge cgucagcaca cucggcaaug gcguuagagu gcuggccaca	480				
geegugegeg ageugaagga euueguguee aagaaceuga caegggeeau uaacaagaac	540				
aagugegaca uegaegaecu gaagauggee gugueeuuua geeaguueaa eeggegguuu	600				
cugaacgueg ugeggeaguu uagegacaac geeggaauea caecageeau cageeuggae	660				
cugaugacag augeugageu ggeuagagee gugeeuaaca ugeeuacaue ugeeggeeag	720				
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu	780				
ggeguguaeg geageagegu gaueuauaug gugeageuge euaueuuegg egugauegae	840				
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc	900				
ugecugeuga gagaggacca aggeugguau ugucagaacg eeggeageae eguguaeuae	960				
ccuaacgaga aggacugega gacaagagge gaccaegugu ucugugauae egeegeugga	1020				
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc	1080				
ndcaaddndn ccaccddcad dcacccnann ncnanddndd cnendnenee nendddadee	1140				
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200				
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccgauac cgugaccauc	1260				
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320				
ccugugueca geageuuega eccuaucaag uueccugagg aucaguueca gguggeeeug	1380				
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440				
cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucaueeu gauegeegug	1500				
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagccc	1560				
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac	1617				
<210> SEQ ID NO 136 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide					
<400> SEQUENCE: 136					
augageugga agguggucau caucuucage cugeugauca caceucagea eggeeugaaa	60				
gagagcuace uggaagague cugcagcace aucacagagg gcuaccugue ugugcugaga	120				
aceggeuggu acaecaaegu guucaeaeug gaagugggeg aceuegagaa ucugaeauge	180				
ucugauggee cuagecugau caagaeegag cuggaucuga ceaagagege ceugagagaa	240				
cucaagaceg ugucugeega ucageuggee agagaggaae agauegagaa uceuggeage	300				
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360				
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420				
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca	480				
geegugegeg ageugaagga cuueguguee aagaaceuga caegggeeau uaacaagaae	540				
aagugegaca uegaegaeeu gaagauggee gugueeuuua geeaguueaa eeggegguuu	600				
cugaacgueg ugeggeaguu uagegacaae geeggaauca caecageeau cageeuggae	660				

719

720

cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggc	cag 720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucug.	auu 780
adeananea aceaceacan asnensnana andesacende ensnenneda candsne	gac 840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuac	gcc 900
ugecugeuga gagaggacea aggeugguau ugucagaaeg eeggeageae eguguae	uac 960
ccuaacgaga aggacugcga gacaagaggc gaccacgugu ucugugauac cgccgcu	gga 1020
aucaaugugg cogagcagag caaagaguge aacaucaaca ucageaceac caacuau	ccc 1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucuggga	gee 1140
cugguggeuu guuauaaggg cguguccugu ageaucggea geaacagagu gggeauc	auc 1200
aagcagcuga acaagggeug cagcuacauc accaaccagg acgeegauac egugace	auc 1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggc	aga 1320
ccugugucca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggcc	cug 1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacaga	auc 1440
cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucaueeu gauegee	gug 1500
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaag	ccc 1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac	1617
<210> SEQ ID NO 137 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 137	
augageugga agguggueau caucuucage eugeugauea caecucagea eggeeug.	
augageugga agguggueau caucuucage eugeugauea caecucagea eggeeug gagageuaee uggaagague eugeageaee aucaeagagg geuaeeugue ugugeug.	aga 120
augageugga agguggucau caucuucage cugeugauca caecucagea eggeeug gagageuace uggaagague cugeageace aucaeagagg geuaceugue ugugeug aceggeuggu acaecaaegu guucaeaeug gaagugggeg aeguegagaa ucugaea	aga 120 ugc 180
augageugga agguggueau caucuucage cugeugauea caecucagea eggeeug gagageuace uggaagague cugeageace aucaeagagg geuaceugue ugugeug aceggeuggu acaecaaegu guucaeaeug gaagugggeg aeguegagaa ueugaea ueugauggee cuageeugau caagaeegag euggaueuga eeaagagege eeugaga	aga 120 ugc 180 gaa 240
augageugga agguggueau caucuucage cugeugauea caecucagea eggeeug gagageuace uggaagague cugeageace aucaeagagg geuaceugue ugugeug aceggeuggu acaecaaegu guucaeaeug gaagugggeg aeguegagaa ucugaea ucugauggee cuageeugau caagaeegag cuggaueuga eeaagagege eeugaga cucaagaeeg ugueugeega ucageuggee agagaggaae agauegagaa uceugge	aga 120 ugc 180 gaa 240 agc 300
augageugga agguggueau caucuucage cugeugauea caecucagea eggeeuga gagageuaee uggaagague cugeageaee aucacagagg geuaeeugue ugugeug aceggeuggu acaecaaegu guucaeaeug gaagugggeg aeguegagaa ucugaea ucugauggee cuageeugau caagaeegag cuggaucuga ceaagagege ceugaga cucaagaeeg ugueugeega ucageuggee agagaggaae agauegagaa uceugge ggeageuuug ugeugggage cauugeucuu ggaguggeug cugeugeage uguuaea	aga 120 ugc 180 gaa 240 agc 300 gca 360
augageugga agguggueau caucuucage cugeugauea caecucagea eggeeug gagageuaee uggaagague cugeageaee aucaeagagg geuaeeugue ugugeug aceggeuggu acaecaaegu guucaeaeug gaagugggeg aeguegagaa ucugaea ucugauggee cuageeugau caagaeegag cuggaueuga ceaagagege eeugaga cucaagaeeg ugueugeega ucageuggee agagaggaae agauegagaa uceuggee ggeageuuug ugeugggage cauugeucuu ggaguggeug eugeugeage uguuaea ggeguggeea ucgeuaagae caucagaeug gaaagegaag ugaeegeeau caacaae	aga 120 ugc 180 gaa 240 agc 300 gca 360 gcc 420
augageugga agguggueau caucuucage cugeugauea caecucagea eggeeuga gagageuace uggaagague cugeageace aucacagagg geuaceugue ugugeug aceggeuggu acaecaaegu guucacaeug gaagugggeg aegueggaga ucugaea ucugauggee cuageeugau caagaeegag cuggaueuga ceaagagege ceugaga ggeageuuug ugeugggage cauugeugue ggagaggaae agauegagaa uceugge ggeeguggeea uegeuaagae caucagaeug gaaagegaag ugaeegeeau caacaa ggeeguggeea uegeuaagae caucagaeug gaaagegaag ugaeegeeau caacaae eugaagaaga caaaegagge egueageaea cueggeaaug geguuagagu geuggee	aga 120 ugc 180 gaa 240 agc 300 gca 360 gcc 420 aca 480
augageugga agguggueau caucuucage cugeugauea caecucagea eggeeug gagageuaee uggaagague cugeageaee aucaeagagg geuaeeugue ugugeug aceggeuggu acaecaaegu guucaeaeug gaagugggeg aeguegagaa ucugaea ucugauggee cuageeugau caagaeegag cuggaueuga ceaagagege eeugaga ggeageuuug ugeugggage cauugeueuu ggaguggeug eugeugeaga uceuggee ggeeguggeea uegeuaagae caucagaeug gaaagegaag ugaeegeeau caacaae eugaagaaga caaaegagge egueageaea cueggeaaug geguuagagu geuggee geegugegeg ageugaagga euuegugeuu aagaaeeuga caegggeeau uaacaag	aga 120 ugc 180 gaa 240 agc 300 gca 360 gcc 420 aca 480 aac 540
augageugga agguggueau caucuucage eugeugauea caecucagea eggeeug gagageuaee uggaagague eugeageaee aucacagagg geuaeeugue ugugeug aceggeuggu acaecaaegu guucacaeug gaagugggeg aeguegagaa ucugaea ucugauggee euageeugau caagaeegag euggaueuga eeaagagege eeugaga eucaagaeeg ugueugeega ucageuggee agagaggaae agauegagaa uceugge ggeeguggeea uegeuaagae eauugeueuu ggaguggeug eugeugaaga ueeugge ggeeguggeea uegeuaagae caucagaeug gaaagegaag ugaeegeeau eaaeaaeg eugaagaaga caaaegagge egueageaea eueggeaaug geguuagagu geuggeea geegugegeeg ageugaagga cuucgugeuu aagaaeeuga eaegggeeau uaacaag aagugegaea uegaegaeeu gaagauggee gugueeuuua geeaguueaa eeggegeeu	aga 120 ugc 180 gaa 240 agc 300 gca 360 gcc 420 aac 540 uuu 600
augageugga agguggueau eaucuucage eugeugauea eaceucagea eggeeug gagageuaee uggaagague eugeageaee aucaeagagg geuaeeugue ugugeug aeeggeuggu acaecaaegu guucaeaeug gaagugggeg aeguegagaa ucugaea ucugauggee euageeugau eaagaeegag euggaueuga eeaagagege eeugaga cucaagaeeg ugueugeega ucageuggee agagaggaae agauegagaa uceuggee ggeeguuug ugeugggage eauugeueuu ggaguggeug eugeugeage uguuaea ggeeguggee ucgeuaagae eauugeueuu ggaguggeug eugeugaga ucaeeugee ggeeguggeeg ageugaagga euuegugeuu aagaaegeaa geguuagagu geuggee geegugegeeg ageugaagga euuegugeuu aagaaeeuga eaegggeeau uaaeaag aagugegaea ucgaegaeeu gaagauggee guueeuuua geeagueeau eaeeaag eugaaegueg ugeggeaguu uagegaeaae geeggaauea eaeeggeeau eageeuge eugaaegueg ugeggeaguu uagegaeaae geeggaauea eaeeageeau eageeuge	aga 120 ugc 180 gaa 240 agc 300 gca 360 gcc 420 aca 480 aacc 540 uuu 600 gac 660
augageugga agguggueau eaucuucage eugeugauea eaecucagea eggeeug gagageuaee uggaagague eugeageaee aucacagagg geuaeeugue ugugeug aceggeuggu acaceaaegu guucacaeug gaagugggeg aeguegagaa ucugaea ucugauggee euageeugau eaagaeegag euggaueuga eeaagagege eeugaga cucaagaeeg ugueugeega ucageuggee agagaggaae agauegagaa uceuggee ggeeguggeea uegeuaagae eaucagaeug gaaagegaag ugaeegeeau eaacaaeg ggeeguggeea uegeuaagae eaucagaeug gaaagegaag ugaeegeeau eaacaaeg ggeeguggeeg ageugaagga euuegugeuu aagaaeeuga geeguuagagu geeugeee uugaagaaga caaaegagge egueageaea eueggeaaug geeguuagagu geeugee geegugegeg ageugaagga euuegugeuu aagaaeeuga eaegggeeau uaacaag aagugegaea uegaegaeeu gaagauggee gugueeuuua geeagueaa eeggeegu eugaaegueg ugeggeaguu uagegaeaae geeggaauea eaeeageeau eageeuge eugaaugaeag augeugageu ggeuagagee gugeeuaaea ugeeugeeau eageeuge	aga 120 ugc 180 gaa 240 agc 300 gca 360 gcc 420 aac 540 uuu 600 gac 660 cag 720
augageugga agguggueau eaueuucage eugeugauea eaeeucagea eggeeug gagageuaee uggaagague eugeageaee aueaeagagg geuaeeugue ugugeug aceggeuggu acaceaacgu guucaeacug gaagugggeg aeguegagaa ucugaea ucugauggee euageeugau eaagaeegag euggaucuga eeaagagege eeugaga cucaagaeeg ugueugeega ucageuggee agagaggaae agauegagaa uceuggee ggeguggeea uegeugage eauugeueuu ggaguggeug eugeugeage uguuaea ggeguggeea uegeugage egueageaea eueggeaaug geguuagagu geuggee eugaagaaga eaaaegagge egueageaea eueggeaaug geguuagagu geuggee geegugegeg ageugaagga euuegugeuu aagaaeeuga geguuagagu geuggee uugaaegueg uggegeaguu uagegaeaa geeggaauea eaeeageeau uaaeaag eugaaegueg uggegeaguu uagegaeaa geeggaauea eaeeageeau eageeug eugaaegueg ugeggeaguu uagegaeaa geeggaauea eaeeageeau eageeug eugaaegueg ugeugageu ggeuagagee gugeeuaaea ugeeugeeu eugaaugaeag augeugageu ggeuagagee gugeeuaaea ugeeugeeu eugaaegueg ugeeggagau uagegeeaug gueegaegga ugeeugeeu eaeeuge eugaaegueg ugeeggagau uagegeeaug gueegaegga ageeugeeu eaeeuge eugaaegueg ugeeggagau uagegeeaug gueegaegga ageeugeeu eaeeuge eugaaegueg ugeeggagau uagegeeaug gueegaegga ageeugeeu eaeeugeeugeeugeeugeeugeeugeeugeeugeeugee	aga 120 ugc 180 gaa 240 agc 300 gca 360 gcc 420 aca 540 uuu 600 gac 660 cag 720 auu 780
augageugga agguggueau caucuucage cugeugauea caecucagea eggeeug gagageuaee uggaagague cugeageaee aucacagagg geuaeeugue ugugeug aceggeuggu acaecaaegu guucacaeug gaagugggeg aeguegagaa ucugaea ucugauggee cuageeugau caagaeegag cuggaueuga ceaagagege eeugaga ggeageuuug ugeugggage cauugeueuu ggaguggeug eugeugaaa uceuggee ggeeguggee uegeuaagae caueagaeug gaaagegaag ugaeegeeau caacaaeg ggeeguggee auegeugage egueageae guggeuaga ugaeegeeau caacaaeg ggeeguggee auegeugage egueageae eueggeaau geeugeeau caacaaeg eugaagaaga caaacgagge egueageae eueggeaau geeuggeeau uaacaag geegugegee ageugaagga euuegugeuu aagaaeeuga eaegggeeau uaacaag aagugegaea uegaegaeu gaegaagee gugeeuaaea geeggaauea caecageeau caacaag cugaaegueg ugeegeaguu uagegaeaa geeggaauea caecageeau cageeug aucaageuga ugeugagaa uagageeaug gueegaegaa aaggeuuegg cauueug ggeeguguaeg geageageu gaueuauaug gueegaegaa aaggeuuegg cauueug aucaageuga geageageu gaueuauaug gueegaegaa aaggeuuegg egugaue	aga 120 ugc 180 gaa 240 agc 300 gca 360 gcc 420 aca 480 gac 540 uuu 600 gac 660 cag 720 auu 780 gac 840
augageugga agguggueau eaueuueage eugeugauea eaeeueagea eggeeuga gagageuaee uggaagague eugeageaee aueaeagagg geuaeeugue ugugeuga aceggeuggu acaceaaegu guucaeaeug gaagugggeg aeguegagaa ueugaea ueugauggee euageeugau eaagaeegag euggaueuga eeaagagege eeugaga cucaagaeeg ugueugeega ueageuggee agagaggaae agauegagaa ueeuggee ggeeguggeea uegeuaagae eauugeueuu ggaguggeug eugeugaea ueeuggee ggeeguggeea uegeuaagae eaueagaeug gaaageegaag ugaeegeeau eaaeaaeg ggeeguggege ageugaagga euuegugeuu aagaaeeuga geeguaagau eaaeaaeg eugaaagaaga eaaaegagge egueageaea eueggeaaug geeguuaagau geeuggee geegugegeeg ageugaagga euuegugeuu aagaaeeuga eaeeggeeau uaaeaag aagugegaea uegaegaeeu gaagauggee gugeeuaaea eeeggeeau eageegge eugaaaegueg ugeegeaguu uagegaeaae geeggaauea eaeeageeau eageegge eugaaagueg augeugageu ggeuagagee gugeeuaaea ugeeuegee aueaageuga ugeuegagaa uagageeaug gueegaegga aaggeuuegg eauueg ggeeguguaeg geageagegu gaueuauaug gugeageuge euaueuuegg egugaue aaeaeeeugeu ggauugugaa ggeegeueeu ageuguageg agaagaaggg eauueg gaeeguguaeg geageagegu gaueuauaug gugeageuge euaueuuegg egugaueg acaeeeugeu ggauugugaa ggeegeueeu ageuguageg agaagaaggg eauueg	aga 120 ugc 180 gaa 240 agc 300 gca 360 gcc 420 aac 540 uuu 600 gac 660 cag 720 auuu 780 gac 840
augageuggaagguggueaucaucuucagecugeugaueacaecueageacogeeugagagageuaceuggaagaguecugeageaceaucaeagagggeuaeeugueuguguguaaceggeugguacaecaaeguguucaeaeuggaagagggegaeguegagaaucugaagucugauggeecuageeugaucaagaeeggcuggaueugaceaagagegeceugagaaggeageuuugugeugggagecauugeueuuggagaggaacagaueggagauguuaeagggeageuuugugeugggagecauugeueuuggagaggaacagaueggagauguuaeagggeguggeeuegeuaagaecauuegueuuggagageaaguguuagagaceugagaagggeguggeeacaacgaggeegueageaeacueggeaaguguuaeagggeguggeeageugaaggacauuegueuuagaaaeeugaugeuggeaugagagegaacauegeugagaauuegugeaacaecageagguguuaeaggeeguggeeageugaaggacauueggeeguuaeagaecaecageagggeegugegeeageugaaggacuuegugeaauaeeagaeegcaecageagggeegugegeauegeegaeaageugagaeageeggeagacaecageeggaucaageugaugeugagaauagegaeaaegeeggaaaeacaecageeggcugaageugaugeugagaauagegaeaageeggaaaecaecageeggcugaagaegugeugagaauageugaeaageeggaaaecaecageegguucaageugaugeugagaauageugaeaageeggaaaecauueugggeguguaeggaagaggaeauageugaeaageeggaaaecauueugggeguguaeggaagaggaeagauugugaggeegueaa <t< td=""><td>aga120ugc180gaa240agc300gca360gcc420aca480aca540uuu600gac660cag720auu780gac840gac900uac960</td></t<>	aga120ugc180gaa240agc300gca360gcc420aca480aca540uuu600gac660cag720auu780gac840gac900uac960
augageugga agguggueau eaueuueage eugeugauea eaeeueagea eggeeuga gagageuaee uggaagague eugeageaee aueaeagagg geuaeeugue ugugeuga aceggeuggu acaceaaegu guucaeaeug gaagugggeg aeguegagaa ueugaea ueugauggee euageeugau eaagaeegag euggaueuga eeaagagege eeugaga cucaagaeeg ugueugeega ueageuggee agagaggaae agauegagaa ueeuggee ggeeguggeea uegeuaagae eauugeueuu ggaguggeug eugeugaea ueeuggee ggeeguggeea uegeuaagae eaueagaeug gaaageegaag ugaeegeeau eaaeaaeg ggeeguggege ageugaagga euuegugeuu aagaaeeuga geeguaagau eaaeaaeg eugaaagaaga eaaaegagge egueageaea eueggeaaug geeguuaagau geeuggee geegugegeeg ageugaagga euuegugeuu aagaaeeuga eaeeggeeau uaaeaag aagugegaea uegaegaeeu gaagauggee gugeeuaaea eeeggeeau eageegge eugaaaegueg ugeegeaguu uagegaeaae geeggaauea eaeeageeau eageegge eugaaagueg augeugageu ggeuagagee gugeeuaaea ugeeuegee aueaageuga ugeuegagaa uagageeaug gueegaegga aaggeuuegg eauueg ggeeguguaeg geageagegu gaueuauaug gugeageuge euaueuuegg egugaue aaeaeeeugeu ggauugugaa ggeegeueeu ageuguageg agaagaaggg eauueg gaeeguguaeg geageagegu gaueuauaug gugeageuge euaueuuegg egugaueg acaeeeugeu ggauugugaa ggeegeueeu ageuguageg agaagaaggg eauueg	aga 120 ugc 180 gaa 240 agc 300 gca 360 gcc 420 aca 480 gac 540 uuu 600 gac 660 cag 720 gac 840 gac 900 uac 960

aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuauccc 1080

-continued	

-continued	
ndcaaddndn ccaccddcad dcacccnann ncnanddndd cnendnenee nendddadee	1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200
aagcagcuga acaagggeug cagcuacauc accaaccagg acgeegauae egugaceaue	1260
dacaacaccg ndnancadon dadcaaddnd daaddodaac adcacdndan caadddcada	1320
ccugugucca gcagcuucga cccuaucaag uucccugagg aucaguucca gguggcccug	1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	1440
cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucaueeu gauegeegug	1500
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagccc	1560
aceggegeue euceagaacu gageggagug aceaacaaug geuucaueee ucacaac	1617
<210> SEQ ID NO 138 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 138	
augageugga agguggucau caucuucage eugeugauca caceucagea eggeeugaaa	60
gagagcuace uggaagague eugeagcaee aucacagagg geuaceugue ugugeugaga	120
accggcuggu acaccaacgu guucacacug gaagugggcg acgucgagaa ucugacaugc	180
ucugauggee cuagecugau caagacegag cuggaucuga ceaagagege ecugagagaa	240
cucaagaceg ugucugeega ucageuggee agagaggaae agauegagaa uceuggeage	300
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420
cugaagaaga caaacgagge egucageaca cueggeaaug geguuagagu geuggeeaca	480
deedndeded meerdeaden geschnede undiedinge deedddeer maeraadaac	540 600
aagugegaca uegacgaceu gaagauggee gugueeuuua geeaguueaa eeggegguuu	660
cugaacgucg ugoggcaguu uagogacaac googgaauca caccagocau cagocuggac	720
cugaugacag augeugagae uagagegaug gugecuaaca ugecuacaue ugeeggeeag	780
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu	840
acacceuden adamandada adeedenen adenanaede adaadaadda caannaedee	900
udecendenden abaundanden abeeldenen uderstanden abendende eine eine eine eine eine eine ei	960
ccnaacdada addacndcda dacaadaddc daccacdndn ncndndanac cdccdcndda	1020
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcaccac caacuaucco	1030
ndcyyddiad ccycoddorad dcycocrann ncnyndiad cnondinonoc ncndddadoc	1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200
aagcageuga acaagggeug cageuacauc aceaaceagg acgeegauae egugaceauc	1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga	1320
	1320
conditioned a contraction contraction of the second s	1440
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc	
cugucuagog cogagaaggg aaacacoggo uucaucauog ugaucauoou gauogoogug	1500
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagcee	1560

-continued

accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucauccc ucacaac 1617 <210> SEQ ID NO 139 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 139 augageugga agguggucau caucuucage cugeugauca caccucagea eggeeugaaa 60 gagageuace uggaagague eugeageace aucaeagagg geuaceugue ugugeugaga 120 accggcuggu acaccaacgu guucacacug gaagugggeg accucgagaa ucugacauge 180 ucuqauqqee cuaqeeuqau caaqaeeqaq cuqqaucuqe ucaaqaqeqe ceuqaqaqaa 240 300 cucaaqacco uqucuqccoa ucaqcuqqcc aqaqaqqaac aqaucqaqaa uccuqqcaqc ggcageuuug ugeugggage cauugeueuu ggaguggeug eugeugeage uguuacagea 360 420 ggeguggeea uegeuaagae caucagaeug gaaagegaag ugaeegeeau caacaaegee cuqaaqaaqa caaacqaqqc cqucaqcaca cucqqcaauq qcquuaqaqu qcuqqccaca 480 gccgugcgcg agcugaagga cuucgugcuu aagaaccugu ggcgggccau uaacaagaac 540 aaquqegaca ueqaegaceu gaagauggee gugueeuuua geeaguueaa eeggegguuu 600 660 cuqaacqueq uqeqqeaquu uaqeqacaac qeeqqaauca caccagecau caqeeuqgac cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag 720 aucaageuga ugeuegagaa uagageeaug gueegaegga aaggeuuegg eauueugauu 780 ggeguguaeg geageagegu gaucuauaug gugeageuge cuaucuuegg egugauegae 840 acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaaggg caauuacgcc 900 ugecugeuga gagaggacca aggeugguau ugucagaacg eeggeageac eguguacuae 960 ecuaacgaga aggacugega gacaagagge gaccaegugu ucugugauae egeegeugga 1020 aucaaugugg cegageagag caaagaguge aacaucaaca ucageaceae caacuaucee 1080 ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc 1140 cugguggeuu guuauaaggg cguguccugu ageaucggea geaacagagu gggeaucauc 1200 aagcageuga acaagggeug cageuacaue aceaaceagg aegeegauae egugaeeaue 1260 gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacgugau caagggcaga 1320 ccugugueca geageuuega eccuaueaag uueccugagg aueaguueca gguggeecug 1380 gaccaggugu ucgagaacau cgagaauucc caggcucugg uggaccaguc caacagaauc 1440 1500 cuqueuageq ceqaqaaqqq aaacaceqqe uucaucaucq uqaucauceu qaucqeequq cugggcageu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaageee 1560 aceggegeue cuccagaacu gageggagug aceaacaaug geuucaucee ucacaac 1617 <210> SEQ ID NO 140 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide

<400> SEQUENCE: 140

augageugga agguggueau eaueuueage eugeugauea eaeeueagea eggeeugaaa 60

725

726

gagageuaee uggaagague eugeageaee aucaeagagg geuaeeugue ugugeugaga	120
accggcuggu acaccaacgu guucacacug ccugugggcg acgucgagaa ucugacaugc	180
ucugauggee cuagecugau caagaeegag cuggaucuga ceaagagege ceugagagaa	240
cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc	300
ggcagcuuug ugcugggagc cauugcucuu ggaguggcug cugcugcagc uguuacagca	360
ggcguggcca ucgcuaagac caucagacug gaaagcgaag ugaccgccau caacaacgcc	420
cugaagaaga caaacgaggc cgucagcaca cucggcaaug gcguuagagu gcuggccaca	480
geegugegeg ageugaagga euueguguee aagaaceuga eaegggeeau uaacaagaac	540
aagugegaca uegaegaeeu gaagauggee gugueeuuua geeaguucaa eeggegguuu	600
cugaacgueg ugeggeaguu uagegacaae geeggaauea eaceageeau eageeuggae	660
cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuacauc ugccggccag	720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcuucgg cauucugauu	780
ggeguguaeg geageagegu gaucuauaug gugeageuge cuaucuuegg egugauegae	840
acacccugcu ggauugugaa ggeegcuccu ageuguageg agaagaaggg caauuaegee	900
ndeendenda dadaddaeca addenddnan ndneadaacd ceddeadeac edndnaenae	960
ccuaacgaga aggacugega gacaagagge gaccacgugu ucugugauac egeegeugga	1020
aucaaugugg cegageagag caaagaguge aacaucaaca ucageaceae caacuaucee	1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugucucc ucugggagcc	1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacagagu gggcaucauc	1200
aagcagcuga acaagggeug cagcuacauc accaaccagg acgeegauac egugaccauc	1260
dacaacaccd ndnancadon dadcaaddnd daaddodaac adcacdndan caadddcada	1320
ccugugueca geageuuega cecuaucaag uucccugagg aucaguueca gguggeecug	1380
gaccaggugu ucgagaacau cgagaauuce caggeucugg uggaccague caacagaauc	1440
cugucuageg eegagaaggg aaacacegge uucaucaueg ugaucaueeu gauegeegug	1500
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaagac caagaagccc	1560
aceggegeue euccagaacu gageggagug aceaacaaug geuucaueee ucacaac	1617
<210> SEQ ID NO 141 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	
<400> SEQUENCE: 141	
augageugga agguggueau caucuucage eugeugauea caecucagea eggeeugaaa	60 120
dadadcnacc nddaadadnc cndcadcacc ancacadadd dcnaccndnc ndndcndada	
aceggeuggu acaecaaegu guucaeaeug gaagugggeg aeguegagaa ueugaeauge	180
ucugauggoo cuagocugau caagacogag cuggaucuga ccaagagogo cougagagaa	240
cucaagaccg ugucugccga ucagcuggcc agagaggaac agaucgagaa uccuggcagc	300
ggcagcunng ngengggage canngenenn ggagnggeng endengeage ngunaeagea	360
ggeguggeea uegeuaagae caucagaeug gaaagegaag ugaeegeeau caacaaegee	420
cudaadaada caaacdaddc cdncadcaca cucddcaand dcdnnadadn dcnddccaca	480
gccgugcgcg agcugaagga cuucgugucc aagaaccuga cacgggccau uaacaagaac	540

aagugegaca ucccugaccu gaagauggee guguecuuua geeaguucaa eeggegguuu

-continued

600

cugaacgueg ugeggeaguu uagegaeaac geeggaauea caceago	ccau cagecuggae 660
cugaugacag augcugagcu ggcuagagcc gugccuaaca ugccuad	cauc ugceggeeag 720
aucaagcuga ugcucgagaa uagagccaug guccgacgga aaggcu	legg cauleugauu 780
ggeguguaeg geageagegu gaucuauaug gugeageuge cuaucu	ucgg cgugaucgac 840
acacccugcu ggauugugaa ggccgcuccu agcuguagcg agaagaa	aggg caauuacgcc 900
ugccugcuga gagaggacca aggcugguau ugucagaacg ccggcag	gcac cguguacuac 960
ccuaacgaga aggacugcga gacaagaggo gaccacgugu ucuguga	auac cgccgcugga 1020
aucaaugugg ccgagcagag caaagagugc aacaucaaca ucagcad	ccac caacuaucce 1080
ugcaaggugu ccaccggcag gcacccuauu ucuauggugg cucugu	cucc ucugggagcc 1140
cugguggcuu guuauaaggg cguguccugu agcaucggca gcaacag	gagu gggcaucauc 1200
aagcagcuga acaagggcug cagcuacauc accaaccagg acgccga	auac cgugaccauc 1260
gacaacaccg uguaucagcu gagcaaggug gaaggcgaac agcacg	1gau caagggcaga 1320
ccugugueca geageuuega eccuaueaag uueecugagg aueagu	icca gguggcccug 1380
gaccaggugu ucgagaacau cgagaauucc caggcucugg uggacca	ague caacagaaue 1440
cugucuageg cegagaaggg aaacacegge uucaucaueg ugaucau	iccu gauegeegug 1500
cugggcagcu ccaugauccu gguguccauc uucaucauua ucaagaa	agac caagaagccc 1560
accggcgcuc cuccagaacu gagcggagug accaacaaug gcuucat	ICCC UCACAAC 1617
<212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 142	
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 142	agca cggccugaaa 60
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide	0 00 0
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 142 augageugga agguggucau caucuucage eugeugauca caccuca	iguc ugugcugaga 120
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 142 augageugga agguggucau caucuucage eugeugauca caecuea gagageuace uggaagague eugeageace aucaeagagg geuace	nguc ugugcugaga 120 agaa ucugacaugc 180
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 142 augageugga agguggucau caucuucage cugeugauca caecuca gagageuace uggaagague cugeageace aucaeagagg geuaceu aceggeuggu acaecaacgu guucaeacug gaagugggeg acguega	nguc ugugcugaga 120 agaa ucugacaugc 180 gege ccugagagaa 240
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 142 augageugga agguggucau caucuucage cugeugauca caecuca gagageuace uggaagague cugeageace aucaeagagg geuacet aceggeuggu acaecaaegu guucaeaeug gaagugggeg aeguega ucugauggee cuageeugau caagaeegag cuggaucuga ceaagag	iguc ugugcugaga 120 agaa ucugacaugc 180 gege ecugagagaa 240 agaa uccuggeage 300
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 142 augageugga agguggucau caucuucage cugeugauca caecuca gagageuace uggaagague cugeageace aucaeagagg geuaceu aceggeuggu acaecaaegu guucaeaeug gaagugggeg aeguega ucugauggee cuageeugau caagaeegag cuggaucuga ceaagag cucaagaeeg ugucugeega ucageuggee agagaggaae agauega	nguc ugugcugaga 120 agaa ucugacaugc 180 gege ceugagagaa 240 agaa uceuggeage 300 eage uguuacagea 360
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 142 augageugga agguggucau caucuucage cugeugauca caecuca gagageuace uggaagague cugeageace aucaeagagg geuaceu aceggeuggu acaecaaegu guucaeaeug gaagugggeg aeguega ucugauggee cuageeugau caagaeegag cuggaucuga ceaagag cucaagaeeg ugucugeega ucageuggee agagaggaae agauega ggeageuuug ugeugggage eauugeueuu ggaguggeug eugeuga </pre>	Iguc ugugcugaga 120 agaa ucugacaugc 180 gege ccugagagaa 240 agaa uccuggeage 300 cage uguuacagea 360 ccau caacaacgee 420
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 142 augageugga agguggucau caucuucage cugeugauca caecuca gagageuace uggaagague cugeageace aucaeagagg geuaceu aceggeuggu acaecaaegu guucaeaeug gaagugggeg aeguega ucugauggee cuageeugau caagaeegag cuggaucuga eeaaga ucugauggee cuageeugau caagaeegag cuggaucuga eeaaga ggeageuuug ugeuggega eauugeucuu ggaguggeug cugeuga ggeeguggeea ucgeuaagae eauugeucuu ggaguggeug cugeuga ggeeguggeea ucgeuaagae eauugeucuu ggaagegaag ugaeega</pre>	Iguc ugugcugaga 120 agaa ucugacaugc 180 gege ccugagagaa 240 agaa uccuggeage 300 cage uguuacagea 360 ceau caacaaegee 420 gagu geuggeeaca 480
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 142 augageugga agguggucau caucuucage cugeugauca caecuca gagageuace uggaagague cugeageace aucaeagagg geuaceu aceggeuggu acaecaaegu guucaeaeug gaagugggeg aeguega ucugauggee cuageeugau caagaeegag cuggaucuga ceaagag gueagaeeg ugueugeega ucageuggee agagaggaae agauega ggeageuuug ugeugggage eauugeueuu ggaguggeug eugeuga ggeguggeea uegeuaagae eauegaeug gaaagegaag ugaeega cugaagaaga caaaegagge egueageaea cueggeaaug geguuag</pre>	Iguc ugugcugaga 120 agaa ucugacaugc 180 gege ccugagagaa 240 agaa uccuggcage 300 cage uguuacagea 360 ceau caacaacgee 420 gagu gcuggecaca 480 ceau uaacaagaac 540
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 142 augageugga agguggucau caucuucage cugeugauca caecuca gagageuace uggaagague cugeageace aucaeagagg geuaceu aceggeuggu acaecaaegu guucaeaeug gaagugggeg acguega ucugauggee cuageeugau caagaeegag cuggaucuga ceaagag gueagaeeg ugueugeega ucageuggee agaagggaae agauega ggeageuuug ugeugggage cauugeucuu ggaguggeug cugeuga ggeguggeea uegeuaagae caueagaeug gaaagegaag ugaeega cugaagaaga caaaegagge egueageae uegegaag geguug geeguggeea uegeuaagae caueagaeug gaaagegaag ugaeega cugaagaaga caaaegagge egueageae cueggeaaug geguuage geegugegeg ageugaagga cuueguguee aagaaeeuga caeggga geegugegeg ageugaagga cuueguguee aagaaeeuga caeggag</pre>	Iguc ugugcugaga 120 agaa ucugacaugc 180 gege ccugagagaa 240 agaa uccuggcage 300 cage uguuacagea 360 ceau caacaaegee 420 gagu geuggecaca 480 ceau uaacaagaac 540 icaa ceggegguuu 600
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 142 augageugga agguggucau caucuucage cugeugauca caccuca gagageuace uggaagague cugeageace aucacagagg geuaceu aceggeuggu acaceaaegu guucacaeug gaagugggeg aeguega ucugauggee cuageeugau caagaeegag cuggaucuga ceaagag eucaagaeeg ugucugeega ucageuggee agagaggaae agauega ggeageuuug ugeugggage eauugeueuu ggaguggeug eugeuga ggeeguggeea uegeuaagae eaueagaeug gaaagegaag ugaeega cugaagaaga caaaegagge egueageaa cueggeaaug geeguag geegugegeg ageugaagga cuueguguee aagaaeeuga caeegga aagugeeeua uegaegaeeu gaagauggee gugueeuua geeguga geegugegeg ageugaagga cuueguguee aagaaeeuga caeegga aagugeeeua uegaegaeeu gaagauggee gugueeuua geegua aagugeeeua uegaegaeeu gaagauggee gugueeuua geeguga aagugeeeua uegaegaeeu gaagauggee gugueeuua geeguga aagugeeeua uegaegaeeu gaagauggee gugueeuua geeguga aagugeeeua uegaegaeeu gaagauggee gugueeuua geeguga aagugeeeua uegaegaeeu gaagauggee gugueeuua geegua aagugeeeua uegaegaeeu gaagauggee gugueeuua geeguga aagugeeeua uegaegaeeu gaagauggee gugueeuua geeguge aagugeeeua uegaegaeeu gaagauggee gugueeuua geegugeeu aagueeeua uegaegaeeu gaagauggee gugueeuua geegugeeua aagueeeua uegaegaeeu gaagauggee gugueeuua geegugeeua aagueeeua uegaegaeeu gaagauggee gugueeuua geegugeeuua geegugeeuuaeuu geegugeeuuaeuu geegugeeuuuaeuua geegugeeuuaeuu geegugeeuuuaeuu geegugeeuuuaeuua geegugeeuuuaeuu geegugeeuuuaeuu geegugeeuuuaeuu geegugeeuuuua geegugeeuuuu geegugeeuuuuaeuuu geegugeuuuuuuuuuu</pre>	Iguc ugugcugaga 120 agaa ucugacaugc 180 gege ccugagagaa 240 agaa uccuggcage 300 cage uguuacagea 360 cau caacaaegee 420 gagu gcuggecaca 480 ccau uaacaagaac 540 leaa ceggegguuu 600 ccau cagecuggac 660
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 142 augageugga agguggucau caucuucage cugeugauca caecuca gagageuaee uggaagague cugeageaee aucaeagagg geuaeeu aeeggeuggu acaecaaegu guucaeaeug gaagugggeg aeguega ucugauggee cuageeugau caagaeegag cuggaucuga eeaagag gueagaeeg ugueugeega ucageuggee agagaggaae agauega ggeguggeea uegeuaagae eauugeueuu ggaguggeug eugeuga ggeguggeea uegeuaagae eauugeueuu ggaguggeug eugeuga ggeeguggeea uegeuaagae eauugeueuu ggaagegaag ugaeega cugaagaaga caaaegagge egueageaea cueggeaaug geguuag geegugegeg ageugaagga cuueguguee aagaaeegaag geeguaag aagugeeeua uegaegaeeu gaagauggee gugueeuua geeague cugaaegueg ugeggeaguu uagegaeaae geeggaauea caeeggea aagugeeeua uegaegaeuu uagegaeaae geeggaauea caeeggea cugaaegueg ugeggeaguu uagegaeaae geeggaauea caeeggea cugaaegueguegegaeguegaegaeu uagegaeaae geeggaauea caeeggea aagugeeeua uegaegaeguegaegaeu uagegaeaae geeggaauea caeeggea cugaaegueg ugeggeaguu uagegaeaae geeggaauea caeeggea cugaaegueguegegaeguegegaegaeguegaeae geeggaaueae caeeggea cugaaegueguegegaeguegaeguegaegaeguegaeaegaeguegaegaegaegaeguegaegaeguegaegaeaeguegaegaeguegaegaeguegaegaegaegaegaegaegaegaegaegaegaegaegae</pre>	Igue ugugeugaga 120 agaa ucugacauge 180 gege ccugagagaa 240 agaa uceuggeage 300 eage uguuacagea 360 eeau caacaacgee 420 gagu geuggeeaca 480 eeau uaacaagaac 540 icaa ceggegguuu 600 eeau cageeuggee 660 eeau ugeeggeeag 720
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <2223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 142 augageugga agguggucau caucuucage cugeugauca caecuea gagageuace uggaagague cugeageace aucaeagagg geuaceu aceggeuggu acaecaaegu guucaeaeug gaagugggeg acguega ucugauggee cuageeugau caagaeegag cuggaucuga ceaagag gueagaeeg ugueugeega ucageuggee agagaggaae agauega ggeageuuug ugeugggage cauugeucuu ggaguggeug cugeuga ggeguggeea uegeuaagae caueagaeug gaaagegaag ugaeega cugaagaaga caaaegagge egueageae cueggeaaug geguuag geegugegeg ageugaagga cuueguguee aagaaeeuga caeegga aagugeeeua uegaegaeeu gaagauggee gugueeuua geeague cugaaegueg ugeggeaguu uagegaeaae geeggaauea caeeaga cugaaegueg ugeggeaguu uagegaeae geeggaauea caeeaga cugaaegueg ugeggeaguu uagegaeae geeggaauea caeeaga cugaaegueg ugeggeaguu uagegaeae gugeeuaaea ugeeuae cugaaegueg ugeggeaguu uagegaeae geeggaauea caeeaga cugaagaega augeugageu ggeuagagee gugeeuaaea ugeeuae cugaagaega augeugageu ggeuagaee gugeeuaaea ugeeuae cugaagaega augeugageu ggeuagaee gugeeuaaea ugeeuae cugaagaega augeugageu ggeuagagee gugeeuaeae ugeeuaea cugaugaeag augeugageu ggeuagaee gugeeuaaea ugeeuaea cugaugaeag augeugageu ggeuagaee gugeeuaaea ugeeuaea cugaugaeaga augeugageu ggeuagaee gugeeuaaea ugeeuaea cugaugaeaga augeugaegae ggeuagaee gugeeuaaea ugeeuaea cugaugaeaga augeugaegae ggeuagaee gugeeuaaea ugeeuaea cugaugaeagae augeugaegae ggeuagaee gugeeuaaea ugeeuaea cugaugaeagae augeugaegae ggeugaagee gugeeuaaea ugeeuaea cugaugaeagaa augeugaegae ggeugaagee gugeeuaaea ugeeuaea cugaugaeagae augeugaegae ggeugaagee gugeeuaaea ugeeuaea cugaugaeagaeagae augeugaeae ggeugaaea geeggaaea augeeuaea cugaugaeagaegaegaegaeugaeaea ggeugaaea augeeuaea cugaegaeagaegaeagaegaeaeaeaeaeaegaegae</pre>	Igue ugugeugaga 120 agaa ucugacauge 180 gege ccugagagaa 240 agaa uccuggeage 300 eage uguuacagea 360 eeau caacaaegee 420 gagu geuggeeaea 480 eeau uaacaagaae 540 neaa ceggegguuu 600 eeau cageeuggae 660 eaue ugeeggeeag 720 negg cauucugauu 780
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Polynucleotide <400> SEQUENCE: 142 augageugga agguggucau caucuucage cugeugauca caccuca gagageuace uggaagague cugeageace aucacagagg geuaced aceggeuggu acaceaaegu guucacaeug gaagugggeg acguega ucugauggee cuageeugau caagaeegag cuggaucuga ceaagag gueagaeegu ugueugeega ucageuggee agagaggaac agauega ggeageuuug ugeugggage cauugeucuu ggaguggeug eugeuga ggeeguggeea uegeuaagae caueagaeug gaaagegaag ugaeega ggeeguggeea uegeuaagae caueagaeug gaaagegaag ugaeega ggeegugegeg ageugaagga cuueguguee aagaaeeuga caeegga aagugeeeua uegaeagae gaagauggee gugueeuua geeguga cugaaegaeg ugeegaagu uagegaeaa geeggaauca caeegga aagugeeeua uegaegaeu gaegaagee gugeeuaaea ugeeuaa aucaageuga ugeugagaa uagageeagee gugeeuaaea ugeeuaa aucaageuga ugeugagaa uagageeaggae gugeeuaaea ugeeuaa aucaageuga ugeugagaa uagageeaggee gugeeuaaea ugeeuaae aucaageuga ugeugagaa uagageeaggeeagga aaggeuga aggeuga aucaageuga ugeugagaa uagageeaggee gugeeuaaea ugeeuaa aucaageuga ugeugagaa uagageeaggeeagga aaggeuga aggeuga augageeageugagaa ugeugagaa uagageeaggeeag</pre>	Igue ugugeugaga 120 Igue ugugeugaga 120 agaa ucugacauge 180 gege ccugagagaa 240 agaa ucugacauge 300 cage uguuacagea 360 cage uguuacagea 360 cage uguuacagea 480 gagu geuggecaca 480 ceau uaacaagaac 540 icaa ceggegguuu 600 ceau ugeeggecag 720 iegg cauucugauu 780 iegg cgugauegae 840

	or				

				-contir	nued		
ccuaacgaga a	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020	
aucaaugugg d	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080	
ugcaaggugu d	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagee	1140	
cugguggcuu g	guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200	
aagcagcuga a	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260	
gacaacaccg u	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320	
ccugugucca g	gcagcuucga	cccuaucaag	uucccugagg	aucaguucca	gguggeeeug	1380	
gaccaggugu ı	ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440	
cugucuageg o	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500	
cugggcagcu d	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560	
accggcgcuc d	cuccagaacu	gagcggagug	accaacaaug	gcuucauccc	ucacaac	1617	
<210> SEQ II <211> LENGTF <212> TYPE: <213> ORGANI <220> FEATUF <223> OTHER	H: 1617 RNA ISM: Artifi RE:			eotide			
<400> SEQUEN	NCE: 143						
augagcugga a	agguggucau	caucuucage	cugcugauca	caccucagca	cggccugaaa	60	
gagageuace ı	uggaagaguc	cugcagcacc	aucacagagg	gcuaccuguc	ugugcugaga	120	
accggcuggu a	acaccaacgu	guucacacug	gaagugggcg	acgucgagaa	ucugacaugc	180	
ucugauggee o	cuagccugau	caagaccgag	cuggaucuga	ccaagagcgc	ccugagagaa	240	
cucaagaeeg u	igucugcega	ucageuggee	agagaggaac	agaucgagaa	uccuggcagc	300	
ggcagcuuug u	ugcugggagc	cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360	
ggcguggcca ı	ucgcuaagac	caucagacug	ccuagegaag	ugacegecau	caacaacgcc	420	
cugaagaaga d	caaacgaggc	cgucagcaca	cucggcaaug	gcguuagagu	gcuggccaca	480	
geegugegeg a	agcugaagga	cuucgugucc	aagaaccuga	cacgggccau	uaacaagaac	540	
aagugegaca u	ucgacgaccu	gaagauggee	guguccuuua	gccaguucaa	ccggcgguuu	600	
cugaacgucg u	ugeggeaguu	uagegacaac	geeggaauca	caccagecau	cagecuggae	660	
cugaugacag a	augcugagcu	ggcuagagee	gugccuaaca	ugccuacauc	ugeeggeeag	720	
aucaagcuga u	ugcucgagaa	uagagccaug	guccgacgga	aaggcuucgg	cauucugauu	780	
ggeguguaeg g	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840	
acacccugcu ç	ggauugugaa	ggeegeueeu	agcuguagcg	agaagaaggg	caauuacgcc	900	
ugecugeuga g	gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960	
ccuaacgaga a	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020	
aucaaugugg d	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080	
ugcaaggugu d	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140	
cugguggcuu ç	guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200	
aagcagcuga a	acaagggcug	cagcuacauc	accaaccagg	acgeegauae	cgugaccauc	1260	
gacaacaccg ι	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320	
ccugugucca g	gcagcuucga	cccuaucaag	uucccugagg	aucaguucca	gguggeeeug	1380	
gaccaggugu u		_		-		1440	
		5 5	55	55			

-continued

cugucuageg cegagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500
cugggcagcu ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560
accggcgcuc cuccagaacu	gageggagug	accaacaaug	gcuucaucce	ucacaac	1617
<210> SEQ ID NO 144 <211> LENGTH: 1617					
<212> TYPE: RNA <213> ORGANISM: Artif <220> FEATURE: <223> OTHER INFORMATI(otide		
<400> SEQUENCE: 144	Jan Dynamou				
augageugga agguggueau	caucuucage	cugcugauca	caccucagca	cggccugaaa	60
gagageuace uggaagague					120
accggcuggu acaccaacgu					180
ucugauggee cuagecugau					240
cucaagaceg ugucugeega					300
ggcagcuuug ugcugggagc					360
ggcguggcca ucgcuaagac					420
cugaagaaga caaacgaggc					480
geegugegeg ageugaagga					540
aagugegaca uegaegaeeu					600
cugaacgucg ugcggcaguu					660
cugaugacag augcugagcu					720
aucaagcuga ugcucgagaa					780
ggcguguacg gcagcagcgu					840
acacccugcu ggauugugaa					900
ugccugcuga gagaggacca					960
ccuaacgaga aggacugcga					1020
aucaaugugg ccgagcagag					1080
ugcaaggugu ccaccggcag					1140
cugguggcuu guuauaaggg					1200
aagcagcuga acaagggcug					1260
gacaacaccg uguaucagcu	gagcaaggug	gaaggegaae	agcacgugau	caagggcaga	1320
ccugugueca geageuuece	accuaucaag	uucccugagg	aucaguucca	gguggeeeug	1380
gaccaggugu ucgagaacau	cgagaauucc	caggeucugg	uggaccaguc	caacagaauc	1440
cugucuageg cegagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gauegeegug	1500
cugggcagcu ccaugauccu					1560
aceggegeue cuccagaacu					1617
	7-7-224948		Jeastatoo		
<pre><210> SEQ ID NO 145 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artif: <220> FEATURE: <223> OTHER INFORMATIC</pre>	_		eotide		

733

<400> SEQU	ENCE: 145						
augagcugga	agguggucau	caucuucage	cugcugauca	caccucagca	cggccugaaa	60	
gagagcuacc	uggaagaguc	cugcagcacc	aucacagagg	gcuaccuguc	ugugcugaga	120	
accggcuggu	acaccaacgu	guucacacug	gaagugggcg	acgucgagaa	ucugacauge	190	
ucugauggee	cuagccugau	caagaccgag	cuggaucuga	ccaagagcgc	ccugagagaa	240	
cucaagaccg	ugucugeega	ucagcuggcc	agagaggaac	agaucgagaa	uccuggcagc	300	
ggcagcuuug	ugcugggagc	cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360	
ggcguggcca	ucgcuaagac	caucagacug	gaaagcgaag	ugacegecau	caacaacgcc	420	
cugaagaaga	caaacgaggc	cgucagcaca	cucggcaaug	gcguuagagu	gcuggccaca	480	
geegugegeg	agcugaagga	cuucgugucc	aagaaccuga	cacgggccau	uaacaagaac	540	
aagugcgaca	ucgacgaccu	gaagauggcc	guguccuuua	gccaguucaa	ccggcgguuu	600	
cugaacgucg	ugeggeaguu	uagegacaac	gccggaauca	caccagecau	cagccuggac	660	
cugaugacag	augcugagcu	ggcuagagcc	gugccuaaca	ugccuacauc	ugeeggeeag	720	
aucaagcuga	ugcucgagaa	uagagccaug	guccgacgga	aaggcuucgg	cauucugauu	780	
ggeguguaeg	gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840	
acacccugcu	ggauugugaa	ggccgcuccu	agcuguagcg	agaagaaggg	caauuacgcc	900	
ugecugeuga	gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960	
ccuaacgaga	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020	
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080	
ugcaaggugu	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagee	1140	
cugguggcuu	guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200	
aagcagcuga	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260	
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320	
ccugugucca	gcagcuucga	cccuaucaag	uucccugaga	accaguucca	gguggeeeug	1380	
gaccaggugu	ucgagaacau	cgagaauucc	caggeucugg	uggaccaguc	caacagaauc	1440	
cugucuageg	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gauegeegug	1500	
cugggcagcu	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560	
accggcgcuc	cuccagaacu	gageggagug	accaacaaug	gcuucauccc	ucacaac	1617	
<220> FEAT	TH: 1617 : RNA NISM: Artif: URE: R INFORMATIC	_		eotide			
augageuqqa	agguggucau	caucuucaqc	cugcuqauca	caccucaqca	cggccuqaaa	60	
	uggaagaguc					120	
	acaccaacgu					180	
						240	
	cuagccugau						
	ugucugcega					300	
ggcagcuuug	ugcugggagc	cauugcucuu	ggaguggcug	cugcugcagc	uguuacagca	360	
ggeguggeea	ucgcuaagac	caucagacug	gaaagcgaag	ugacegeeau	caacaacgcc	420	

736

cugaagaaga caaacgaggc	cgucagcaca	cucggcaaug	gcguuagagu	gcuggccaca	480
geegugegeg ageugaagga	cuucgugucc	aagaaccuga	cacgggccau	uaacaagaac	540
aagugegaea uegaegaeeu	gaagauggee	guguccuuua	gccaguucaa	ccggcgguuu	600
cugaacgucg ugcggcaguu	uagcgacaac	gccggaauca	caccagccau	cagccuggac	660
cugaugacag augcugagcu	ggcuagagee	gugccuaaca	ugccuacauc	ugccggccag	720
aucaagcuga ugcucgagaa	uagagccaug	guccgacgga	aaggcuucgg	cauucugauu	780
ggcguguacg gcagcagcgu	gaucuauaug	gugcagcugc	cuaucuucgg	cgugaucgac	840
acacccugcu ggauugugaa	ggeegeueeu	agcuguagcg	agaagaaggg	caauuacgee	900
ugccugcuga gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960
ccuaacgaga aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020
aucaaugugg cegagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080
ugcaaggugu ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagcc	1140
cugguggcuu guuauaaggg	egugueeugu	agcaucggca	gcaacagagu	gggcaucauc	1200
aagcagcuga acaagggcug	cageuacauc	accaaccagg	acgccgauac	cgugaccauc	1260
gacaacaccg uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320
ccugugucca gcagcuucga	cccuaucaag	uucccucagg	aucaguucca	gguggeeeug	1380
gaccaggugu ucgagaacau	cgagaauucc	caggeucugg	uggaccaguc	caacagaauc	1440
cugucuageg cegagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500
cugggcagcu ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaagccc	1560
accggcgcuc cuccagaacu	gageggagug	accaacaaug	gcuucaucce	ucacaac	1617
<pre><210> SEQ ID NO 147 <211> LENGTH: 1617 <212> TYPE: RNA <213> ORGANISM: Artifi <220> FEATURE: <223> OTHER INFORMATIC <400> SEQUENCE: 147</pre>	-		eotide		
augagcugga agguggucau	caucuucage	cugcugauca	caccucagca	cggccugaaa	60
gagageuace uggaagague					120
accggcuggu acaccaacgu					180
ucugauggee cuagecugau					240
cucaagaccg ugucugccga	ucageuggee	agagaggaac	agaucgagaa	uccuggcage	300
ggcagcuuug ugcugggagc	cauugeueuu	ggaguggcug	cugcugcage	uguuacagca	360
ggeguggeea uegeuaagae	caucagacug	gaaagcgaag	ugaccgccau	caacaacgcc	420
cugaagaaga caaacgaggc	cgucagcaca	cucggcaaug	gcguuagagu	gcuggccaca	480
geegugegeg ageugaagga	cuucgugucc	aagaaccuga	cacgggccau	uaacaagaac	540
aagugegaca uegaegaeeu					600
	gaagauggcc	guguccuuua	gccaguggaa	ccggcgguuu	000
cugaacgucg ugcggcaguu	uagcgacaac	gccggaauca	caccagecau	cagccuggac	660
cugaacgucg ugcggcaguu cugaugacag augcugagcu	uagegacaac ggcuagagec	gccggaauca gugccuaaca	caccagecau ugecuacauc	cagccuggac ugccggccag	660 720
cugaacgucg ugcggcaguu	uagegaeaac ggeuagagee uagageeaug	geeggaauca gugeeuaaca gueegaegga	caccagecau ugecuacauc aaggeuucgg	cagccuggac ugccggccag cauucugauu	660

738

-continued

acacccugcu	ggauugugaa	ggccgcuccu	agcuguagcg	agaagaaggg	caauuacgcc	900		
ugccugcuga	gagaggacca	aggcugguau	ugucagaacg	ccggcagcac	cguguacuac	960		
ccuaacgaga	aggacugcga	gacaagaggc	gaccacgugu	ucugugauac	cgccgcugga	1020		
aucaaugugg	ccgagcagag	caaagagugc	aacaucaaca	ucagcaccac	caacuauccc	1080		
ugcaaggugu	ccaccggcag	gcacccuauu	ucuauggugg	cucugucucc	ucugggagee	1140		
cugguggcuu	guuauaaggg	cguguccugu	agcaucggca	gcaacagagu	gggcaucauc	1200		
aagcagcuga	acaagggcug	cagcuacauc	accaaccagg	acgccgauac	cgugaccauc	1260		
gacaacaccg	uguaucagcu	gagcaaggug	gaaggcgaac	agcacgugau	caagggcaga	1320		
ccugugucca	gcagcuucga	cccuaucaag	uucccugagg	aucaguucca	gguggeeeug	1380		
gaccaggugu	ucgagaacau	cgagaauucc	caggcucugg	uggaccaguc	caacagaauc	1440		
cugucuageg	ccgagaaggg	aaacaccggc	uucaucaucg	ugaucauccu	gaucgccgug	1500		
cugggcagcu	ccaugauccu	gguguccauc	uucaucauua	ucaagaagac	caagaageee	1560		
accggcgcuc	cuccagaacu	gagcggagug	accaacaaug	gcuucauccc	ucacaac	1617		

25

40

50

60

What is claimed is:

1. A composition, comprising: a messenger ribonucleic acid (mRNA) comprising an open reading frame encoding a betacoronavirus (BetaCoV) S protein or S protein subunit formulated in a lipid nanoparticle.

2. The composition of claim 1, wherein the open reading ³⁰ frame encodes a BetaCoV S protein.

3. The composition of claim 1, wherein the open reading frame encodes an S protein subunit selected from an S1 subunit and an S2 subunit.

4. The composition of claim **1**, wherein the mRNA further 35 comprising a 5' untranslated region (UTR) and a 3' UTR.

5. The composition of claim 4, wherein the mRNA further comprises a poly(A) tail.

6. The composition of claim 4, wherein the mRNA further comprises a 5' cap analog.

7. The composition of claim 6, wherein the 5' cap analog is 7mG(5')ppp(5')NImpNp.

8. The composition of claim 1, wherein the mRNA comprises a chemical modification.

9. The composition of claim **8**, wherein the chemical 45 modification is a 1-methylpseudouridine modification or a 1-ethylpseudouridine modification.

10. The composition of claim 8, wherein at least 80% of the uracil in the open reading frame has a chemical modification.

11. The composition of claim 1, wherein the lipid nanoparticle comprises an ionizable cationic lipid, a neutral lipid, a sterol, and a PEG-modified lipid.

12. The composition of claim 11, wherein the lipid nanoparticle comprises 20-60% ionizable cationic lipid, 55 5-25% neutral lipid, 25-55% cholesterol, and 0.5-15% PEG-modified lipid.

13. The composition of claim 12, wherein the lipid nanoparticle comprises 50% ionizable cationic lipid, 10% neutral lipid, 38.5% sterol, and 1.5% PEG-modified lipid.

14. The composition of claim 11, wherein the ionizable cationic lipid is Compound 25.

15. The composition of claim **11**, wherein the neutral lipid is 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), the sterol is cholesterol, and the PEG-modified lipid is 1,2-65 dimyristoyl-racalycero-3-methoxypolyethylene glycol-2000 (PEG-DMG) or PEG-cDMA.

16. A composition, comprising: a messenger ribonucleic acid (mRNA) comprising a 5' untranslated region (UTR), an open reading frame encoding a betacoronavirus (BetaCoV) S protein or S protein subunit, a 3' UTR, and a poly(A) tail, formulated in a lipid nanoparticle that comprises 20-60% ionizable cationic lipid, 5-25% neutral lipid, 25-55% cholesterol, and 0.5-15% PEG-modified lipid.

17. The composition of claim 16, wherein the open reading frame encodes a BetaCoV S protein.

18. The composition of claim 16, wherein the open reading frame encodes an S protein subunit selected from an S1 subunit and an S2 subunit.

19. The composition of claim **16**, wherein the mRNA further comprises 5' cap analog 7mG(5')ppp(5')NlmpNp.

20. The composition of claim **16**, wherein at least 80% of the uracil in the open reading frame has a chemical modification.

21. The composition of claim **20**, wherein the chemical modification is a 1-methylpseudouridine modification or a 1-ethylpseudouridine modification.

22. The composition of claim 16, wherein the ionizable cationic lipid is Compound 25.

23. The composition of claim **16**, wherein the neutral lipid is DSPC, the sterol is cholesterol, and the PEG-modified lipid is PEG-DMG.

24. A composition, comprising: a messenger ribonucleic acid (mRNA) comprising a 5' cap analog, a 5' untranslated region (UTR), an open reading frame encoding a betacoronavirus (BetaCoV) S protein, a 3' UTR, and a poly(A) tail, formulated in a lipid nanoparticle that comprises 20-60% ionizable cationic lipid, 5-25% DSPC, 25-55% cholesterol, and 0.5-15% PEG-DMG, wherein the ionizable cationic lipid has the structure of Compound 25, and wherein at least 80% of the uracil in the open reading frame has a 1-meth-ylpseudouridine modification.

25. The composition of claim **24**, wherein the 5' cap analog is 7mG(5')ppp(5')NlmpNp.

26. A lipid nanoparticle, comprising: a messenger ribonucleic acid (mRNA) comprising an open reading frame encoding a betacoronavirus (BetaCoV) S protein or S protein subunit; wherein the lipid nanoparticle comprises

20-60% ionizable cationic lipid, 5-25% neutral lipid, 25-55% cholesterol, and 0.5-15% PEG-modified lipid.

* * * * *